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We show the following for polygons without holes:

1. covering the interior or boundary of an arbitrary polygon with convex
polygons is NP-hard;

2. covering the vertices of an arbitrary polygon with convex polygons is
NP-complete;

3. covering the interior or boundary of an orthogonal polygon with rectangles
is NP-complete.

We note that these results hold even if the polygons are required to be in
general position. © 1994 Academic Press, Inc.

1. INTRODUCTION

1.1. Definitions

We define a polygon as a closed set of points in the plane. By including
the boundary in our definition of polygon, we can talk about vertex covers
and boundary covers in a consistent fashion. This definition also allows for
degenerate polygons consisting of one or more connected line segments or
points. These will not affect the nature of our proofs.

A convex polygon is a finitely bounded intersection of a set of closed
half planes. A polygon is thus the union of a finite collection of convex
polygons. A polygon is simple and holeless if its boundary is a simple cycle.
All polygons considered in this paper are simple and holeless uniess
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otherwise specified. Since the boundary of a polygon is a closed Jordan
curve, it divides the plane into interior and exterior regions, and consists
of line segments, called edges, intersecting in their endpoints, called
vertices. A polygon P is contained in a polygon Q if no point in P is
exterior to Q. A polygon covers any point contained in it, and a set of
points is covered by a set of polygons if every point in the set is covered by
at least one polygon in the set of polygens. The set of convex polygons
defining a simple polygon is a convex cover of the polygon. If in addition
the convex polygons intersect only along their boundaries, then they form
a convex partition of the polygon. A line is orthogonal, or orthogonally
aligned, if it is parallel to one of the Cartesian axes. If all edges of a
polygon are orthogonally aligned, we call it an orthogonal polygon; other-
wise we refer to it as an arbitrary polygon. If no three vertices of an
arbitrary polygon are in a row, we say it is in general position. Similarly, if
no three vertices of an orthogonal polygon are in an orthogonal line then
we say it is in general position.

1.2. Previous Work

The problems of decomposing polygons into various types of simpler
polygons have a number of important practical applications [16, 25] and
have received considerable attention from a theoretical perspective.
O’Rourke and Supowit [25] showed that the problems of covering poly-
gons with the minimum number of convex polygons, star-shaped polygons
or spiral polygons are all NP-hard, but-their constructions required the
polygons to have holes. Aggarwal [1] showed that covering by star-shaped
polygons is NP-hard even when the given polygon cannot contain holes.

The problem of minimally covering orthogonal polygons with rectangles
was shown to be NP-complete by Masek [21] (see [13, p. 232]), but again
the proof required the presence of holes. Conn and O’Rourke [6] have
investigated problems of covering parts of orthogonal polygons (which may
have holes) with rectangles. They showed that covering the boundary and
covering the notches (i.e., the reflex angles) are NP-hard, but covering the
corners (i.e., the convex vertices) could be done in polynomial time. They
also showed that covering just the horizontal edges could be done in
polynomial time if the polygon was in general position, but conjectured it
might be NP-complete otherwise. ,

For orthogonal polygons, much of the work has focused on finding fast
algorithms for special cases. Chaiken et al. [3] proved that a minimum
rectangle cover was equal in size to a maximum antirectangle! for convex
orthogonal polygons, and used this fact to obtain a polynomial time

1 . . . . . .
An antirectangle is a set of points, no two of which are contained in a common rectangle.
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algorithm for this case. Franzblau and Kleitman [12] extended this result
with an O(n?) algorithm for covering vertically convex orthogonal poly-
gons. Lubiw [20] gave a polynomial time algorithm for a different subclass
of orthogonal polygons known as plaid polygons. Franzblau [11]} uses a
partitioning scheme to obtain an O(6 log 8) approximate covering, where 0
is the covering number, in O(n log n) time.

In contrast, the problem of decomposing polygons into a minimum
number of nonoverlapping convex polygons has a polynomial time solution
for polygons without holes [5, 4, 15, 17]. This problem becomes NP-hard
when holes are allowed [18, 14]. Partitioning of orthogonal polygons into
rectangles can be done in polynomial time, even when holes are allowed
[19, 23]. In light of these results one might suspect that the corresponding
covering problems would also be tractable for polygons without holes.

In [9], we claimed that in fact these problems are NP-hard. In this paper
we present the details of our proofs. We also extend our results to show
that just covering the vertices of an arbitrary polygon is NP-complete. We
then show that covering the interior of an orthogonal polygon with
rectangles is NP-complete, and present an outline of the construction for
showing that the boundary and interior covering problems for orthogonal
polygons in general are NP-complete.

In the following sections, we make liberal use of diagrams to describe
the details of these constructions, first for the nonorthogonal case, and
then for the case of rectangle covering of orthogonal polygons. We
conclude with a discussion of some remaining open problems in the area

of polygon covering.

2. ParT I: COVERING ARBITRARY POLYGONS
wiTH CoNVEX POLYGONS

In this section we show that the problem of minimally covering the
vertices of an arbitrary simple holeless polygon Q with convex polygons
interior to Q is NP-complete. The construction also shows that obtaining
minimal convex covers for the boundary and the interior are NP-hard.

First, let us define the vertex covering problem as a decision problem.

Polygon Vertex Cover PVC.
Instance: A simple and holeless polygon P, and a positive integer k.

Question: Is there a covering of the vertices of P consisting of k or
fewer convex polygons contained in P?
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similarly, we define the interior and boundary covering problems by

Polygon Interior Cover PIC.
Instance: A simple and holeless polygon P, and a positive integer .

Question: Is there a covering of P consisting of k or fewer conv
polygons contained in P?

f'olygon Edge Cover PEC.
Instance: A simple and holeless polygon P, and a positive integer

Question: s there a covering of the edges of P consisting of k «
fewer convex polygons contained in P?

It is easy to see that PVC is in NP. It is only necessary to construct th
cesibility graph of the vertices of the polygon. Two vertices of P are visib
t» one another if some convex polygon contained in P covers them botl
An edge exists between two vertices in the visibility graph iff they ar
visible to one another. A solution to PVC is represented by a clique cove
of the visibility graph, and obtaining minimum clique covers is in NP, W
do» not know if PEC or PIC are in NP.

Our proof that PVC is NP-complete is based on a reduction from th
satisfiability problem, SAT [7, 13].

Boolean Satisfiability SAT.

Instance: A set % of boolean variables and a collection € of clause
over .

Question: Is there a satisfying truth assignment for €?

l.et I = (%, €) be an arbitrary instance of SAT. Let v = |%]| be the
number of variables and [ = ¥__ ,lc| be the number of occurrences o
literals in the clause system. Then we will show how to polynomially
transform [ to an instance J = (P, k) of PVC, such that P can be coverec
by k = 51 + 3v + 1 convex polygons if and only if [ is satisfiable.

We use the basic component design approach. These components are
parts of the simple polygon P in the instance J. For each u € % we
construct a variable structure. The variable structures are the most com-
plex part of our construction, and will be described in detail shortly. See
Fig. 9. Also, for each ¢ € € we construct a clause checker as illustrated in
Fig. 2, wherc there are three clause checkers. The interior of the polygon
lics above these checkers and below the variable structures. See Fig. 1.

Throughout the following we will identify certain vertices or sets of
yertices as being significant. We will refer to these vertices as labeled. Our
proofs will make use of these by noting that the covering of these is critical
in the sensc that they will necessitate the minimum number of convex
polygons requircd, and that these polygons are sufficient to cover all the
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Variable Structures

Y,
A e?

Clause Checkers

FiG. 1. A complete implementation of a simple example.

remaining vertices and indeed all of the polygon. We now outline the
construction of a polygon P for an instance J, identifying properties of
the construction necessary to the proof, and based on those properties
prove our claim. We provide fuller details of the construction in the
appendix.

One basic component used throughout the variable structures is the
beam machine (BM). This structure is illustrated in Fig. 3. The dashed
lines indicate interceptions of interior extensions of the edges, and are
included to illustrate the visibility restrictions stated below. The opening at
the bottom is called the mouth of the beam machine, and is the attach-
ment to the rest of P. The identified vertices are part of the labeled set of
vertices.

The following properties are easily verified. For purposes of this discus-
sion, we think of the two vertices at 4 as one vertex, and similarly for the
two vertices at B. The reason for actually having two vertices will be made
clear shortly.

1. The points labeled A4, B, C, D are pairwise invisible to each other,
and thus at least four convex polygons are required to cover the BM.

2. All vertices in the polygon visible from C and D can be covered by
two (overlapping) triangles contained in the BM. See Fig. 4.

3. The vertices labeled E and F are not visible from either C or D.

4. E and F and exactly one of 4 or B can be covered by a single
convex polygon contained in P. This is called the beam switch. See Fig. 5.

Fic. 2. Clause checking system for three clauses.
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Beam Mouth

Fic. 3. Beam machine.

5. The polygons in items 2 and 4 cover all vertices in the BM except
one, cither B or A.

6. Any convex polygon covering either 4 or B and at least one of E
and F and contained in P cannot extend beyond a finite distance below
the beam mouth (or to either side), In particular, the remaining construc-

Fic. 4. Background cover for beam machine.
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Fic. 5. Beam machine switch polygon.

tion will be such that no labeled vertex outside the BM can be covered by
such a polygon.

7. A convex polygon covering either B or A can be extended indefi-
nitely far through the beam mouth into the remainder of P. Such a
polygon is called a beam. See Fig. 6. In particular, the remaining construc-
tion will be such that each beam will be able to cover a distinct vertex in P
not in the BM.

5

e

Fic. 6. Beam with parallel sides for interior cover.
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These properties. show that:

LemMma 2.1.  Four convex polygons are necessary and sufficient to cove
the vertices of a beam machine, and at most one of these can be extende
arbitrarily far from the beam machine in the form of a beam.

We will (geometrically) transform the beam machine so that each bean
can be extended to cover one other labeled vertex. These vertices ar
called the targets. One target will be the vertex at the apex of a claus
checker. The other will be at a beam lock in the variable structure. Th
transformations we use must not change the properties used in Lemm
2.1. The following transformations satisfy this requirement, in that they di
not change visibilities within the beam machine.

Scale Y' = sY, X' = sX, where 0 <s is a scale factor to be deter
mined.

Stretch Y' = BY, X' = X, where 0 < 8 < « is a stretch factor to b
determined.

Skew YV =Y, X' =X + aY, where —x <a < x is a skewing facto
to be determined.

Translate Y=Y + b, X' =X +a, where —x <a,b <o will b
computed to place the (transformed) beam machine in its proper locatio
in the variable structure under construction.

See Figs. 7 and 8 for examples of how skew and stretch affect the bean
angles. Note in particular that neither transformation changes the bean
mouth width. At this point we explain why we need two vertices at .4 (an
B). If we are covering the interior, then the sides of the beam from A ar
parallel, since the entire region at 4 (Fig. 4) must be covered. This mean
that the horizontal width of the beam is not affected by either skew o
stretch, and thus the beam may still cover a clause checker (or beam lock
after these transformations with no further changes. For vertex cover
however, only the vertices at 4 or B need to be covered, and so keepin;
the mouth width fixed, the transformations will cause the angle betweer
the sides of the beam to change, and thus it may cover more than one
clause checker. By moving the vertices at A sufficiently close to the
remainder of the beam machine after transformation, we can focus the
beams so that the sides are arbitrarily close to parallel. The beam will nov
just cover the mouth of a clause checker, even for the vertex covering case
and yet still yield a covering that can be extended to cover the boundan
and the interior. This simple device makes vertex cover a special case o
interior or boundary cover, and so simplifies the remainder of our proof
The actual locations of these vertices are computed after the othe
transformations have been applied.
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Fic. 7. The effect on beam angles of skewing with a = 1.0.

Lemma 2.2. The transformations scale, stretch, skew, and translate do
not change the visibilities between vertices within a polygon.

Proof. The proof follows from observing that these are linear transfor-
mations in which straight lines map to straight lines preserving intersec-
tions. O

Note that by joining the ends of the beam mouth, the beam machine
forms a simple polygon, and that all properties necessary to Lemma 2.1
hold within that polygon. Also, note that under each of the transforma-
tions, parallel lines map to parallel lines. These properties plus iteration
on the previous lemma prove

LeEMMA 2.3.  Four convex polygons are necessary and sufficient to cover a
beam machine to which any set of the abouve transformations has been
applied, and exactly one of the four polygons can be extended indefinitely far
through the beam mouth.

We now outline the construction of a variable structure. For the
purposes of this construction, we assume a local origin at the center of the
variable mouth (see Fig. 9) and we place the variable structure directly
above the clause checkers. After construction, the variable structure will

COVERING POLYGONS IS HARD

Stretch Effect

Fic. 8. The effect on beam angles of stretch with 8 = 0.5.

7 7 YATAm

Mouth

FiG. 9. Variable structure.
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Beam Tie @

Beam Lock Vertex

l/wvw:— Tie Vertex

Fic. 10. Details of a beam lock.

be moved aside to allow the construction of another variable structure by
applying a skewing operation.

For each occurrence of a positive literal in some clause, we place a
beam machine at the top of the variable structure on the right side and a
corresponding beam lock on the right side of the variable structure. See
Figs. 9 and 10. The beam locks are joined by orthogonal edges. These
edges intersect at vertices called beam ties. In a similar manner, for each
occurrence as a negated literal, we place a beam machine on the top left
of the variable structure and a corresponding beam lock on the left side.
The beam lock and beam tie vertices are labeled.

The beam lock vertices on one side of the variable structure are all
visible to one another, and to the vertices labeled G and H near the
mouth of the variable. The beam lock vertices on one side of the variable
will not be visible to those on the other side. None will be visible to any
other labeled vertex except the ones in the corresponding beam machine
(i.e., A for beam locks on the right, and B for beam locks on the left). The
beam tie vertices are visible to no other labeled vertex, and thus each one
requires a separate covering polygon. See Fig. 11. We require at least one
additional polygon to cover the vertices labeled G and H at the mouth of
the variable structure, and this can also cover the beam locks on just one
side of the variable structure. We refer to those polygon as the variable
switch. See Fig. 12.

The construction is completed by creating one variable structure for
each variable, and skewing each one so that they do not overlap. The skew

COVERING POLYGONS IS HARD

Fic. 11. Background cover for variable structure.

Fic. 12.  Switch polygon for variable structure.
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assumes the x-axis at the mouth line of the clause checkers, and since a
beam covers an entire clause checker, skewing will not affect the visibility
of the target vertices, provided that the slope of the right side of the each
clause checker is shallow enough. The variables and clause checkers are
then connected to complete a polygon, as illustrated in Fig. 1. The depth
of the clause checkers is adjusted so that the extensions of the right sides
intersect the top of the clause region between the rightmost variable
mouth and the point labeled X. Thus, X is not visible from any clause
checking vertex.

Based on the properties claimed in the preceding paragraphs, we claim

TueoreMm 2.1, PVC is NP-complete.

Proof. We have already shown that PVC is in NP.

We show that the instance of PVC constructed can be covered using
k = 51 + 3r + 1 convex polygons iff the instance of SAT is satisfiable.
First, note that the setting of the variable switches is trivially mapped to
corresponding truth values of the variables, by letting the case of the
switch covering the right beam locks correspond to a setting of true for the
corresponding variable. Suppose that the instance of SAT is true. Then
take any satisfying truth assignment and set the corresponding switches in
the variable structures. Since every clause has at least one true literal, and
under the switch setting the corresponding beam machine can send a
beam to cover the clause checking device, every clause checker will be
covered by a beam. We note that for every literal, there is a beam machine
and one beam tie. The beam machine requires four convex polygons and
the beam tie one for a total of 5/ polygons. In addition, there is one
additional beam tie vertex on each side of each variable structure, and one
switch in each variable, for a total of 3v polygons. Finally, we need
one polygon to cover the vertex X in Fig. 1, which covers the vertices
between the variable structures and the clause checkers. The total as
claimed is 5/ + 3¢ + 1.

Conversely, suppose that the instance of PVC is true. As computed in
the previous paragraph, we need at least 5/ + 3v polygons to cover the
‘labeled vertices in the variable structures. We also need one to cover X,
which is not visible to any of the clause checker vertices. Thus, if the
clause checkers are to be covered, it must be by extension of some of the
polygons covering the variable structures; but the only labeled vertices
visible to the clause checkers are the ones in the corresponding beam
machines, i.e., the beams. If these beams are used to cover the clause
checkers, then the corresponding beam locks must be covered by another
polygon, and the only polygon available is the variable switch, since no
other labeled vertex in the variable structure can see the beam locks
except G and H. That is, the beam locks that are uncovered by beams,
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and the mouth vertices of the variable structure must be covered by a
single polygon; but this can only happen if the beam locks in each variable
that are not covered by beams are all on one side of the variable, and this
constitutes a setting of the switches, which defines a truth assignment.

Finally, we claim that the construction can be done in polynomial time,
using rational arithmetic with O(log n) bits. Scaling the beam machines
(beam locks and clause checkers) by one-half doubles the number that will
fit in the variable structure. Doubling the width doubles the number of
variable structures. Either operation requires only one extra bit of accu-
racy. In the following section, we specify the basic components using
rational coordinates, and only the basic arithmetic operations are required
in our construction.

In fact, the construction only requires a linear number of arithmetic
operations. This follows since each transformation is applied once to the
vertices of each beam machine, followed by one skew transformation to
the entire variable. The number of vertices is clearly linear in the size of
the instance of SAT. O

We have been careful in our construction that a vertex covering can be
extended to an interior or boundary covering by enlarging the polygons sc
that no new polygons are required.

This immediately gives us

CoroLLARY 2.1. PEC and PIC are NP-hard.

Certain vertex alignments are evident in our construction; namely the
mouths of the beam machines are in line as are the mouths of the
variables and the clauses. These alignments are not necessary to ou
construction, since we only require in each case that the vertices should bx
vertices on some convex polygon. This can be obtained by perturbing th
vertices by tiny amounts. This would show that our results hold even fo
general position polygons, but we leave the details to the intereste
reader.

We note that Shermer [27] has constructed an independent proof tha
interior covering is NP-hard based on a reduction from Exact Cover b
3-Sets.

2.1. Appendix I Construction Details

We now describe in somewhat more detail the construction of a
instance of PVC from an instance of SAT. These details should be enoug
to allow the skeptical reader to verify the properties claimed in th
previous section. In generating the examples, we found that quite a fe
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constraints had to be met, not the least of which was obtaining coordinates
which looked nice when drawn. Thus, we list the major coordinates as an
example of how the properties can be met, although there are of course
infinitely many other satisfying constructions.

The Cartesian coordinates of the right hand side of the beam machine,
with local origin centered in the mouth, are, in counterclockwise order
from the right side of the mouth.

(3,0), (21,3), (30,21), (45,6), (45,63), (93/2, 68)*,
(93/2,145/2)*, (0,57).

The left part of the beam machine is obtained by negating the x-coordi-
nates. The two vertices marked by * will in fact be moved to focus the
beams for the vertex cover as described in the previous section. We refer
to these as the ear vertices. For interior or boundary cover, this adjustment
is not needed.

For this set of coordinates we can see that the slopes of the beams (i.e.,
assuming the sides are parallel, and before transformation) are +3/2.
The parameters for the transformations can be computed as follows. If the
center of the mouth of the beam machine is to be located at (x, ¥, the
target vertex for the left beam (that is, the beam of positive slope) is
(x5, ¥,) and the target for the right beam is (x5, y3), then the parameters
for the transformations are

X=X, Xy —x

1
a= — +
2 Y =¥ Y3 —»n
X — X
B=-2/]3+2- —q
Y3 — ¥
a=x,, b=y,

Our construction ensures that the targets are always below the beam
mouth, and so we do not have to worry about division by zero. We leave
the verification of these formulas to the reader.

The scale factor s will be the same for all beam machines, and will
depend upon the number of occurrences of any given literal, and the
number of clauses.

The vertices defining the variable structures mouth are at (—175,0) and
(175, 0) (assuming local origin at the center of the mouth). Proceeding in a
counterclockwise direction from the right side of the variable mouth, the
next two vertices are at (189,3) and (200, 25). The left side is symmetric.
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The pivot vertex, the one directly above the center of the mouth is locate
at (0, 128) and the one adjacent to it on the top right is at (40, 300), whil
the far top right is (300, 300). The beam machine mouths are interpolate
over the range (75, 300) to (225, 300).

The beam lock vertices must be located on a convex polygonal chain, s
that the variable switch may cover them. They must also be located abov
the pivot vertex, to prevent them from being visible to the beam locks o
the other side of the variable structure. To accomplish this, the x-coordi
nate is interpolated over the range 244 - - - 280, and the correspondin,
y-coordinate is computed by the quadratic x2/72 — 34x/9 + 2060/9
The sides of the beam lock are then computed by taking lines from the
beam lock to points interpolated between the lock vertices, and truncatin;
these lines so that the parallel beam covers the entire lock. This require:
computing a line intersection, where the equation for the lines defining
the beam are easily determined since we know the location of the bean
machine and the lock vertex. The end points of these segments are ther
joined by the orthogonal lines to the next beam lock.

Using the above, the following algorithm performs the transformation.

1. Count the number of clauses, and the maximum number of occur-
rences of any literal. The maximum m,_ of these two determines the
scale s, by 5 = Bm:?‘.u%\sqr where s is the scale used in the
diagrams, and is thus suitable for up to three literals or six clauses.
This is the scale factor used for transforming beam machines, and to
compute clause checker width (i.e., multiply by the width of the
clauses in the diagram).

2. Interpolate the mouth centers of the clause checkers along the line
(=75,0) to (75,0). Compute the depth d of the clause checkers, so
that the right slope from the leftmost clause will intersect the point
(1 + 600n, 600), where 600 is the overall width of a variable struc-
ture, and n is the number of variables.

3. For each variable 1 < k < n, do the following

(a) Translate the variable so that the mouth center is at (0, 600). By
placing it one variable width above the clause checkers, each unit
of skew moves it one variable width to the right.

(b) Interpolate the beam locks as described above.

(c) Interpolate and transform the beam machine so that one beam
covers the corresponding clause and the other the corresponding
beam lock. After placement, compute the location of the ear
vertices to focus the beams on the targets. This is done by
computing the intersection of two lines for each vertex, €.g., the
line joining the end of the clause checker and the same side of
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the beam mouth, and the line joining the ear vertex to the beam
machine.

(d) Skew the entire variable by o = k.

4. Join the variables and complete the box joining them to the clause
checkers.

3. ParT II: CovErRING ORTHOGONAL POLYGONS BY
RECTANGLES

3.1. Interior Coverings

An orthogonal polygon is a polygon in which every edge is aligned with
one of the axes; that is, either vertical or horizontal. A rectangle covering
is a covering by rectangles which are also orthogonally aligned.

We define the rectangle covering problem as a decision problem.

Rectangle Cover RC.

Instance: A simple and holeless orthogonal polygon P, and a positive
integer k.

Question: Is there a covering of P consisting of k or fewer rectangles
contained in P?

We will use a reduction from 3SAT [13].

Three Satisfiability 3SAT.

Instance: A collection C = {c,, ¢, ..., c,,} of clauses on a finite set U
of variables such that |c,/ =3 for 1 <i < m.

Question: Is there a truth assignment for U that satisfies all the
clauses in C?

As for general polygons in Part I, we use a component design to
construct a polygon such that a covering of given size may be achieved if
and only if the instance of 3SAT is satisfiable. The construction is
somewhat similar in that we use beam machines to deliver signals from
variable structures to clause checkers. Indeed, the concept of rectangle
beam machines was a direct result of the discovery and use of beam
machines for the general case.

There are some obvious differences. The most notable result of restrict-
ing the covering to orthogonal rectangles is that the beams must be
orthogonally aligned and cannot be aimed in arbitrary directions. This fact
makes the construction somewhat more complex than that of the previous
section, in that we must find a way to direct a beam from an arbitrary
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variable structure to an arbitrary clause checker. The beam machines serv
handily here in that they act as effective relay devices.

During our research into this problem, the invention of our devices an
their connections was based on definitions of dent diagrams and sourc
graphs for rectangle coverings [10], similar to those used for our results i
orthogonally convex coverings [8]. Indeed, it was a failed attempt to exten
the dent diagram approach to arbitrary polygons that led to the results i
this paper [10], as one of our counter examples led directly to the bear
machine for arbitrary polygons.

In the following presentations, we identify sets of small subregion
which must be covered and for which any covering can be extended t
cover the entire polygon without adding additional rectangles. Thes
regions are sources in terms of the definitions of [10}, but for the purpose
of this paper, the simplified definitions below are sufficient.

In this section we generally outline how each device is constructed as w
describe the device. This is necessary as determining the number c
rectangles required to cover a device (and the entire polygon) usuall
depends on understanding the construction. In order not to be tediou:
our descriptions will sometimes sacrifice formality in favor of brevity an
understandability.

If we extend the edges of any orthogonal polygon internally until the
intersect the boundary then the polygon will be divided into O(n?
rectangles, called cells.? We will identify certain critical cells, just as wi
labeled certain critical vertices in the previous section. We call thes
identified cells sources.

The following observations has important consequences.

Observation. Any rectangle covering a portion of a .cell can be ex
tended to cover the entire cell.

This follows since the rectangle can be extended along any axis until i
encounters an edge of the polygon, and the edges of the cells are define
by extensions to the edges of the polygon.

A rectangle is maximal it it is not properly contained in any othe
rectangle contained in the polygon. In determining a minimum covering
we need only consider coverings consisting of maximal rectangles. Cou
pling this fact with the observation, it follows that the desired covering
can be defined in terms of subsets of the cells of the polygon, and thus the
rectangle covering problem is in NP,

2 . . . _—

Precisely speaking, using our closed definitions of polvgons, the cells are the open region,
between (the extensions of) the edges. The following observation holds for rectangle
covering portions of these open regions.
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c d

Fic. 13. Rectangle beam machine (see text).

If two cells can be covered by a single rectangle, then we say they are
visible to one another or that they see one another. The observation
implies that there is no case of partial visibility between cells, and thus
visibility is a well defined relation on cells. We say that a set of cells (or
sources) is independent if no two are pairwise visible.?

The first structure we will examine is the beam machine, which is
illustrated in Fig. 13. In Fig. 13a we show the beam machine with dashed
lines indicating the cells within the beam machine. In part (b) we identify
the sources which are crucial to its operation, by small black or white
squares internal to the beam machine. In Fig. 13b the region with the
dashed outline indicates the mouth of the beam machine, and the small
striped square is the mouth source. When speaking of covering the beam
machine, we mean covering the interior of the beam machine and not the

3An independent set forms an anti-rectangle in the terminology of [3].
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mouth. Covering the mouth, and in particular the mouth source, will be
described later when we discuss background covers of composite devices.

In general, we will refer to sources by the shading used to identify them
in the diagrams. It is easily seen that no black source is visible to any cell
outside the mouth of the beam machine. Certain pairs of cells are visible
internally in the beam machine as indicated by the gray polygonal line.
Note that the two extreme sources cannot sec any other source, and thus
require separate covering polygons. Unique maximal -covers for these
sources are shown in gray in Fig. 13b.

The remaining sources can be covered by four rectangles in two ways
such that one rectangle, covering only a white source, may be extended
through the mouth of the beam machine an indefinite distance, as illus-
trated in Figs. 13c and 13d. The positions of these latter rectangles are
called beams. We say a beam is on if the covering of the beam machine
includes the rectangle covering the beam. Otherwise the beam is off. We
may occasionally abuse our terminology by using the term “beam” to refer
to the rectangle covering a beam that is on. Beams are generally shared
between two beam machines, or between a beam machine and another
device, as illustrated, for example, in Fig. 18.

Additional coverings of six rectangles exist in which no rectangle may be
extended out of the beam machine (that is, both beams are off) but these
have no bearing on the proof.

LemMa 3.1.  Six rectangles are necessary and sufficient to cover a beam
machine, and exactly one of these may be extended through the beam mouth
The extension may be either horizontal or vertical but not both.

Proof. Sulfficiency is established in the preceding discussion. To see
that six rectangles are required, we observe that there are six independent
sources on the path from the leftmost edge to the topmost edge.

To see that at most one of the six rectangles can be extended beyonc
the beam mouth, we note first that only a rectangle covering a single white
source may be so extended. The sources at the extremes of the beam
machine require one rectangle each. This leaves four rectangles to covel
the remaining seven sources, and since a single rectangle may cover a
most two of these sources, this implies that three of the four must cover :
pair of sources. O

Although six polygons are necessary and sufficient for a single bean
machine, we need to be careful when coupling two beam machines o
E:Q devices not to double count the beams. For purposes of counting, i
_M preferable to separate the interior cover of the beam machine from the

eams.
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Limma 3.2, Five rectangles are necessary and sufficient to cover the
interior of a beam machine, if and only if at least one of the incident beams

iy on.

The five rectangles are the background cover of the interior of the beam
machine. In each of our devices, we will make the distinction between
covering of the background and covering the beams. When counting the
required number of rectangles, separate counts will be made for the
beams.

In Part I of this paper, we can ESGRH either side of the variable
structure as a device that uses the beam machines to fanout the signal
generated by the variable switch. The beams then transmit the signals to
the clause checking devices. Similarly, we need a fanout device for the
rectangle covering problem. Such a device, which we call a beam splitter, is
illustrated in Fig. 14. We prefer to think of the striped beam at the bottom
of Fig. 14a as the input signal, and the three (in this case) gray beams at
the left as the output signals. The number of output beams is the fanout
of the beam splitter.

Figure 14a illustrates the beam structure of a splitter with fanout 3,
whilc Fig. 14b illustrates the rectangles required to cover a splitter with
fanout 2 in addition to those required to cover the beam machines. We
gefer to these rectangles as the background covering of the device. These
lcave two white sources uncovered, which we call beam locks. These
function in a manner similar to the beam locks of Part I. As illustrated in
Iig. 14a, all the locks may be covered by a single gray beam, or they may
pe covered individually by the striped beams. In the first instance, the
output beams may all be on. Otherwise to obtain a minimum covering the
internal striped beams must all be on.

We illustrate the method of construction of a splitter with fanout f > 1
in Fig. 14c. For each output beam f > 1 desired, we insert an additional
step in the staircase at A, extending the edge at C to compensate; extend
(he side B and insert a beam lock; and insert a beam machine at D to align
with the beam lock. Clearly, this construction requires linear time in f.

Based on this construction, we obtain the following:

Liansta 3.3, A beam splitter with fanout f requires T7f + 6 background
rectangles and f+ 1 beam rectangles to minimally cover it, and requires
() time to construct.

Proof. The construction shows that we require a rectangle at A and
one at B for each output beam, plus one for the uppermost black source in
tig. 14b. for a total of 2f + 1 background rectangles. We will be careful in
further construction that no other source is visible from a source at A.
Clearly. the other sources cannot be seen from outside the splitter. Using
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Fic. 14. Beam splitter (see text).

Lemma 3.2, 5(f + 1) background rectangles are required for the interiors
of the beam machines. Finally, for a minimum cover, at least one beam
must be on in each beam machine, and there are f + 1 beam machines. In
addition, the beam locks must be covered and these can only be covered
by beams unless extra rectangles are created. O

Note that we counted all beams as part of the beam splitting device. We
will be careful not to count these beams again as part of other devices.

The next device we need is an inverter, as illustrated in Fig. 15. At the
same time we will illustrate the 3-clause checker. The inverter could act as
a 2-clause checker if we desired, and it is easy to see that the construction
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Inverter

Clause Checker

Fic. 15. - Inverter and clause checker.

could be extended to clause checkers of any cardinality. In fact, this is the
only change necessary to make the reduction from SAT instead of 3SAT.

Of the three independent black sources at the top of the inverter, one is
not visible to any other source. The white sources are located on beams as
indicated. We will ensure that the remaining nonwhite source is not visible
to any source outside the inverter. Thus,

LemMma 3.4.  An inverter may be covered with three rectangles if and only
if at least one of the two incident beams is on.

Similarly:

LemMa 3.5. A clause checker may be covered with five rectangles if and
only if at least one of the three incident beams is on.

Note that we do not count the beams as part of the cover for either of
these structures.

We are now ready to construct a variable structure, analogous to that of
Part I, which is easily understood given the existence of inverters and
beam splitters, despite the rather complex appearance of Fig. 16. Suppose
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Fic. 16. Rectangle variable structure.

the variable we Emmr to represent has f, negative occurrences and f
positive occurrences. Then we simply construct two splitters and lin
them to an inverter on the far left, as shown in Fig. 16. The reader car
verify that the black source in the inverter is not visible to any sourc
outside the inverter and that the white sources are visible to the sources i
the beam machines that are aimed at them from the splitters. To complet
the variable structure, we make a notch to create the black source at th
lower left, so that it is not visible to the sources near the mouth of th
splitter on the right. The remaining black square indicates that there is
source in the mouth of the variable structure that also needs to b
covered, although the source will in general be much larger than th
square.

LemMa 3.6.  The variable structure requires two background rectangles i
addition to those required to cover the inverter and the beam splitters. 1
takes OQ1) time to construct in addition to the time used to construct th
splitters.

It is now easy to construct any number of variable structures and lins
them up side by side, joined at their bases, as in Fig. 17. In that figure
there are two variable structures; the left one has two occurrences as

4 .
We make the usual assumption that f,, f, >
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Fic. 17. Two variable structures and initial joint.

negated literal, and three as a positive literal. All beams exiting the
variable structures will be parallel (and vertically aligned).

The structure below the variables in Fig. 17 we call a joint and it is the
basis for propagating the signals from the variable structures to the clause
checkers. It serves as the basis for the construction of the line switch to be
described later. The clause checkers will be attached after some further
insertions of line switches, as shown in Fig. 18. Note that a joint consists of
two diagonal rows of beam machines aligned so that the horizontal beams
are shared, with one such pair for each beam exiting a variable structure.
The idea is that for each occurrence of a literal there will be a sequence of
beams from a beam lock in some variable structure to the appropriate
clause checker. We call such a sequence a beam line.

We call the vertical beams at the top of the joint structure the inpur
beams, and the vertical beams at the bottom the output beams. The
horizontal beam are the joining beams.

The background for a joint (for six beam lines) is illustrated in Fig. 19.
The staircases at the top and bottom of the figure ensure that there is one
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Fic. 18. Line switch and two attached clauses.

Fic. 19. Background cover for a joint.
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rectangle required for each beam machine, and as shown these are

sufficient to cover all of the mouth sources of the beam machines. In
addition, one rectangle will be required to cover the long black source,
and one to cover the top most source, indicated by the small black square
at the top of the diagram. (In general, the source will be larger than this.)
In Fig. 17 this rectangle covers the region between the two variable
mouths. We refer to this as the joining rectangle. The uncovered region at
the bottom of Fig. 19 will be covered by the joining rectangle of the line
switch attached to it and to be described next.
From this discussion, we have

Lemma 3.7.  If there are | beam lines, then 121 + 2 background rectan-
gles, and | beams are necessary and sufficient to cover a joint.

Proof. The background count for the joint is 2/ + 2 for the rectangles
not in beam machines, and 10/ for the rectangles in the 2/ beam
machines. If the joining beam of every pair of beam machines is on, then
the device is covered, and thus / beams are required. If an input beam is
on, then it is still necessary to have either the joining beam or the output
beam in the corresponding line on to cover the device. (Recall that the
input beams are not counted as part of the joint as they are already
counted as part of the splitters in the variable structures.) O

We want these beam lines to enter different clauses, as at the bottom of
Fig. 18, which has two clauses checkers. Thus, we will need to switch the
order of the beam lines before attaching the clause checkers. Figs. 20 and
21 illustrate how this may be accomplished, using a device called the line
switch. This device is similar to the joint, except that one input beam (the
second from the left in the example in Fig. 20) does not align with a beam
machine, but rather aligns with a small source in the polygon. See the cell
in the upper left circle in Fig. 21. Also, one joining beam also does not
align with a beam machine on the left, but rather with a different small
source. See the lower circle in Fig. 21, which corresponds to the left end of
the third beam from the bottom in Fig. 20. We call these the switch beams.
In Fig. 21 we see that as in the joint, we need 2/ + 2 rectangles outside
the beam machines, one for each black source in the figure. One of these
rectangles is not shown, the one covering the black source in the top right
circled region. This rectangle may be used to cover either one of the
circled white sources but not both. The other one must be covered by a
beam.

Lemma 3.8, If there are [ beam lines, then 121 — 3 background rectan-
gles and | beam rectangles are necessary and sufficient to cover a line switch.

Proof. As Lemma 3.7, there are 12/ + 2 independent black sources not
in the beam machines. and there are 2/ — 1 beam machines which by
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Fic. 21.  Background cover for line switch.

Lemma 3.2 require five rectangles each. As illustrated, these are sufficien
to cover all but one of the white sources in Fig. 21. On the other hand
using this number of rectangles, it is not possible to cover both white
sources without leaving one of the gray sources in Fig. 21 uncovered
There are ! beam machines on the right side of the line switch, and thus
beam rectangles are required. It is always possible to use the joining bean
to cover one of the white sources. so the count is also sufficient. O
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Note that it is important that no source outside the line switch be visible
to the white or gray sources in the line switch. To ensure that we do not
allow, for example, a variable mouth cover to cover one of these, we insist
that a joint be the first device attached to the variable structures.

In the general case, a line switch is constructed as follows. If we label
the input beams from left to right as bys...by.o, b1, by, Ft,..;F
and we wish the output beam lines in the order b,,..., b;_1, b, b,
bj 41, .- -, by, then we start with a joint, and replace the beam machine at
the end of the ith input beam by a pair of notches as illustrated for i = 2
in Fig. 20. We shift the right side down an appropriate amount so no beam
machine will be in the location of the missing joining beam. We then shift
the left side down after the jth beam machine to allow the pair of notches
defining the joining switch beam. Clearly, this construction takes O(/) time
and can be used to switch any beam line i to a position j, where
1<i<j<l

LemMa 3.9. A sequence of at most | — 1 line switches can be constructed
to sort | beam lines into any output order.

Proof. Using the above construction, on the kth line switch, 1 < k </,
move the | — k + 1st line to its correct position. If it is already in its
correct position, then we don’t need the kth switch. This amounts to a
selection sort, where we select the lines in order from right to left. O

Finally, we must connect the clause checkers to the last line switch, as
shown in Fig. 18. This takes O(/) time, since we have 0O(1) clause checkers.
The following is trivial upon examining Fig. 18.

LeEMMa 3.10. One background rectangle per clause is necessary and
sufficient to couver the piece joining the clauses and the line switch.

We are now ready for our main theorem.
Tueorem 3.1.  RC is NP-complete.

Proof. We have already shown that the problem is in NP.

We now show that for any instance I of 3SAT, we can obtain an
instance J = (P, k) of RC using the construction outlined above where P
is an orthogonal polygon. Let / = L. lc;| be the number of occurrences of
literals in the instance I. Let v be the number of variables, and ¢ be the
number of clauses. Note that [ = 3c. Let s be the number of line switches
used in the construction, where by Lemma 3.9, s <. Then we show that
the constructed polygon P can be covered by 6¢ + 211 + 2 +s(131 - 3)
+ 190 rectangles if and only if I is satisfiable.

COVERING POLYGONS IS HARD 3

To obtain this number, we total up over the various components. Firs
we total the rectangles required for a variable, keeping separate the bean
rectangles for the time being. We assume that every inverter has at leas
one of the incident beams on for this count, then show later that this cai
happen with the allowed number of beam rectangles if and only if T i
satisfiable.

First we total the background rectangles. Each variable has one inverte:
which requires three rectangles, and two mouth rectangles, plus two bear
splitters. Totaling, we have 5v plus the number of background rectangle
in the beam splitters. We note that the sum of all the fanouts in th
splitters is /, and, using Lemma 3.3 which showed each of the two splitte:
for a variable structure requires 7f + 6 background rectangles, the tot:
over all the splitters is 7/ + 12¢, for a total of 71 + 17v backgroun
rectangles over all variable structures. The joint requires 12/ + 2 and eac
line switch requires 127 — 3. We have ¢ in the connection to the clause
and there are 5c¢ in all the clause checkers. The total background cove
then requires 6¢ + 19/ + 17v + 2 + s(121 - 3).

Now we consider the beams. Suppose I is satisfiable. Consider som
satisfying truth assignment. Then for each variable u in U, we set tl
upper beam in the inverter in the corresponding variable structure on if
is assigned the value true. Otherwise we set the lower beam in ti
corresponding inverter on. This requires ¢ beam rectangles.

Now, consider a splitter with fanout f in which the input beam has bee
set on. By Lemma 3.3 we are allowed f beams, in addition to the inp
one, which must cover each of the beam locks and there must be or
beam per beam machine. Thus, the output beams must all be off. On tl
other hand, when the input is off (which is the case for one of the splitte
in each variable), we may use one beam to cover the beam locks and t
bottom right beam machine, while using the remaining f rectangles
turn all output beams on. Since the total number of output beams is /, 3
have 2v + [ beam rectangles in the variables.

For the joint and the line switches, we see that if an input beam is
then we may turn on the output beam with one rectangle per beam li
per device. Otherwise, we must turn on the joining rectangle to obtain
minimal cover. Either way takes / rectangles per device, for a total
sl + [ rectangles, assuming s line switches and one joint. The total bez
rectangles used is then 2v + sl + 2/, and the total rectangles in the cov
is 6¢ + 211 + 2 + s(13] — 3) + 19¢ as claimed. Since by our mapping t
beam entering a clause checker is on when the corresponding literal
true, there must be one beam on in every clause checker and by Lemn
3.5 every clause is therefore covered.

To see that a covering of size k implies a satisfying truth assignment,
note that for such a covering each clause checker must have at least o
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beam on. But working backwards now, this implies the corresponding
output beams from some of the variable structures must be on. But from
the above argument the splitter involved can be minimally covered with
any output beam on only if the corresponding beam locks are covered by
the one internal beam, and the input beam is off. But this can be used to
assign a truth value to the corresponding variable in I, namely, the
corresponding literal is true. The coupling implies every clause must have
one true variable under this assignment.

Adding together the construction times above, and noting that / = 3¢
and / > v and s < I, we see that the polygon can be constructed in O(/?)
time. O

3.2. Interior and Boundary Covering in General Position

In this section we show that covering either the interior or boundary of
an orthogonal polygon with rectangles is NP-complete, even if the polygon
is required to be in general position. In the previous section we showed
that interior covering is NP-complete, but we frequently used alignments
to simplify our construction. Thus, the results in this part include the
results of the previous section as a special case. This construction is much
more complicated, however, so we only describe it in outline, indicating
differences from the preceding construction.

It is interesting to note that the problem is NP-complete even when the
polygon is in general position. One might conjecture that the many
alignments that may arise in the non-general position case should make
the problem more difficult. We show that this is not the case.

We first state the definition of the problem.

Rectangle Boundary Cover General Position RBCGP.

Instance: A simple and holeless orthogonal polygon P in general
position, and a positive integer k.

Question: Is there a covering of the boundary of P consisting of k or
fewer rectangles contained in P?

The construction of the preceding section fails to satisfy this definition
in two respects. First, not all of the critical sources are located on the
boundary, for example the central source in the beam machine in Fig. 13.
It is possible to cover the boundary of the beam machine with fewer
rectangles than is required for the interior, and these coverings make the
beam machines fail to operate correctly. Second, it often makes use of
interior alignments to make the device work properly. We now show that
RBCGP is NP-complete.

The construction is similar to the preceding one, except that the devices
are more complicated. In Fig. 22 we illustrate the features of the beam
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FiG. 22. General position beam machine (see text).

machine. Figure 22a shows the outline of the beam machine, while Fig.
22b shows the cells of the beam machine together with the sources we
require. Note that usually the larger sources will be refined by extensions
of edges from other devices coupled with the beam machine. The black
sources are not visible to any other source in the beam machine. Although
portions of the larger black sources will be visible to sources in other
devices, the refined portion will not be able to see any other source.
Special note should be made that all of these sources, and other sources
we will identify, are located on the boundary of the rectangle.’ Thus, the

SNot all of these sources are sources in the sense of the source graphs in [10], but they are
projections onto the boundary of such sources. In fact. they are intersections of portions of
the boundary with a “natural source.”
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difficulty of this problem will depend upon the complexity of covering the
boundary. The minimal covering will also cover the interior of the polygon.
This constraint makes the construction more complicated.

In Fig. 22¢ we show a covering for the black sources. Note that the light
gray rectangles are the unique maximal rectangles covering their sources.
The hashed rectangles can be extended through the beam mouth to cover
parts external to the beam machine. We refer to these rectangles as the
beam rails. The beams are the regions between the beam rails.

The remaining gray sources must also be covered by rectangles. The
visibilities between the gray sources are illustrated in Fig. 22d. These
sources can be covered in pairs just as in the previous beam machines,
with one remaining to be covered by a rectangle that can be extended
between (and overlapping) the beam rails in exactly one of the orthogonal
directions. In Fig. 22e one such covering of the gray sources is shown, with
the beam extended downwards. Figure 22f shows the positions of the two
beams by rectangles shaded with a wavy pattern, together with the mouth
region of the beam machine shaded in gray.

We should point out to the careful reader that we occasionally cheat in
drawing our beam machines and other devices. Careful measurement
would show that that some of the edges appear to be aligned, and thus
there may be more than two vertices in a horizontal or vertical line. We
are using a grid in the graphics package to make sure the edges of various
pieces meet correctly at the end points. However, this restricts the accu-
racy with which we can place edges. All the resulting alignments are
accidental, and have no bearing on the proof. The line joining any aligned
vertices passes through regions external to the polygon, and so the edges
may be perturbed out of alignment without changing the visibility condi-
tions between the identified sources. That is, we have eliminated all
internal alignments which could be useful in our construction.

In Fig. 23 we illustrate a technique we use to ensure coverings of the
interior using sources located on the boundary in regions joining various
devices. Note that each rectangle is the unique maximal rectangle covering
its source. We refer to this structure as a shiplap, as each rectangle
overlaps the one next to it. The beam rails in the beam machines are used
to terminate the shiplaps.

We illustrate with a very simple example. Fig. 24 shows how two beam
machines can be coupled to transmit a signal. We hasten to point out that
in the more complex structures to follow, the beam machines will be much
further apart horizontally to allow other beams to pass between them. Fig.
24a shows the device, together with the sources defining the beams. Notice
the refinement of the sources defining the shared horizontal beam. In Fig.
24b we show how the beam rails are linked. Note how the sources are
refined for those beam rails which are restricted internally to the device.
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Fic. 23. Shiplap construction for joining devices.

Similar refinements would occur for the rails leaving the device, once tt
remaining devices are in place.

In Fig. 24c the remaining background cover is shown by gray rectangle
while the beams are shown using a wavy pattern. Notice that the gr:
rectangles are the unique maximal rectangles covering their sources. Or
further rectangle, shaded by a striped pattern, is required, and may be
beam rail if the next device is also a beam machine. This covers an interic
region that would otherwise be uncovered if the joining beam is off. Th
source generating this rectangle is not shown, but would be located on th
boundary of the next device coupled to this somewhere below the diagran
The background rectangles, including the beam rails, together with eithe
the interior joining beam or the input and output beams are sufficient an
necessary to cover the boundary of the device as well as the interior.

The next device of interest is the beam splitter. Since all sources mu.
be on the boundary and we are not allowed alignments, we can cover :
most one source on each side of any covering rectangle. This places a
upper bound on the degree of splitting a single device can accomplish. I
our device, shown in Fig. 25 with background cover in Fig. 26, we can spl
a beam into two output beams. However, this does not place an uppe
bound on the fanout, since we can always use more splitters to split th
output beams, as described in the following paragraphs.

The operation of this beam splitter is similar to the splitter in th
previous section.

In Fig. 27 we show the basic variable structure with fanout of two o
each side. To increase the fanout, we build a splitting joint somewhat lik
the joint described in the previous section, but for general position
polygons. On the right side of the splitting joint we will substitute bear
splitters for beam machines on any beam line we wish to split. Addition:
splitting joints may be used until the desired fanout is achieved for th
output from each side of the variable structure. Each splitter increases th
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FiG. 25. General position beam splitter.

fanout by one, so it takes f — 1 splitters to achieve a fanout of f, and thu:
the construction is polynomial. (The number of splitting joints is logarith
mic in f.) We note that the on/off vertical /horizontal parity of the bean
splitters is the same as that of the beam machines, so the output of the
splitting joint is correct.

At the left of the variable structure in Fig. 27 is an inverter, similar tc
the one in the previous section. In Fig. 28 we show the backgrounc
rctangles required to cover the variable structure and the inverter, excep
the switch rectangle. Note that there is only a single switch source at the
top of the inverter, which is visible from either of the beam sources. Thus
as for the inverter of the previous section, one incident beam must be or
to minimally cover this inverter.

A 3-clause checker can be constructed by adding one more switct
source, and one more beam source to an inverter, similar to the construc
tion in the previous section.

The general position line switch is illustrated in Figs. 29 and Fig. 30
Here the second of four input beam lines is switched to the third position
Some of the internal edge extensions in Fig. 29 are shown to aid ir
establishing the relationship between sources. An additional beam ma
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Fic. 26.  Background for general position beam splitter.

chine is shown above the device to illustrate how the input switch beam is
aligned. All of the horizontal shiplap structure is shown, and most of the
vertical. On the input side, the striped rectangles show where the input
beam rails extend, and the three with stripes of opposite slant are
required; these three will be beam rails from beam machines above or
rectangles from additional shiplap dents between beam machines above
the line switch. Similarly, additional dents for shiplap structure can be
inserted between the beams on the output side of the line switch to
complete covers for the device(s) below the line switch as required by
simply extending the horizontal distance between the beam machines and
inserting notches.

The line switch works much as the one in the previous section. At the
top are three notches creating sources which are visible to four sources on
the left side. Two of the left side sources (labeled as background interior
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Fic. 27.  General position variable structure.

sources in Fig 30) are not visible to any other sources, while one is visibls
to an input beam source and one is visible to a joining beam source. Thus
at least one of those beams must be on if the line switch is to be coverec
minimally. Additional background sources are located at the left side o
the output end of the device. These background sources are created or
the boundary so that a boundary cover will cover the interior. They are
necessary since the regions where two beams cross would not otherwise be
covered if both beams are off.

Counting the number of rectangles in a minimum cover under the
assumption that the instance of 3SAT is satisfiable is complicated by the
fanout construction. Basically, for each variable we must determine how
many beam machines and how many splitters are required, as well as
account for the background for connecting these different devices. How-
ever, given any instance and its corresponding construction, it is straight-
forward if tedious to determine this number. We leave this as well as the
remaining construction details as an exercise for the masochistic reader.

This construction shows that:

Tueorem 3.2.  RBCGP is NP-complete.
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Fic. 28.  Background for general position variable structure.

4. CONCLUSION

We have shown that minimum convex covering of the interior or the
boundary of arbitrary polygons are NP-hard problems, and covering the
vertices is NP-complete, even when the given polygon is required to
contain no holes and be in general position. We have also shown that
minimal rectangle covering of the interior or boundary of an orthogonal
polygon is NP-complete, even when the polygon is required to contain no
holes and be in general position. We are unable to show that general
convex ¢qvering is in NP. In fact, it is not known whether this problem is
even in P-space, although O’Rourke [24] has shown that it is decidable
using Tarski’s method. Little is known about approximation algorithms for
the minimal convex covering problem. Aggarwal et al. consider the prob-
lem [2], but restrict the covers to pieces whose edges are segments
containing two vertices of the polygon. They show that under this restric-
tion there can be exponentially many maximal convex pieces. They give an
approximation algorithm for star covers under this restriction.

An orthogonal polygon is orthogonally convex (OC) if every orthogonal
line intersects it in at most one connected segment. It is horizontally
(equivalently, certically) convex if every horizontal (vertical) line intersects

COVERING POLYGONS IS HARD 4

ez
|1

N

Fic. 29.  General position line switch.

it at most once. Thus, every orthogonally convex polygon is horizontalls
convex. A problem closely related to rectangle covering that has receivec
attention in the literature is the problem of covering orthogonal polygons
with orthogonally convex polygons [16, 8, 26]. We have been unable tc
construct a beam machine with the necessary properties for this case. In
the rectangle construction, the beams are symmetric from end to end, and
they are focused so that they can cover exactly one small region at each
end. These joint properties do not seem to be possible where orthogonally
convex covers are concerned.
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In arbitrary polygons, covering by star-shaped polygons is equivalent to
placing guards to see all points in the polygon. This is true since a star is
made up of the union of convex polygons which have some point in
common. The set of such points is the kernel of the star. The minimum
guard problem can be solved by placing guards in the kernels of the
minimum star covering, and vice versa.

An orthogonal star (OS) is an orthogonal polygon formed from the
union of rectangles which have a common intersection. Equivalently, in an
orthogonal star S, there exists a point £ such that for every point / in S,
there is a rectangle contained in § containing both k and i. Keil [16]

COVERING POLYGONS IS HARD . 4

showed that covering horizontally convex orthogonal polygons with orthoy
onal stars can be done in O(n?) time. Franzblau and Kleitman [12] gave a
0(n?) algorithm for covering vertically convex (equivalent to horizontal
convex) orthogonal polygons with rectangles. It is as yet unknown whethe
there is a polynomial time algorithm for covering general holeless orthogc
nal polygons with OS polygons, nor has it been shown to be NP-hard.

Finally, we can define an orthogonally convex star (OCS) as the union ¢
orthogonally convex polygons which have a common intersection. Equive
lently, an OCS contains a kernel k such that for every point p in the QCS
there is an OC containing k£ and p. Note that this definition allows a
OCS to have holes, but if the polygon being covered has no holes, then w
can eliminate the holes from the covering OCS polygons. Motwar
et al. [22] have shown that orthogonal polygons without holes can b
optimally covered by OCS polygons in polynomial time. Fast algorithm
for both OC and OCS coverings for special cases of orthogonal polygon
exist [16, 8, 10].

We note that every rectangle (R) is trivially an OS, and that every OC i
an OCS. Every OS is also an OC and so we have the class heirarch
expressed by

R cOS ¢ OC c OCS.

We also note that for many instances where an algorithm for covering by :
convex class exists, then there exists an algorithm for covering by the
corresponding stars and similar complementary results for NP-hardnes
results, with the two most notable exceptions being the most general case:
of OS and OC coverings. Coupled with the general interest in determining
the boundary between NP and P (if it exists) this renders these twe
problems of considerable interest.
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Maintaining two stacks in memory is easily accomplished by placing them at
opposite ends of memory and having them grow towards each other. The entire
memory is readily available for stack items with this approach. Maintaining three
stacks, however, presents more difficulty. Traditionally, the allocation of storage
for three stacks has been accomplished by using pointers to store the stacks as
linked lists, or by relocating the stacks within memory when collisions take place.
The former approach requires additional space to store the pointers, and the latter
approach requires additional time. We explore the extent to which either some
amount of additional space or time is required to maintain three stacks. We
provide a formal setting for this topic and establish upper and lower complexity
bounds on various aspects. © 1994 Academic Press, Inc.

1. INTRODUCTION

Maintaining two stacks in memory is easily accomplished by placing
them at opposite ends of memory and having them grow toward eact
other. The entire memory is readily available for stack items with this
approach. Maintaining three stacks, however, presents more difficulty
Traditionally, the allocation of storage for three stacks has been accom-
plished by using pointers to store the stacks as linked lists, or by relocating
the stacks within memory when collisions take place. The former approach
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