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1. INTRODUCTION

In this note we consider the problem of determining a minimal triangu]3}
tion of I, the n-dimensional cube. While the problem seems intrinsicalfy
interesting, our purpose in presenting it is motivated by the interes
evinced in connection with the simplicial approximation of fixed points
continuous mappings [5, 7]. Several algorithms for locating simpli
which approximate fixed points have recently been given [1, 2, 3, 6]. I
expected that by minimizing the number of simplices which fill a cub@
the number of pivoting steps in the implementation of a fixed-poin}
algorithm will generally be nearly minimal and that the resulting algorithy}
will generally perform with optimal efficiency. We consider here on{
triangulations with vertices of simplices coincident with vertices of the cube

We indicate techniques yielding triangulations of I3, I4, I5, consistin|

(n! + 27-1)/2 simplices of dimension n.

2. NOTATION

To facilitate our treatment we will hereafter use the following notatiol
Each vertex of I" will be associated with the number for which it is th
binary representation. Thus in I2,

0,0) 0,
0,1) 1,
(1,0) < 2,
(1, 1) 3.
170
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1976)
. We associate with each simplex in a triangulation of 17, the (n -|- 1) X (1)
Aqtrix whose TOWS arc the coordinates of the vertices. We will call such
_ube e natrix the coordinate matrix of a simplex. We denote the convex hull of
Be points py > P BY [Prses Pl N .
iR Clearly, there is a minimum triangulation of /* containing the triangles
9 1 3] and [0, 2, 3] with coordinate matrices (see Fig. 1)
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:{‘S; that these two triangles are {(x;, Xp):x; <5 Xy} and {(x;, xy):
k' x,) intersected with /2. In general we can always construct a triangula-
B of /* containing n! simplices by intersecting it with each set of the
-l {0y, Xgpeies X)) Xppy 5 0 X.(n)}, where 7 runs over all permuta-
B in the full symmetric group on n elements. We will call this triangula-
Whe standard triangulation.

be shown that a set of simplices triangulates /™ if and only if

) the (n — 1)-faces lying on the interior of /" belong to exactly
Implices, and

2) the (n — 1)-faces lying on the exterior of /* triangulate each of
1)-dimensional faces of I™.

My the use of coordinate matrices we can restate properties (1) and

) If a row of a coordinate matrix is deleted and the resulting
gnatrix has no column of all zeros or all ones, then this n X n
is shared with exactly one other coordinate matrix.

use the following ngE
number for which ¥

L Foreach i = 1,2,....,n and e = 0, 1, the set of all # X n sub-
obtained from the set of coordinate matrices by deleting a row
WS a submatrix with all ¢'s in the ith column forms a triangulation
1)-dimensional cube

111 [ {(Xl s Xp 5eees X Xy == e}~
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touma 1. Forn >

The standard triangulation of I® yields the following six 3-Simp':
B ferior (n — D-faces.

(see Fig. 2). ”
[0’ 1’ 3, 7]3 [0, 4, 5, 7],
[03 2’ 3, 7], [0, 2, 6, 7], "" 8/ A 2. Forn } R
0,1,5,7 0,4, 6,7 W 1)-faces, then any
[ s Iy I ]’ [ s Uy . ) “ it nexterior (n . 1)_]
’ Proof. For a simple
B he coordinate matr
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FiG. 2. Standard triangulation of I°.

We may construct a triangulation containing only five simb
however, by first “slicing off” four corners and then observing that 3% i - the i
is left is a simplex. The following simplices are thus formed (see Fig} € o.btam.t e Inte;
gy % build a simplex o:
[0,1,2,4, 11,237 - ¥ added to be differ
2,467, (1,247 gmn. The simplex
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3. DIMENSION 3

We now prove the minimality of five simplices in a triangulatiof
and attempt to extend this result to dimension 4. ‘

p/n) = 2P, ; .
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2. a simplex in a triangulation of I" has at most n
gxté’ffo" (1 1)-faces.

LemMa 2. Forn o 3, if a simplex in a triangulation of 1" has n exterior
w — D-faces. then any simplex sharing its interior (n — 1)-face has fewer
than n exterior (n - D-faces. .

Proof. For a simplex to have n exterior (n — 1)-faces, each column
in the coordinate matrix must have exactly onc element different from
the rest. The clements that arc different in cach column all appear in

different TOWs. for if two appeared in the same row, deleting this row j(
would yield an (n 1)-face of the simplex lying in two different (# — 1)- BO"M 0
dimensional hyperplanes. which is impossible. Without loss of generality
we can assume that matrix is of the form s‘o \
|
60 0 0 - 0 ! Q\V\ l
1 00 0
o1 0 - 0
e simplingy 00 0 !

L © We obtain the interior (n i)-face by deleting the first row. Let us
f pow build a simplex on this interior (# — 1)-face by adding a row. For the
t fow added to be different from the row deleted, it must have a | in some
eolumn. The simplex thus obtained cannot have n exterior (n -~ I)-faces,
at least one column contains two 1's ||

EOREM 1. If P, denotes the number of simplices in the minimum

gulation of 1". E, denotes the total number of exterior (n — 1)-faces,

Wl F, denotes the number of interior (n — 1)-faces, then

(a) P’n(n %’ ]) = En IT 2F71 )

(b) En ;’2 2nPn~1 k

(C) P'n ;3 ZPn—l' VO.&)/‘{;O
0of. (a) Fverv simplex has n -+ 1 (n-— 1)-faces. Every interior [Z PM(L u/ailqm,-’
1)-face belongs to exactly two simplices, while every exterior (n — 1)- *‘V‘M‘)\’q‘)‘(\b{\
belongs to only one; hence, P,(n -+ 1) = E, + 2F, . RW\C{U"?. o TP
E(b) Since the set of exterior (n — 1)-faces must triangulate each of SNLYLL L

(n — 1)-dimensional faces of I and it takes at least P,_(n — 1)-

Ces to triangulate each of these, E, = 2nP,_; .

{0) Since there are at least 2nP,_, exterior (n - 1)-faces and by

hn 1 a given simplex can contain at most n of these, P, >

o-/n) = 2P,

3 26 <k ¢hC

1 4

Puw« Yae %rtwg}uQAUG ALS,

‘ UAZmoAqQM,‘Z .
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THEOREM 2. The minimum number

i pMMA 5. In a given 1.
I3 is five.

of simplices in a triangulatiof) .
N L cterior (n — 1)-faces.

Proof. By Theorem I(c), P, > 4. Since by Theorem 1(b) the nugd tProof. This is a direct
of exterior faces is at least 12, and by Lemma 1, a simplex can contaijj 1 :

most three of these, if a triangulation has exactly four simplices, theg
would have exactly three exterior faces, However, by Lemma 2 thege o
simplices cannot share their interior faces. Hence, there must be

one other simplex to share these interior faces.

LﬁMMA 6. If a triangu
,_— 1)-faces, then any o
— 1)-faces.

Proof. Assume that ¢
rior (n — 1)-faces and
— 1)-faces. Without lo
atrix of s; to be

at Jga s

4. DIMENSION 4

. X i

simplices. This is a rough lower bound, however, that can be improveq} x: 0
through the use of the following lemmas and an additional assumptio : :
Xn—3 0

LEmMMmA 3. Lvery simplex with n exterior (n — D-faces in a triangulatio Xns | O
of I contains n edges of I, Xoy | O
This is easily seen by observing the coordinate matrix of a simple Xn |0

R

with n exterior (n — I)-faces and remembering that two vertices in [» ar .. . X
connected if and only if they differ in only one coordinate. ’ ', Since vertices X, ,
two of them differ from

generality, assume that s,

LemMA 4. In a given triangulation of I, no two simplices having?
exterior (n — 1)-faces contain the same edge of I, i

xXo |1
Proof by induction on n. This is obvious for n = 2. Now assume tha; X1 0
lemma true for n = k — I, and without loss of generality assume tha : :
two k-simplices each had k exterior (k — 1)-faces but shared the edgaz Xng | 0
connecting (0, 0,..., 0) to (1, 0,..., 0). Their coordinate matrices would be g Xn—g g
xn—-l
0 00 0 I 00 0 x, |0
1 0 0 0 000 0
010 0 1 10 0 Now since our triangulat
00 1 0 and 1y 0 ;] exterior (n — 1)-faces, 1
. . . . . . . . . Tk Vo
0 0 0 1 1 00 1 7,
Now delete the last row in both matrices. The (k — 1)-simplices * :
remaining are two simplices in the triangulation of one of the (k —1)- Y-
dimensional exterior cubes of I*. Each contains k — 1 exterior (k — 2)- Xn-
faces and they share an edge of the cube, which under the induction ‘ Xn-
hypothesis is the needed contradiction. | o Xn
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Since 5, 5£ 5, , there exists an integer k such that 1 < k <nA
and x, # y, . i
In s, delete all rows except for Xks Xn_a, Xy, and x, and in s, delets
the corresponding rows. What remains is two distinct 3-simplices iy ¥
triangulation of one of the 3-dimensional exterior cubes of /* that g

the exterior 2-face with coordinate matrix

Xno |0 1 0
Xpy |0 0 1
x, |0 0 0

This contradicts the definition of a triangulation, so our proo
complete. |

We now use the above lemmas to obtain a lower bound for F., &8
number of interior (n — 1)-faces in a minimum triangulation of /. Reca)
that any triangulation of 7/ has at least 2nP,_, exterior (n — 1)-fa
By Lemma 1, at most n of these are contained in any simplex and by,
Lemma 5, at most 2*-! simplices can contain this maximum numbeg
So as soon as 2nP,_; > n2"1 which it is for n — 4, then there exist soma
simplices with fewer than » exterior (n — 1)-faces. 1

Now let us assume we get the smallest number of interior (n — 1)
by first constructing the maximum number (271) of simplices contain
the maximum number (1) of exterior (n — 1)-faces. By Lemma 6 we

Lt (2nP, ; — n2n-1)4 nei
Fo = 2 [ n—3 +2 ]

Note. The 4 comes from the fact that we may have counted each!
interior (n — 1)-face twice, and the 4 comes from the fact that an n-simplefl
with n — 3 exterior (n — 1)-faces contains four interior (n — 1)-faceg]

Now from Theorem 1a, Theorem 1b, and the above lower bound off
F, , we have ;

P, > 2nP,_ + [42nP, , — n2"Y/(n — 3)] 4- 2n-1 )
n+1

Hence, for n = 4, P, > 16. "

Notice that the additional assumption which was made is equivalen]
to saying that the most efficient way to start a triangulation of I" is d
“slice off” 2%~ corners as we did in I3, So, in order to construct a new
triangulation of J4, we first “slice off”’ the sequences of vertices (0, 3, 5, 6
9, 10, 12, 15) and form the eight simplices

[0,1,2,4,8],[4,8,12,13,14], [2, 8, 10, 11, 14], [2, 4, 6, 7, 14],
(1,8,9,11,13],[1,4,5,7, 13], [1, 2, 3, 7,11}, [7, 11, 13, 14, 15].

TRIANGU

‘e then triangulate what is
TheSC eight simplices are t

[1,2,4,8,14],[1, 4, 8,
B 11,8, 11, 13, 14], [1, 4, 7,
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ser & such thay | ki riangulate what is left by passing three cutting planes through
g cight simplices are thus constructed:

Cas Ny, and v, and iy

is two distinct X—Simpliﬁs, 2,4.8, 14].[1,4,8.13, 14], [1, 2.8, 11, 14]. [1,2.4.7, 14},

zal.extcriur cubes of [ tg 11,13, 14]. [1.4,7.13, 141, [1,2, 7, L1, 14], [1, 7. 1113, 14].

{rIX .

5. CONJECTURE

. author has constructed a triangulation of /% in a fashion completely
triangulation, so our yyq to the constructions in /% and /* [4]. This triangulation contains
plices. Now what is the connection between the numbers 2. 5, 16,
. N S ancions 2 3 . 9 anewer i< f hen we
btain a lower bound for 7 dimensions 2, 3, 4, and 57 The answer is found when we
. 3 ) H . e 1 PR To In -1 c . =S
nimum triangulation of f€ the volumes of the simplices. _Edch of the 2171 corners that we
‘!ced off has volume 1/(n!), while the remaining simplices have
; : . ! snee AT . b ey o S
ontained in any simpley 2:nt). Hunu.-thcrg 1§ a total o'f (n! 2 )2 xnvnphces .m each
ation. The conjecture is that a triangulation containing this many
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