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ABSTRACT. If a finite set of balls of radius n/2 (hemispheres) in the unit sphere S” is
rearranged so that the distance between each pair of centers does not decrease, then the
(spherical) volume of the intersection does not increase, and the (spherical) volume of the
union does not decrease. This result is a spherical analog to a conjecture by Kneser (1954)
and Poulsen (1955) in the case when the radii are all equal to 7/2.

1. Introduction.

Let S™ be the unit sphere in Euclidean (n + 1)-dimensional space, and let X(p) be a
finite intersection of balls of radius 7/2 (closed hemispheres) in S™ whose configuration
of centers is p = (pi,...,pn). We say that another configuration q = (qi,...,qy) is a
contraction of p if, for all 1 < i < j < N, the spherical distance between p; and p; is not
less than the spherical distance between q; and q;. We denote n-dimensional spherical
volume by Vol,[ ]. Our main result is the following.

Theorem 1. If q is a configuration in S™ that is a contraction of the configuration p,
then

Vol [X(p)] < Voln[X(q)].

This result is to be compared with our previous result [2], where the ambient space
is Euclidean space E*, and the set X is the intersection of balls of arbitrary radius, but
for n > 3 we need to assume that there is a piecewise-analytic monotone motion of the
configuration in E"*?. This uses the results [4] and [5] of Csikés, where the ambient
space E", and the balls which make up the space X are of arbitrary radius, but there
must be a continuous contraction of the configuration p to the configuration q in E”.
For a history of earlier related results and the conjectures of Kneser [9] and Poulsen [10]
as well as related conjectures, see our paper [2].
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The method we use here follows the same general outline as in our paper [2]. We use a
leapfrog lemma to move one configuration to the other in an analytic and monotone way,
but only in higher dimensions. Then the higher-dimensional balls have their combined
volume (their intersections or unions) change monotonically, a fact that we prove using
Schafli differential formula. Then we apply an integral formula to relate the volume of
the higher dimensional object (or the volume of the boundary of the higher dimension
set in our previous case) to the volume of the lower-dimensional object, obtaining the
volume inequality for the more general discrete motions.

The following are some corollaries following from Theorem 1 and its proof. The first
one is an immediate set theoretic consequence.

Corollary 1. If a finite set of balls of radius w/2 in the unit sphere S™ is rearranged
0 that the distance between each pair of centers does not increase, then the (spherical)
volume of the union does not increase.

Corollary 2. Let p = (p1,...,Pn) be N points on a hemisphere of S? (resp., points in
F? ), and let @ = (qu,...,qn) be a contraction of p in S? (resp., in E2). Then perimeter
of the convez hull of q 1s less than or equal to the perimeter of the convez hull of p.

Proof. This theorem in S? follows from taking the spherical polar of the convex hull of
the configurations p and q, which are the intersections of the hemispheres with centers
at the vertices of the corresponding configurations. In this case the area of the polar and
the perimeter of the convex hull sum up to 27, and the result follows. Finally, the claim
in E? follows easily from the spherical version via a standard limiting procedure.

The Euclidean part of Corollary 2 has been proved independently by R. Alexander
[1], V. Capoyleas and J. Pach [3], and V. N. Sudakov[11].

Recall that the extreme points of a compact convex set X are the points that do not
lie on the relative interior of a segment joining two other points of X. The following is a
result of a compactness argument applied to a sequence of points that are dense in X.

Corollary 3. If there is a contraction of the eztreme points of a convezx set in an open

hemisphere of S™, then the polar of X has volume no larger than the volume of the polar
of the conver hull of the image.

2. Leapfrog Lemmas.
We repeat here one of our previous Lemmas from (2], the Leapfrog Lemma.

Lemma 1. Suppose that p = (p1,...,Pn) and q = (q1,...,qnN) are two configurations
in E*. Then the following is a continuous motion p(t) = (pi(t),...,pn(t)) in E2" that
is analytic in t, such that p(0) = p, p(1) = q and for 0 < t < 1, |pi(t) — p;(¢)] is
monotone:

(1) p:(t) = (Pi—;;—qi+(coswt)ﬁ~;—(]i,(sinwt)—rig—gi), 1<i<j<N.

We need to apply this to a sphere, rather than Euclidean space. Here we consider the
unit spheres S® C S**! C S™*2 ... in such a way that each S™ is the set of points that
are a unit distance from the origin in E**!. So we need the following.
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Corollary 4. Suppose that p = (p1,...,P~) and q = (q1,...,qn) are two config-
urations in S™. Then there is a montone analytic motion from p = (p1,...,pN) to

q=(a,...,qy) in St

Proof. Apply Lemma 1 to each configuration p = (p1,...,pn~) and q = (qi,...,qN)
with the origin as an additional configuration point for each. So for each ¢, the configu-
ration p(t) = (p1(¢),...,pn(t)) lies at a unit distance from the origin in E2"*2?  which
is just §2n+1

3. The differentiable case.

We look at the case when there is a smooth motion of the configuration p(¢) in S™.
More precisely we consider the family X (¢) = X(p(t)) of convex spherical n-polytopes
in S™ having the same combinatorial face structure with facet hyperplanes being differ-
entiable in the parameter ¢. The following classical theorem of Schlafli (see for example
[8]) describes how the volume of X (¢) changes as a function of its dihedral angles and
the volume of its (n — 2)-dimensional faces.

Theorem 2 (Schlafli). For each (n — 2)-face Fij(t) of the convez spherical n-polytope
X(t) in S™ let a;;(t) represent the dihedral angle between the two facets F;(t) and Fj(t)
meeting at F;;(t). Then the following holds:

2) o] = =5 L0y i),

to be summed over all (n — 2)-faces.

Corollary 5. If the configuration p(t) is a differentiable contraction in t, then with the
notation of Theorem 2,

d
Bl C($)] > 0.
7 Vol,[X(t)] >0

Proof. As the distance between p;(t) and p;(t) is decreasing, the derivative of the dihe-
dral angle @—;Jf—t) > 0. The result then follows from (2).

4. Integral formulas.

The last piece of information that we need before we get to the main result is a way
of relating higher-dimensional volumes to lower-dimensional volumes. Let X be any
integrable set in S™. Recall that we regard

X CS*"=8"x {0} Cc E**! x EFFL,

Regard
{0} x S* ¢ EM*! « EFY,

Let X *S* be the subset of S"+**! consisting of the union of the geodesic arcs from each
point of X to each point of {0} x S¥. (So, in particular, S™ * S¥ = S"+*¥+1) See the
Figure.
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FIGURE

Theorem 3. For any integrable subset X of S™,

VOln+k+1[X * Sk] = M VOln[X],

Kn

where Ry = VOln[Sn], and Ru4k4+1 = VOln+k+1[Sn * Sk] - VOln+k+1[Sn+k+1].

Proof. Since the * operation (a kind of spherical join) is associative, we only need to
consider the case when k = 0. Regard {0} x S° = {N, S}, the north pole and the south
pole of S"*! We use polar coordinates centered at N to calculate the (n+1)-dimensional
volume of X *§% Let X(z) = X *S°N [E"*™! x {z}], and let 6 be the angle that a point
in S"*! makes with N, the north pole in S"*1. So z = 2(f) = cos. Then the volume
element for S™(z) is dV,(z) = (sin™ 6)dV,,(0) because S™(z) is obtained from S™(0) by a
dilation by siné. Then

V01n+1[X * SO] = / an(z)dG
X %89

- / / 4V (2)d8
0 JX(=(8))

:/ (sin™ §)Vol,[X]dE

0

= Vol,[X] /Oﬂ(sin" 6)de

= Vol [X] 2L

Kn

The last integral can be seen by taking X = S™, or by performing the integral explicitly.
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5. Proof of Theorem 1.

Let the configuration q = (qi..... g~ ) be a contraction of the configuration p =
iPr-.... px) in 8. By Corollary 4, there is an analytic motion p(t), in §2"*! for

0 <t < 1. where p(0) = p, and p(1) = q, and all the pairwise distances between the
points of p(t) vary monotonically in ¢.

Without loss of generality we may assume that X"(p(0)) is a convex spherical n-po-
lytope in S". Since p(t) is analytic in t. the intersection of the hemispheres in §2"+!,
X"t (p(t)). is a convex spherical (2n 4+ 1)-polytope with a constant combinatorial
structure. except for a finite number of points in the interval [0,1]. By Corollary 5,
Vola, 41X 2"t p(t))], is monotone increasing in ¢.

Recall that X7 (p) and X™(q) are the intersections of the hemispheres centered at the
points of p and q i1 S™. From the definition of the spherical join *,

i

X"(p)*S" = X?"F!(p) = X" (p(0))
X7(q) * 8" = X" (q) = X2 (p(1)).

Henee by Theorem 3,

Vol [X"(p)] = —"—Vol[ X"+ (p(0))] < —*

K2n+41 RKon41

Vol[X*" ! (p(1))] = Vol [X™(q)].

This finishes the proof of Theorem 1.

6. Comments.

We present some possible generalizationus of the above theorems.

By replacing Theorem 2 of [2] with Theorem 5.1 of Csikds’s paper [5] one can rewrite
the proof of Theorem 1 of our paper [2] i a rather straightforward way such that it
leads to the following relative of Theorem 1 of this paper. (We phrase the theorem for
mtersection of balls only, however. a reversed inequality for unions of balls can be proved
in the same way.)

Theorem 4. Lei p = (p1,...,P~) and q = (qy.....qn) be two configurations i S”
such that q is a piecewisc-analytic contraction of p n S"Y2. If X(p) (resp.. X(q))
denotes the finite intersection of congruent balls of radius v, 0 < r < 7w in 8" whose
configuration of centers 1s p (resp.. q), then

Vol [ X (p)] < Vol [X(q)].

Very recently. independently, Csikds [6] extended the above theorem for not neces-
sarily congruent balls as well. These theorems and our proof [2] of the Kneser-Poulsen
conjecture in Euclidean plane leads us to the following conjecture.

Leapfrog Conjecture on S?. Suppose that p = (p1.....pn) and q = (q1.....qN)
are two configurations in S?. Then there is a monotone piecewise-analytic motion from
P=(pi..... Py toq=(qi,....qxn) n S*

Obviously. our Leapfrog Conjecture and the above mentioned theorems imply the
Kneser-Poulsen conjecture for (congruent) circles in 2.
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Finally. we remark that Theorem 1 as well as Theorem 4 extend to flowers of balls as

well. The notion of flowers of balls has been introduced in [7] by Gordon and Mever (in

set theoretic sense a flower of balls is a finite union of finite intersections of balls) and

the proper techmnology to treat them analogously to intersections (resp.. unions) of balls
has been developed by Csikés in [3]. For more information on this see also our paper [2].
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