I, Mathematics 40 (1982) 25-29
frolland Publishing Company

;' INIMAL TRIANGULATION OF THE 4-CUBE*

Richard W. COTTLE
A partment of Operations Research, Stanford University, Stanford, CA 94305, USA

8o ived 19 December 1980
It is known that the 4-dimensional cube can be triangulated by a set of 16 simplices. This

Bte demonstrates that the 4-dimensional cube cannot be triangulated with fewer than 16
Biplices.
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of this note is to prove that the triangulation of the unit 4-cube
8d by Mara [2] is minimal. Like Mara, we restrict attention to triangulation
Bbe into simplices whose vertices are vertices of the cube itself. To say that
“ation is minimal means that no fewer simplices can be used to triangu-
y in question.
h triangulation of the 4-cube into 16 simplices is based upon two
is. The first ‘slices off’ 8 particular vertices and their neighbors. The
'l ts the remaining convex body into another 8 simplices by passing three
fies through it. He shows that this process yields a minimal triangulation
tis true that it is optimal to perform the first operation. This paper will
fic minimality of the resulting triangulation without such an assumption.
Y enough, Mara’s Theorem 1 is an integral part of the minimality
fhould be emphasized that it is independent of the assumption he
g :bbtaining his limited minimality result. We quote Mara’s Theorem
jim for ease of reference.

Mara [2, p. 173]). If P, denotes that number of simplices in the minimal
M of I, E, denotes the total number of exterior (n—1)- faces, and F,
number of interior (n— 1)-faces, then
tDP, =E, +2F,, (1)
=@2n)P, (2)
®2P, . (3)

fi- Words ‘exterior’ and ‘interior’ in Mara’s Theorem are meant
§¢ n-cube. An (n — 1)-face (facet) of an n-simplex of a triangulation is
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exterior if and only if n of its vertices lie in some (n—1)-face of thy
Otherwise, it is interior.

1+ 33

We now derive some consequences of Mara’s Theorem for the case’ 5
(@) SP;=E,+2F, |
(by) E,=8P;,

(cy) P,=2P;,.
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It is not difficult to show (see Mara [2]) that P;=35, so (bs) and (c,) becs

E,=40
and
P,=10,

respectively. Thus, we obtain a crucial inequality:

2F,<5P,—-40.

From (8) and the existence of a triangulation of I* into 16 simplices, we hayh
F

10=P,=<16.

Useful insight into the 4-cube is given by the following observation.

Lemma 1. The volume of any 4-simplex whose vertices are also vertices of I* is
of the numbers 1/24, 2/24, 3/24.

Proof. Recall that the volume of an n-simplex is (1/n!) |det[ B, e]| where B
(n+1)Xn matrix whose rows are the coordinates of the vertices of the simples
and e is a column vector of ones. In the case at hand (n =4) we have n!=
which accounts for the denominators of the numbers listed. As forw ,
numerators, Hadamard’s determinant theorem (see [3, p.114]) implies for any g:

|det[B, e]| = 27" [det[2B —ee™, ]| < (n + 1)** V72,

For n =4, it follows that |det[B, e]|<3. .
We refer to a simplex (of the sort specified in Lemma 1) as being of type i if it§]
volume is i/24 (i =1, 2, 3). As it turns out, I* admits

e

2672 simplices of type 1,

320 simplices of type 2,

16 simplices of type 3.
Consequently, when we speak of a triangulation of I* (minimal or otherwise), we

can let x; denote the number of simplices of type i that it uses. So, for any
triangulation of I*,

X1+ 2x,+3x5 =24, (11)
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Minimal triangulation of the 4-cube

‘ minimal triangulation of the 4-cube, we have

g

(12)

Py= X T X ¥ X

‘contra-“ to Mara, we find 1t somewhat more illuminating to label the vertices
R e cube in accordance with the so-called Gray code rather than the base-2
F. 1n place of a lengthy discusion of the Gray code, we refer the reader to (1]
.) the literature cited therein. For the present purposes, the information
R dcd in Table 1 will suffice.

P

e 1
R code |abelling of the vertices of I*

e ——

hordinates Label Coordinates  Label
(1,1,0,0) 8
(1,1,0, 1) 9
(1,1,1, D 10

(1,1,1,0) 11

coeo
=

=

~e
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(1.0,1.0)
(1.0,1.1)
(1,0,0,1
(1,0,0,0)

12
13
14
15

. 1
iof I* isg

ere B is {8
he simpl@
ave n!=g
\s for i
¥
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t has been found empirically (using the Gray code labelling and a computer to
Enerate all the 4-simplices in I%) that there are exactly 16 simplices of type 3.
heir vertices bear the labels listed in Table 2.

9

ble 2
bilices of type 3 (with Gray code label-
A8 of vertices)

type i if ;f

(=]

[=4

(=4

9
11
8
12

11

.14
.13
.14
.13

J12

8.13

erwise), We
50, for anyj

(11)f

L 10018
L10012
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Because of the Gray Code labelling, one interesting feature of these simplices
tands out. Each simplex (of type 3) has exactly one vertex whose label has the
opposite parity from the other four vertices of that simplex. We call this the apex

- of that simplex. As it turns out, each of the numbers 0.1,...,151s the label of

8ome apex of a simplex of type 3. Furthermore, all 16 of these type-3 simplices




R.W. Cottle

have the same ‘structure’. The apex of each is the antipodal point (with regp
the 4-cube) of a point whose neighbors are the remaining vertices of the sxmp
The simplices of type 3 do not have disjoint interiors.

Lemma 2. The point (,3,3,3) is interior to each simplex of type 3.

Proof. Notice that the numbers §, 3, ¢, 4,3 sum to 1. These 5 numbers (m’

order) are the barycentric coordinates of (, 3, 1 1) with respect to the vertica |
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each simplex of type 3. Indeed, the apex gets ‘weight’ 3, and the other ve ."
each get weight ¢.

[

Corollary. No triangulation of I* uses more than one simplex of type 3, i.e.;

=1.

Further (computer-aided) analysis of these three type of simplices in I* reve
that each simplex of type 2 contains at least 4 interior 3-faces. It is clear h
every simplex contains at least one interior 3-face, and it is easily verified
every simplex of type 3 contains exactly 5 interior 3-faces.

Since, in any triangulation, the interior 3-faces (of the 4-simplices it uses) m
belong to exactly two of the 4-simplices, we have, for a minimal triangulatib
of I*: ;

2F,=x,+4x,+5X3.

To show that a minimal triangulation of the 4-cube must consist of 16 simplices,
we use (9), (10), (11), (12), (13), and (14). In particular, (9), (14) and (11) imply
7x,+ 125 <56. (1sf
Moreover, (10), (12), and (11) imply ;
8<x,+2x,<14. (16)
Recall that x,, x, and x, are nonnegative integers and from (13) we have x; =0 or
X3 = 1 .
If x, =0, then (15) and (16) imply x, =8, in which case (11) implies x, =8 and
(12) implies P,=16. (This is just the sort of triangulation exhibited by Mara.) If

xy=1, then (15) and (16) imply x,=6, in which case x,=9 and (12) implies
P,=16. Thus, we have proved the

Theorem. P,=16.

Discussion

This result has been obtained in a much different way by Sallee [4] who obtains
an upper bound on P, which in the case of n =4 implies that the four cube has 2
minimal triangulation using only 16 simplices.
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,;,'. that P, = 16 given above raises the question: Do there exist triazgu-
B¢ type (9,6,1)? The answer is in the negative as each simplex of type 3
B the ball of radius 1/(2V7) centered at G,1,1,%). Four of the 3-faces of
«{. plex are tangent to this ball. These four faces also belong to simplices of
i ut this ball meets every simplex of type 2.1t
e than 4 simplices of type 2 in any

follows that there can gxist
triangulation of I* that uses a simplkx of

" from the parity of the vertices ‘sliced off’, the preceding remark inplies

P.rc is essentially only one minimal triangulation of I%. It should be moted

s triangulation induces minimal triangulations of the faces of I*. Thelatter

Bngruent to 3. 1t would be very interesting to know whether a miximal
f its (n—1)-faces. If so. then

Bulation of I" induces minimal triangulations 0
ks hypothesis (that in minimal triangulations of I" the alternate vertics are

B “sliced off’) would be verified.
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