Update

. April 1989
de CB55

citing, vigorous
ts in algorithms
Jes, and frees.
ijenhuis” book,
sised in 1978, It
_onference on
rado College.

that has been
1l Algorithms in
15: Gray Codes,
and free trees,
d ranking and
for listing and

on the Theme;
of Free Trees;

od

987
CB52

g a novel way of
hed Probabilistic
-up, Joel Spencer
, currently known
ects, The fopic s

t. BJHW89, P.O.
S. only). Please
rchase. If there

SIAM 1. SCI. STAT. COMPUT. © 1989 Saciety for Industrial and Applied Mathematics
Vol. 10, No. 6, pp. 1063-1075, November 1989 001

ON OPTIMAL INTERPOLATION TRIANGLE INCIDENCES*

E. F. D’AZEVEDOT AND R. B. SIMPSON{Y

Abstract. The problem of determining optimal incidences for triangulating a given set of vertices for
the model problem of interpolating a convex quadratic surface by piecewise linear functions is studied. An
exact expression for the maximum error is derived, and the optimality criterion is minimization of the
maximum error. The optimal incidences are shown to be derivable from an associated Delaunay triangulation
and hence are computable in O(N log N) time for N vertices.
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1. Introduction. In this paper, we study the question of an optimal choice of edge
incidences for triangulating a given set of points. The study uses a model approximation
problem, piecewise linear interpolation of a convex quadratic surface, and our optimal-
ity criterion is that the optimal choice of incidences minimizes the maximum error in
any triangle. We establish that the optimal incidence problem can be transformed to
an equivalent Delaunay triangulation problem, showing in particular that at least this
model optimal incidence problem can be solved intime O(N log N) for N interpolation
points.

General triangles have two independent length scales associated with them, e.g.,
the longest edge and the length of the perpendicular from this edge to the opposite
vertex. It is common to regard the local error over a triangle T as depending on one
length scale (the “‘size” of T, typically denoted “h”) and to impose a geometric
condition on the triangulation, i.e., small angles should be avoided. Strang and Fix
[15] have developed an error bound that depends on the reciprocal of the sine of the
minimum interior angle. However, Babuska and Aziz have shown [3] that actually
small angles do not play a crucial role in approximation properties, but that limiting
the largest angle is necessary and sufficient for convergence. Indeed, for a convex
surface in which the curvature in the principal direction is markedly different from
the curvature in the perpendicular direction, incidences producing triangles with small
angles are appropriate, and are present in an optimal triangulation incidence, as shown
in Example 2 below.

A commonly used incidence relation for a set of vertices is the geometrically
defined Delaunay triangulation [9], [12], [13]. In § 1, we give an example of quadratic
functions, and a series of sets of vertices, for which the Delaunay triangulation can
be arbitrarily far from optimal. Representations of the error in linear interpolation for
a general triangle and general quadratic function are surprisingly complicated (e.g.,
[41-[7]). In § 2, we use a geometric argument to develop both analytic and geometric
descriptions of this error, and of its maximum, over a general triangle. In § 3, the main
result of the paper is presented, i.e., that an optimal triangle incidence for this
interpolation problem can be obtained from a Delaunay triangulation of a transform
of the given vertex set. For this result, we establish a new geometric optimality property
of the Delaunay triangulation concerning minimizing the maximum circumcircle of
the triangulation.
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work was supported by the Natural Science and Engineering Council of Canada and the government of
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1064 E. F. D'’AZEVEDO AND R. B. SIMPSON

For the quadratic model problem, the determination of optimal incidences is based
on a criterion that is locally applied to a transform of the given vertices (see § 3). For
more general smooth functions, this procedure can be used locally to determine
appropriate triangle incidences if an adequate estimate for the Hessian matrix of the
data function is available [1], [2], [14].

1.1. Example 1. To see the influence of the choice of triangle incidence on the
accuracy of approximation, let us look at an example of piecewise linear approximation
of the quadratic function

f(x,y)=A1x2+A2y2, Ay>A,>0.

Consider the interpolation error over the square (see Fig. 1.1), if the y-axis is chosen
as a diagonal, maximum interpolation error is

E,=(A+15)%/(41,)

and occurs at P,(P,). (Expressions for the errors are developed in § 2 below.) If the
x-axis is chosen, maximum interpolation error is ‘

Ex = /\'l
at the origin (Ps) (see (2.5) below). The ratio of the error from these two incidences is

E, A 4

E, (A+1.0%/(41;) (1+42/A1)2§4'

Consider the same interpolation problem with extra nodes, ( ih,1), (—ih,1),
(ih, —1), (~ih,—1), i€{1,2,---, N} and h=1/N. A standard choice of triangle
incidences for a given set of vertices is the Delaunay triangulation introduced in § 3,
along with some of its geometric optimality properties. If a Delaunay triangulation
incidence is chosen, including the x-axis as shown in Fig. 1.2, the maximum interpola-
tion error is dominated by E,. Consider the triangle incidences in Fig. 1.3. The maximum
interpolation error for these triangle incidences is

E, =(h?A,+4A,)/4.
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Then the ratio of errors,

E, (4A,) 4 A
For h small (N large),

Hence the Delaunay triangle incidence can be arbitrarily far from optimal with respect
to minimizing the maximum error.

1.2. Example 2. Here is a specific example of interpolation of a convex function
with markedly different curvature. The data function to be interpolated is f(x, y) =
100x>+ y. Figure 1.4 shows the Delaunay triangulation for an arbitrary set of points
over the unit square and Fig. 1.5 shows the optimal triangulation incidence determined
in this work. The errors of interpolation for both triangulations are displayed in Fig.
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1.6, where the maximum interpolation error over each triangle is plotted in ascending

order. Note that the maximum error for the Delaunay triangulation is nearly six times
larger than the one for the optimal triangulation.

2. Model problem error expressions.
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The error function for the linear interpolation is a quadratic form in x, y with the same
quadratic terms. We represent it as
(2.3) E(x,y)=Ax*+A,y°+bx+byy+e

where the values of b,, b,, and ¢ depend on the coordinates of the triangle vertices.
Now E(x, y) vanishes at the triangle vertices. Since the level curves of E(x,y) are
ellipses, then the zero error level curve of E(x, y) is a circumscribing ellipse of the
triangle. We will denote the ellipse as e(T) for triangle T. The equation of the ellipse
for the level curve of value —K has the form

E(x, )’)=_K
A2+, 7+bix+by+e=-K

‘(2. b 2 b 2 bZ bZ
24 =>/\1(x+j) +A2(y+—2> =E—-K where E=-—+—2—c
1

27, 4r, 4A,

(e /2 (5

The parameters b;, b,, and ¢ can be explicitly computed by requiring the ellipses for
K =0 to be the circumellipse of T. At the center, (—b;/(21,), —b2/(212)) of e(T),
|E(x, y)| attains a maximum value that can be expressed as follows:

(D12D23D31)
2.5 E=—"—"""—°>-
(25) 16A,1,A°
and (x;,y;) i=1,2,3 are vertices of the triangle, and A is area of the triangle. The

details of the derivation can be found in Appendix A.
The maximum interpolation error for a triangle T will be denoted as

(2.6) Epax(T)= max, | pr (%, ¥) = f(x, ¥)I

Where D,] = ()tl(x,- - xj)2+ AZ(yi - y_])z)

where p;(x, y) is the linear interpolant of f at the vertices of T. In the case that the
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center of e(T) liesin T (including the boundary of T), E.x(T) = E and we note that
the area of e(T) is Ay =7mE/VA);, so that
(2.7) Emax( T) = E = A1A2A1/7T.

If the center of e(T) is notin T
T Geometrically, E .x(T) is the lev
to this side, |E(x, )=

(see Fig. 2.1), Erax(T) is attained on an edge of
el of the osculating level curve (ellipse) tangent
Eax(T). The area of the tangent ellipse is from (2.4):

m(E — Eax( T))/V AlAz =A,.

Thus E_..(T) can be expressed in terms of the ratio p=A,/ A, of these areas and E
can be expressed as follows:

(28) Emax( T) = (1 _p)E

Consider a rescaling along x-axis by (A
curves to concentric circles (see Fig. 2.2).
proportional to the area of the correspondin

1/23)"? to transform the elliptical level
Since the area of an ellipse is directly
g circle in the transformed plane,
7 ( OD)2> ( OA*— OD2> ( ADz)

2.9 EmaxT=1_ E= 11— E=|—0«_ ——"_ = E

where D is midpoint of AC tangent to the inner circle,

From this result in the transformed plane, we gain a geometric interpretation of
the maximum error. Let O(T) denote the circumcircle of the transformed triangle T

B

—_— T4
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and |O(T)| denote the area of this circumcircle. If the transformed image of a triangle
has no obtuse angle, then its maximum error is proportional to the area of its
circumscribing circle. If there is an obtuse angle in the transformed triangle, the
maximum error occurs along the longest edge and the error is proportional to the area
of circle with the longest edge as diameter.

3. Delaunay triangulation. The Delaunay triangulation of a fixed set of vertices
and its related figure, the Voronoi diagram, are much studied geometric constructions
(see [9], [12], [13]). Here, we briefly review some properties that are relevant for
optimal interpolation incidence. The Delaunay triangulation selects triangle incidences
that maximize the minimum angle in the triangulation. Lawson [9] has proposed an
algorithm for converting an arbitrary triangulation to a Delaunay one by repeated
application of a local edge-swapping procedure. In it, for each interior edge of the
current triangulation, the two neighboring triangles are examined. If they form a convex
quadrilateral, and if the replacement of the examined edge by the other diagonal of
this quadrilateral would increase the minimimum angle, then a swap of diagonals is
made. Lawson has shown that this criterion for picking the diagonal in a convex
quadrilateral is characterized by the property that the circumcircles of either of the
two triangles thus formed do not contain the fourth vertex of the quadrilateral.’ This
criterion is referred to as the empty circle criterion. Lawson has shown that the repeated
application of his edge examination/edge-swapping procedure terminates in a
Delaunay triangulation.

3.1. Optimal incidence for the model problem. We shall define a triangle incidence
to be globally optimal if it minimizes the maximum interpolation error. Each interior
edge in a triangulation is associated with a quadrilateral with that edge as diagonal.
We shall also define a triangular mesh incidence to be locally optimal if for each
convex quadrilateral associated by an interior edge in the triangulation, the incidence
minimizes the maximum interpolation error over the quadrilateral.

Here we show that the problem of constructing a locally optimal mesh incidence
for N points can be transformed to the problem of generating a Delaunay triangulation
which provides an O(N log N) algorithm for solving this problem. We also show that
a locally optimal incidence is globally optimal.

The rescaling of the x-axis introduced at the end of § 2, that results in error ellipses

- being mapped into circles will be used here to define the transform plane for which

we do not explicitly introduce coordinates.

TueoreM 1. A locally optimal interpolation trzangulatton incidence of N vertices is
defined by a Delaunay triangulation in the transformed plane (and hence is computable
in O(N log N) time, which is optimal).

To simplify our discussion, we shall use the notation that all references to angles
are based on the labelling in Fig. 3.1. Moreover, we shall always assume vertex A to
be exterior to O(ABCD). The diagonal BD is the incidence selected by the empty
circle criterion. By elementary geometry, we have the following:

/CAD=0,<6,=2/CBD, /BAC=¢,<d¢,=,BDC,

LemMA 1. Given a convex quadrilateral ABCD with vertex A exterior to O(ABCD),
then max (|O(AABC)|,|O(AADC)|) =z max (|JO(ABCD)|, |O(AABD)|).

LIf the fourth vertex lies on the boundary of a circumcircle, then no change in the minimum angle
occurs from edge swapping and either choice of edge results in a Delaunay triangulation.
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FiG. 3.1

Proof of Lemma 1.
Case 1. Assume that 9, =< /2. Let E be the midpoint of CD; let O,, O, be centers
for O(AADC) and O(ABCD), respectively. The O, and O, lie on the perpendicular

to DC through E, so O,, 0., and E are collinear. Let A’, B’ be points where this line
meets O(AADC) and O(ABCD) (see Fig. 3.2).

LEA'C =%, LEB'C =%2’
3.1)

| (0;) EC EC EC
tan | —

> ) ==

" EB' EO,+0,B' EO,+0,C
Now from AO,EC we have

(0:C)’=(0,E)*+(EC)>.
Thus (3.1) can be rewritten as follows:

an(2) s _EC
2/ 0,C+((0,C)P—(EC)H 7
Similarly,
0, EC
tan{ —) = 2 31722
2 O0,C+((0,Cy*—(EC)?
(3.2)
oo (2 )
01_02*2=>tan 2 =tan 5 )
Therefore
EC - EC
(3.3) 01C+((01C)2_(EC)2)1/2=02C+((02C)2_(EC)2)1/2

=0,C+((0,C)*-(EC))*=0,C + ((0,C)Y*—(EC)*)?,

Since x +(x*~a)"/? is a monotone increasing function of x, (3.3) impliés 0,C=0,C
Therefore O(AADC) has larger radius than O(ABCD). Similarly, if ¢,= /2, then
O(AABC) has larger radius than C(ABCD).
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Case 2. Assume 6,> /2. From ABCD, we have ¢,+ 6,<, and thus ¢, =7/2
if 6,> /2. From the result in Case 1, |O(AABC)|=|O(ABCD)|. Similarly, by sym-
metry, C would be exterior to O(AABD).

Thus either O(AACD) or O(AABC) would be larger than O(AABD). Since
Cases 1 and 2 are exhaustive, the lemma is proved.

FIG. 3.2

CoRroLLARY. The empty circle criterion applied to a convex quadrilateral selects the
diagonal that minimizes the maximum circumcircle of the corresponding triangles.

LeMMA 2. Given a convex quadrilateral ABCD with vertex A exterior to ABCD
the empty circle criterion selects the triangulation incidence that minimizes the area of the
circle corresponding to the maximum interpolation error over the quadrilateral.

Proof of Lemma 2. Recall from § 2 that the maximum interpolation error for a
triangle is proportional to the area of the circumcircle of the transformed image of the

 triangle, if this image contains no obtuse angle. Otherwise, the maximum interpolation
error is proportional to the area of the circle with diameter equal to the edge opposite
the obtuse angle, i.e., the longest edge of the image triangle.

The first case was dealt with in Lemma 1 and its corollary in which we established
that the diagonal BD is selected by the empty circle criterion. We now carry out a
case-by-case study of configurations of image triangles with obtuse angles to show that
the empty circle criterion also minimizes the maximum error circles. Hence we shall
consider only cases where AABC or AACD contains an obtuse angle.

Case 1. Assume ¢, = 7/2. (See Fig. 3.3.) We show that BC is the longest edge
and it determines the error circle, regardless of the choice of diagonals. The area of
the error circle for AABD is #(BD/2)?, and for ABCD it is w(BC/2). Note that
.= ¢, = 7/2. [O(AABC)| is w(BC/2)? and |O(AADC)| is w(AC/2)*. Now ¢, < ¢,
and thus |BC|>|BD)|. Since BD cannot be the longest chord, the lemma holds. By
symmetry, the same applies if 6,, 1,, y; is obtuse.

Case 2. Assume L ABC and £LADC are both obtuse (see Fig. 3.4). The error circle
for each of AABC and AACD would be the circle with AC as diameter. Let this
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FiG. 3.3

FiG. 34

* circle be denoted by I'. Both vertices B and C are contained in I'. If triangle BCD
has an obtuse angle, its error is indicated by its longest edge, which is entirely interior
to I'. If ABCD has no obtuse angle, its circumcircle is smaller than T. Hence error
for ABCD is smaller than error for triangle ABC. The same reasoning applies for
AABD. Therefore diagonal BD should be chosen, and the circle criterion holds. ;

Case 3. Assume LABC =< 7/2 is acute but LADC > /2 is obtuse, and ¢,, 6,

M1, % are all acute (see Fig. 3.5). The error for AABC is proportional to the area of
_its circumcircle,

m(AC/2)> w(BC/2)* w(AB/2)
. A = = - .
G4 A= e G 60~ s (6) ™ sin? ()
If 7, is obtuse, |[O(AABD))| is 7(AB/2)*<|O(AABC)]; otherwise, it is bounded by

the area of the circumcircle w(AB/2)?/sin? (). If 7, = m/2, then 7, = n, and sin (n,) =
sin (7). Therefore, the error for AABD is less than that of AABC,

Similarly, if ¢, is obtuse, the area for O(ABCD) is w(BC/2)*<|O(AABC)|;
otherwise, it is bounded by the area of its circumcircle 7 (BC/2)?/sin? (). If po=7/2,




' C

I'. If triangle BCD
h is entirely interior
han I'. Hence error
asoning applies for
criterion holds.

btuse, and ¢,, 6,,
onal to the area of

)2
%
, it is bounded by
= n2 and Sin (Th) =

72)’<|O(AAB&)|;
? (¢1).If b =m/2,

ON OPTIMAL INTERPOLATION TRIANGLE INCIDENCES 1073

FiG. 3.5

then ¢, = ¢, and sin (¢,) =sin (¢,). Therefore, the error for ABCD is less than that
of AABC, and the empty circle criterion selects the incidence minimizing the maximum
error.

Cases 1, 2, and 3 exhaust all possibilities for an obtuse angle in AABC or AACD.
The lemma is proved.

Proof of Theorem 1. For the image of the interpolation vertices in the transform
plane, a triangulation that satisfies the empty circle criterion can be constructed in
O(N log N) time [12, Thm. 5.18, p. 215]. The convex quadrilaterals of this Delaunay
triangulation and of the triangulation induced on the interpolation vertices are in
one-to-one correspondence. But by Lemmas 1 and 2, the incidences of the Delaunay
triangulation minimize the interpolation error circles with respect to diagonal inter-
changes, and hence the induced triangulation is locally optimal.

CoroLLARY. The locally optimal triangle incidence of Theorem 1 defines a globally
optimal triangle incidence. '

Proof. Starting with any globally optimal triangle incidence, we can apply the
local edge-swapping procedure in the transformed plane to obtain a locally optimal
incidence with the same maximum error. However, the size of the maximum error
circle is uniquely determined for Delaunay triangulation in the transformed plane, so
the maximum error in the original globally optimal incidence cannot be smaller than
that of a locally optimal incidence, and hence a Delaunay triangulation also defines
a globally optimal incidence. Note, however, a globalily optimal triangulation incidence
need not be a Delaunay triangulation.

The use of the transform plane appears in several related contexts in the literature.
Nadler [10] uses it to establish the shape of triangulation for optimal L, linear
interpolation for model quadratic data. Also in [11], Peraire et al. use it to support an
adaptive remeshing scheme for the finite-element method for compressible flow compu-
tations.

Appendix A.
Derivation of interpolation error. Let the interpolation error over the triangle be

~ given by
(A1) E(x,y)=Mx*+ A" +bx+by+e
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and by the interpolation condition

E(xn)ﬁ):E(xz, y2)=E(x3,y3)=0

at the three vertices of the triangle. The unknowns b

1, by, ¢ can easily be obtained by
solving the following system of linear equations:

X1y 1||b —n
(A2) X ya 1| b= —r
X3 y3 1] ¢ I

where r,=A;x?+ 1,32 By Cramer’s rule,

- 1 X1 —n 1 X1 N
det] —r, y, 1 det| x, -r, 1 det | x, y, —r,
(A3) I y; 1 X3 —r; 1 X3 Y3 —n
by=—r—o = b,= , €= ;
D D

where A is area of triangle and

X oy 1
D=det|x, y, 1[|=24
X3 y; 1
Now by (2.4)
b B2
A4 E  =—++-2_
(A4) T AN 4, ©

The substitution of (A3) into (A4) and its simplification was obtained through the
algebraic computation system MAPLE [8]:

(D1,D,,D;;)
(AS) E=%1;2A f Ail where Dy = (4, (x; — x,)*+ A,(y, — 3,)?).
1442

: E... represents the global maximum

(=b:/(2A,), —by/(2A,)). Tt can be shown by calc
along the boundary is attained at the
edge (xi, 1), (3, ) is | D, /4).

interpolation error obtained at
ulus that the local maximum error
midpoint of each edge. The maximum error along
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