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Abstract. In this paper, we consider a class of 0–1 programs which,
although innocent looking, is a challenge for existing solution methods.
Solving even small instances from this class is extremely difficult for
conventional branch-and-bound or branch-and-cut algorithms. We also
experimented with basis reduction algorithms and with dynamic pro-
gramming without much success. The paper then examines the perfor-
mance of two other methods: a group relaxation for 0,1 programs, and
a sorting-based procedure following an idea of Wolsey. Although the re-
sults with these two methods are somewhat better than with the other
four when it comes to checking feasibility, we offer this class of small 0,1
programs as a challenge to the research community. As of yet, instances
from this class with as few as seven constraints and sixty 0–1 variables
are unsolved.

1 Introduction

Goal programming [2] is a useful model when a decision maker wants to come “as
close as possible” to satisfying a number of incompatible goals. It is frequently
cited in introductory textbooks in management science and operations research.
This model usually assumes that the variables are continuous but, of course, it
can also arise when the decision variables must be 0,1 valued. As an example,
consider the following market-sharing problem proposed by Williams [18]: A
large company has two divisions D1 and D2. The company supplies retailers
with several products. The goal is to allocate each retailer to either division D1

or division D2 so that D1 controls 40% of the company’s market for each product
and D2 the remaining 60% or, if such a perfect 40/60 split is not possible for
all the products, to minimize the sum of percentage deviations from the 40/60
split. This problem can be modeled as the following integer program (IP):
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Min
∑m

i=1 |si|
s.t.

∑n
j=1 aijxj + si = bi i = 1, ..., m

xj ∈ {0, 1} for j = 1, ..., n

si free for i = 1, ..., m.

where n is the number of retailers, m is the number of products, aij is the demand
of retailer i for product j, and the right hand side vector bi is determined from
the desired market split among the two divisions D1 and D2. Note that the
objective function of IP is not linear but it is straightforward to linearize it.
This integer program also models the following basic Feasibility Problem (FP)
in geometry:
Feasibility Problem: Given m hyperplanes in <n, does there exist a point
x ∈ {0, 1}n which lies on the intersection of these m hyperplanes?

If the optimum solution to IP is 0, the answer to FP is “yes”, else the answer
to FP is “no”. Clearly, FP is NP-complete since for m = 1, FP is the subset-
sum problem which is known to be NP-complete [6]. Problems of this form can
be very difficult for existing IP solvers even for a relatively small number n of
retailers and number m of products (e.g. n = 50, m = 6, and uniform integer
demand between 0 and 99 for each product and retailer). More generally, with
this choice of aij , asking for a 50/50 split and setting n = 10(m− 1) produces a
class of hard instances of 0–1 programs for existing IP solvers.

In this paper, we consider instances from the above class generated as follows:
aij uniform integer between 0 and 99 (= D − 1), n = 10(m − 1) and bi =
b 1

2

∑n
j=1 aijc or, more generally, in the range b 1

2 (−D +
∑n

j=1 aij)c to b 1
2 (−D +∑n

j=1 aij)c + D − 1.

2 Available Approaches for Solving IP

In this section, we report on our computational experience with four different
IP solvers available in the literature.

2.1 Branch and Bound

We found that even small instances of IP are extremely hard to solve using the
conventional branch-and-bound approach. We offer the following explanation.
For instances chosen as described above, there is often no 0–1 point in the inter-
section of the hyperplanes, that is the optimum solution to IP is strictly greater
than 0, whereas the solution to the linear programming relaxation is 0, even
after fixing numerous variables to 0 or to 1. Because the lower bound stays at
0, nodes of the branch-and-bound tree are not pruned by the lower bound until
very deep into the enumeration tree. We illustrate this point in Table 1. We
generated 5 instances of IP (each having 30 variables and 4 constraints) using
the setup described above. We indicate the number of nodes enumerated to solve
IP using CPLEX 4.0.3. For each of the 5 instances, the number of nodes enu-
merated by the branch-and-bound tree is greater than 220. Note that, in each
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Table 1. Size of the branch-and-bound tree (5 instances).

Problem Number of nodes Optimal
size enumerated solution

4 × 30 1224450 1.00

4 × 30 1364680 2.00

4 × 30 2223845 3.00

4 × 30 1922263 1.00

4 × 30 2415059 2.00

case, the solution to IP is strictly greater than 0. Instances with 40-50 variables
take several weeks before running to completion.

Note: The problem class IP is related to the knapsack problems considered by
Chvátal [3]. It is shown in [3] that these knapsack problems are hard to solve
using branch-and-bound algorithms. However, the coefficients of the knapsack
constraint are required to be very large (U [1, 10

n
2 ]). For the instances in the

class IP that we consider, the coefficients aij are relatively small (U [0, 99]). By
combining the constraints of IP with appropriate multipliers (e.g. multiplying
constraint i by (nD)i−1) and obtaining a surrogate constraint, we get an equiva-
lent problem by choosing D large enough, say D = 100 in our case. The resulting
class of knapsack instances is similar to that considered in [3].

2.2 Branch and Cut

The idea of branch-and-cut is to enhance the basic branch-and-bound approach
by adding cuts in an attempt to improve the bounds. Here, we used MIPO,
a branch-and-cut algorithm which uses lift-and-project cuts [1]. The computa-
tional results were even worse than with the basic branch-and-bound approach
(see Table 2). This is not surprising since, in this case, the linear programming
relaxation has a huge number of basic solutions with value 0. Each cutting plane
cuts off the current basic solution but tends to leave many others with value
0. As we add more cuts, the linear programs become harder to solve and, over-
all, time is wasted in computing bounds that remain at value 0 in much of the
enumeration tree.

2.3 Dynamic Programming

Using the surrogate constraint approach described above, we get a 0–1 knap-
sack problem which is equivalent to the original problem. Clearly, this technique
is suitable for problems with only a few constraints. Dynamic programming
algorithms can be used to solve this knapsack problem. Here, we use an imple-
mentation due to Martello and Toth [13] pages 108–109. The complexity of the
algorithm is O(min(2n+1, nc)) where c is the right-hand-side of the knapsack
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constraint. For the instances of size 3 × 20 and 4 × 30, we used the multiplier
(nD)i−1 with D = 100 for constraint i to obtain the surrogate constraint. For
the larger instances, we faced space problems: We tried using smaller multipliers
(e.g. (nD

′
)i−1 with D

′
= 20) but then the one-to-one correspondence between

solutions of the original problem and that of the surrogate constraint is lost. So
one has to investigate all the solutions to the surrogate constraint. Unfortunately,
this requires that we store all the states of the dynamic program (the worst case
bound for the number of states is 2n). Hence, even when we decreased the multi-
pliers, we faced space problems. See Table 2. We note that there are other more
sophisticated dynamic programming based procedures [14] which could be used
here. Hybrid techniques which use, for example, dynamic programming within
branch-and-bound are also available [13].

2.4 Basis Reduction

For the basis reduction approach, we report results obtained using an imple-
mentation of the generalized basis reduction by Xin Wang [16][17]. It uses the
ideas from Lenstra [11], Lovász and Scarf [12] and Cook, Rutherford, Scarf and
Shallcross [4]. We consider the feasibility question FP here. Given the polytope
P = {0 ≤ x ≤ 1 : Ax = b}, the basis reduction algorithm either finds a 0,1
point in P or generates a direction d in which P is “flat”. That is, max{dx−dy :
x, y ∈ P} is small. Without loss of generality, assume d has integer coordinates.
For each integer t such that dmin{dx : x ∈ P}e ≤ t ≤ bmax{dx : x ∈ P}c the
feasibility question is recursively asked for P ∩ {x : dx = t}. The dimension of
each of the polytopes P ∩ {x : dx = t} is less than the dimension of P . Thus,
applying the procedure to each polytope, a search tree is built which is at most
n deep. A direction d in which the polytope is “flat” is found using a generalized
basis reduction procedure [12][4].

2.5 Computational Experience

Table 2 contains our computational experience with the different approaches
given in Section 2. We choose 4 settings for the problem size: m × n = 3 × 20,
4 × 30, 5 × 40 and 6 × 50. For each of these settings, we generated 5 instances
as follows: aij random integers chosen uniformly in the range [0,99] and bi =
b(∑j=1 aij)/2c. For branch-and-bound, we use the CPLEX 4.0.3 optimizer. For
branch-and-cut, we use MIPO [1]. For dynamic programming, we use DPS [13].
For basis reduction, we use Wang’s implementation [16]. Times reported refer to
seconds on an HP720 Apollo desktop workstation with 64 megabytes of memory.
None of the problems with 40 or 50 variables could be solved within a time limit
of 15 hours.
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Table 2. Computing times for various solution procedures.

Problem B & B B & C DP Basis Red.
size (m × n) CPLEX 4.0.3 MIPO DPS Wang

3 × 20 11.76 213.62 0.93 300.42
3 × 20 13.04 125.47 1.28 209.79
3 × 20 13.16 208.76 0.94 212.03
3 × 20 13.64 154.71 1.31 277.41
3 × 20 11.21 190.81 1.11 197.37

4 × 30 1542.76 *** 20.32 ***
4 × 30 1706.84 *** 20.37 ***
4 × 30 2722.52 *** 20.31 ***
4 × 30 2408.84 *** 18.43 ***
4 × 30 2977.28 *** 18.94 ***

5 × 40 *** *** +++ ***
5 × 40 *** *** +++ ***
5 × 40 *** *** +++ ***
5 × 40 *** *** +++ ***
5 × 40 *** *** +++ ***

6 × 50 *** *** +++ ***
6 × 50 *** *** +++ ***
6 × 50 *** *** +++ ***
6 × 50 *** *** +++ ***
6 × 50 *** *** +++ ***

** Time limit (54000 seconds) exceeded.
+++ Space limit exceeded.

3 Two Other Approaches

In this section, we introduce two other approaches to FP.

3.1 The Group Relaxation

The feasible set of FP is

S = {x ∈ {0, 1}n : Ax = b}

where (A, b) is an integral m× (n+1) matrix. We relax S to the following group
problem (GP).

Sδ = {x ∈ {0, 1}n : Ax ≡ b (mod δ)}

where δ ∈ Zm
+ . GP is interesting because (i) In general, GP is easier to solve

than IP [15] and (ii) Every solution of FP satisfies GP. The feasible solutions to
GP can be represented as s-t paths in a directed acyclic layered network G. The
digraph G has a layer corresponding to each variable xj , j ∈ N , a source node s
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and a sink node t. The layer corresponding to variable xj has δ1×δ2...×δm nodes.
Node jk where k = (k1, ..., km), ki = 0, . . . , δi−1 for i = 1, . . . , m, can be reached
from the source node s if variables x1, x2, ..., xj can be assigned values 0 or 1 such
that

∑j
`=1 ai`x` ≡ ki (mod δi), i = 1, 2, ..., m. When this is the case, node jk has

two outgoing arcs (jk, (j+1)k) and (jk, (j+1)k′
), where k′

i ≡ ki+ai,j+1(mod δi),
corresponding to setting variable xj+1 to 0 or to 1. The only arc to t is from
node nb (mod δ). So, the digraph G has N = 2 + n × δ1... × δm nodes and at
most twice as many arcs.
Example 2: Consider the set

S = {x ∈ {0, 1}4 : 3x1 + 2x2 + 3x3 + 4x4 = 5
6x1 + 7x2 + 3x3 + 3x4 = 10}

Corresponding to the choice δi = 2, i = 1, 2, we have the following group
relaxation

S22 = {x ∈ {0, 1}4 : 1x1 + 0x2 + 1x3 + 0x4 ≡ 1 (mod 2)
0x1 + 1x2 + 1x3 + 1x4 ≡ 0 (mod 2)}

Figure 1 gives the layered digraph G for this relaxation.
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Fig. 1. The layered digraph, G, for Example 2.

Every s-t path in G represents a feasible 0–1 solution to S22. What is more
important is that every feasible solution to FP is also a s-t path in G. But this
relationship is not reversible. That is, an s-t path in G may not be feasible for IP.
Also, G may contain several arcs which do not belong to any s-t path. Such arcs
can be easily identified and discarded as follows: Among the outgoing arcs from
nodes in layer n − 1, we only keep those arcs which reach the node nb (mod δ)

and delete all other arcs. This may introduce paths which terminate at layer
n − 1. Hence, going through the nodes in layer n − 2, we discard all outgoing
arcs on paths which terminate at layer n − 1, and so on. It can be easily seen
that performing a “backward sweep” in G in this manner, in time O(N), we
get a new graph G

′
which consists of only the arcs in solutions to the group

relaxation. For the graph G in Figure 1, the graph G
′
is shown in Figure 2.
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Fig. 2. The solution digraph, G
′
, for Example 2.

For each s-t path in G′, we check whether it corresponds to a feasible solution of
FP. Thus, a depth-first-search backtracking algorithm solves FP in time O(pmn)
where p is the number of s-t paths in G′. Two issues are crucial with regard to
the complexity of this approach: the size of p and the size of the digraph G

′
. A

simple estimate shows that the expected value of p is 2n

δ1×...×δm
when the data

aij are uniformly and independently distributed between 0 and D − 1, the δi’s
divide D and the bi’s are uniformly and independently distributed in the range
b 1

2 (−D+
∑n

j=1 aij)c to b 1
2 (−D+

∑n
j=1 aij)c+D−1. On the other hand, the size

of G
′
is of the order n×δ1...×δm. The two issues, namely the size of the digraph

G
′

and the number of solutions to the group relaxation, are complementary to
each other. As the size of G

′
increases, the number of solutions to the group

relaxation decreases. The best choice is when these two sizes are equal, that is
δ1 × δ2 × . . . δm ≈ 2

n
2√
n
. Then, under the above probabilistic assumptions, the

expected complexity of the group relaxation approach is O(
√

n2
n
2 ).

3.2 An O(n2(n=2)) Sorting-Based Procedure

Laurence Wolsey [21] suggested a solution approach based on sorting. We first
describe this procedure for the subset sum feasibility problem (SSFP).
SSFP: Given an integer n, an integral n-vector a = (a1, ..., an) and an integer
b, is {x ∈ {0, 1}n :

∑n
j=1 ajxj = b} 6= φ?

The procedure SSP(n,a,b) described below decomposes the problem into two
subproblems each of size n

2 . It then sorts the 2
n
2 subset sums for both the sub-

problems and traverses the two lists containing these subset sums in opposite
directions to find two values that add up to b. WLOG, we assume n is even.
SSP(n,a,b)

1. Let p = n
2 , v1 = {a1, ..., ap} and v2 = {ap+1, ..., an}. Compute SS1 and SS2,

the arrays of subset sums of the power sets of v1 and v2 respectively.
2. Sort SS1 and SS2 in ascending order.
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3. Let k = 2p, i = 1 and j = k.
do while ((i ≤ k) OR (j ≥ 1)) {
If (SS1[i] + SS2[j] = b) then quit. (Answer to SSFP is “yes”)
else if (SS1[i] + SS2[j] < b) then set i = i + 1
else set j = j − 1 }.

4. Answer to SSFP is “No”.

The complexity of this procedure is dominated by the sorting step and there-
fore it is O(n2

n
2 ). This procedure can be extended to answer FP as follows: For

i = 1, ..., m, multiply the ith constraint by (nD)i−1 and add all the constraints
to obtain a single surrogate constraint

n∑

j=1

m∑

i=1

(nD)i−1aijxj =
m∑

i=1

(nD)i−1bi

Let a = (
∑m

i=1(nD)i−1ai1, ....,
∑m

i=1(nD)i−1ain), b =
∑m

i=1(nD)i−1bi. Call
SSP(n,a,b).

Note: As for dynamic programming, this technique is suitable only for problems
with a few constraints. If (nD)m−1 is too large, a smaller number can be used
but then the one-to-one correspondence between the solutions of FP and the
solutions of the surrogate constraint is lost. In this case note that, if for some
i and j we have SS1[i] + SS2[j] = b, the corresponding 0–1 solution may not
satisfy FP. So, in order to solve FP, we need to find all the pairs i, j such that
SS1[i] + SS2[j] = b.

3.3 Computational Experience

See Table 3. For the group relaxation, we use δi = 8, for all i = 1, ..., m, for
the 5 instances of size 3 × 20 and δi = 16, for all i = 1, ..., m, for the remaining
instances. Times reported refer to seconds on an HP720 Apollo desktop worksta-
tion with 64 megabytes of memory. The sorting-based procedure dominates the
group relaxation for instances up to 40 variables. The group relaxation could
solve all the instances but is very expensive for larger problems. Within each
problem setting, there is very little difference in the amount of time taken by
the group relaxation. This is not surprising since, within each problem setting,
the number of solutions to the group relaxation is about the same. A similar
observation holds for the subset sum approach as well as dynamic programming.

4 Conclusions

In this paper, we consider a class of 0,1 programs with n variables, where n is a
multiple of 10. As noted in the previous section, although the group relaxation is
able to solve problem instances with up to 50 variables, its running time increases
rapidly. Its space complexity and expected time complexity can be estimated to
be O(

√
n2

n
2 ). It is an open question to find an algorithm with expected time
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Table 3. Computing time comparisons.

Problem B & B B & C DP Basis Group Subset Sort
size (m × n)

3 × 20 11.76 213.62 0.93 300.42 0.13 0.01
3 × 20 13.04 125.47 1.28 209.79 0.11 0.01
3 × 20 13.16 208.76 0.94 212.03 0.11 0.01
3 × 20 13.64 154.71 1.31 277.41 0.12 0.03
3 × 20 11.21 190.81 1.11 197.37 0.12 0.03

4 × 30 1542.76 *** 20.32 *** 18.06 0.99
4 × 30 1706.84 *** 20.37 *** 17.83 1.03
4 × 30 2722.52 *** 20.31 *** 17.92 0.98
4 × 30 2408.84 *** 18.43 *** 17.93 1.00
4 × 30 2977.28 *** 18.94 *** 18.04 1.01

5 × 40 *** *** +++ *** 1556.43 46.10
5 × 40 *** *** +++ *** 1562.66 46.18
5 × 40 *** *** +++ *** 1604.02 45.61
5 × 40 *** *** +++ *** 1548.55 46.20
5 × 40 *** *** +++ *** 1606.24 45.51

6 × 50 *** *** +++ *** 26425.01 +++
6 × 50 *** *** +++ *** 26591.28 +++
6 × 50 *** *** +++ *** 26454.30 +++
6 × 50 *** *** +++ *** 27379.04 +++
6 × 50 *** *** +++ *** 27316.98 +++

** Time limit (54000 seconds) exceeded.
+++ Space limit exceeded.

complexity better than O(2
n
2 ). Our computational experience indicates that the

standard approaches to integer programming are not well suited for this class
of problems. As such, we would like to present these small-sized 0–1 integer
programs as a challenge for the research community and we hope that they may
lead to new algorithmic ideas.
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