These notes have been prepared for a “DES” set of lectures in
Geneva, starting in October 1995. Comments are welcome.

TOPICS ON GEOMETRIC GROUP THEORY
1. INTRODUCTION

PIERRE DE LA HARPE

Groups as abstract structures have been recognized progressively during the XIX®" cen-
tury by mathematicians including Gauss (Disquisitiones arithmeticae in 1802), Cauchy,
Galois, Cayley, Jordan, Sylow, Frobenius, Klein (Erlangen Programme in 1872), Lie,
Poincaré ... ; see e.g. [Die, chap. III]. Groups are of course sets given with appropriate
“multiplications”, and they are often given together with actions on interesting geometric
objects. But the fact that we want to stress here is that groups are also interesting geo-
metric objects by themselves - a point of view illustrated in the past by Cayley and Dehn
(see [ChM, Chap L.5]), and more recently by Gromov (see e.g. [Gro]). More precisely, a
finitely generated group can be seen as a metric space (the distance between two points
being defined up to “quasi-isometry”), and this gives rise to a very fruitful approach to
group theory.

The purpose of these notes is to provide an introduction to this point of view.

Much of what follows is about results of the 40 last years. However, there are related
results which are classical; this introduction is about two of them. One goes back to Gauss;
the other goes back at least to Polya (1921), and possibly to the first mathematically
inclined drunkard.

1.1. THE CIRCLE PROBLEM

Consider a group I' and a function ¢ : I' — R, which measures in some sense the “size”
of elements of T'.

What can be said of i {vel ‘ o(y) <t} for large t e Ry 7

This theme has many variations. Here we illustrate it with a classical result due to Gauss,
for which ' = Z?2 and o(a, b) = a? + b%. (See [Cha], Chapter VI, Th. 1; Chandrasekharan
quotes Gauss, Werke, (ii), p. 272-5.)

For all t > 0, set

R(t) = 4§ {(a,b)€Z®|a®+b" <t }.
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One has for example

R(0) = 1 R(1) =5
R(10) = 37 R(100) = 317
R(1000) = 3149 R(10°000) = 31'417.

Theorem 1 (Gauss). One has R(t) — nt = O(\/1).

Proof. To each lattice point (a,b) € Z2, we associate the unit square of the Euclidean
plane with (a,b) as its “south-west corner”. If a? + b? < t, the square corresponding to
(a,b) is inside the disc of radius v/ + v/2; hence

R(t) < w(\/i+\/§>2

for all t > 0. If the square corresponding to (a,b) touches the disc of radius v/t — v/2, then
a® + b% < t; hence

2
R(t) > = (\/Z ~ \/§>
for all ¢ > 0. Thus
IR(t) — 7t] < 27 (1 +\/2_t>
for all t > 0. O

Many mathematicians have worked to improve the error term in Gauss’ result. For
example, it is known that

R(t) — 7wt = O (t%)

for the following values of « :

1

a = - ~ 0,3333 (Sierpinsky, 1906)
3
37

T ~ 0,3304 (Van der Corput, 1923)
1r

o = Zé ~ 0,3261 (Titchmarch, 1934)
13

o = 4—O+6 ~ 0,3250 (Hua, 1941)
12

o = — ~ 0,3243 (Chen, 1963)
37
35

0= 22 b6~ 0,3241 (Kolesnik, 1982)
108
7

@ = —+e ~ 0,3182 (Iwaniec and Mozzochi, 1988)



to name but a few (where “+€” means as usual “for all e > 0”.) Moreover,

if  R(t)—nwt=0(tY) then a >

o |

(independently due to Landau, 1912, and Hardy, 1915). Apparently, specialists believe
that R(t) — mt = O (t1/4+) for all e > 0. More on this in the following references.

S.W. Graham and G. Kolesnik: Van der Corput’s Method of Exponential Sums, Cam-
bridge Univ. Press, 1991.

E. Grosswald: Representation of integers by sums of squares, Springer, 1985; see pages
20-22.

G.H. Hardy and E.M. Wright: An Introduction to the Theory of Numbers, 5" ed, Oxford
Univ. Press 1979; see page 272.

I.A. Ivic: The Riemann Zeta Function, J. Wiley, 1985; see in particular pages 372, 375,
384.

B. Lichtin: Geometric Features of Lattice Point Problems, in Singularity Theory, D.T.
Lé, K. Saito and B. Teissier eds, World Scientific, 1995; see pages 370-443; this has an
exposition of R(t) — mt = O (t1/3+¢).

W. Sierpinski: Elementary Theory of Numbers, 2*¢ ed., North Holland, 1988; see pages
383 ft.

1.2. POLYA’S RECURRENCE THEOREM

Counsider the simple random walk on the lattice Z of integers. In loose terms, a walker
is at the origin at time 0 and moves one step left or one step right, equiprobably, after
each unit of time.

The question of recurrence for Z is to know whether the walker has 100 % chance to
visit again the origin infinitely many times. (In the original paper [Pol] of 1921, Polya’s
question was slightly different; see Section 5.3 in [DoS].)

The answer is yes. Indeed (we follow Section 7.2 of [DoS]), the number of all paths of

: o L. 2
length 2n is 22"; among these, the number of those ending in the origin is : because

they involve a choice of n steps right among their 2n steps. Hence the probability of being

at the origin after 2n steps is
1 2n
Uon = ﬁ n .

(Observe that ug,41 = 0.) Using Stirling’s formula k! ~ k*e™%v/27k, one has
1 (2n)%me2"/212n

Ugpn ~ =
22n TL2"€_2"27TTL

i

Hence

ﬁ

o e} oo o0 1

Douk = Y Uz o~ Y == = 0
T

k=1

n=1 n=1



and the simple random walk on Z just considered is recurrent.

Consider the similar problem on the lattice Z? of the Fuclidean plane. The walk is
again recurrent.

Let us show this. The number of all paths of length 2n is now 42”. Among these, the
number of paths that return to the origin after k steps north, k& steps south, n — k steps
cast and n — k steps west is

2n . (271)'
<k k n-k n—k) CORE (n—Kk) (n—k)

Hence the probability of being at the origin after 2n steps is

n

fam = 4; 2 H (nEZZ))!! (n—k)! 21% % " (Z> (”ﬁk>

k=0 k=0

Now, given a box of size 2n with n black balls and n white balls, the number of n-balls
subsets can be computed in two ways, so that

() =2 (1) ()
n N k n—=Fk /)’
k=0
Thus
I 2n)! [2n 1 om\ )’
* R S = —_
" = () = 4w (W)}

Using Stirling’s formula, one has

1 oo o0 o0 1
Uy, ~ p— and E Uy = E Uy, ~ g - = 00
k=1 n=1 n=1

as above, so that the simple random walk on Z? is indeed recurrent.

The situation is different in one more dimension: the simple random walk on Z?2 is
transient (this means precisely “non recurrent”).
As before. we have

(2n)!

Y = G Z PIEE (n—7—k)! (n—j— k)
1 2n 1 n! 2
- 22n (n) Z (37 j!k!(n—j—k)!) '

J, k>0
j+k<n



Now. for each j,k > 0 with j + k < n, one has

n! n!
eI OO NG

(Exercise 3). Consequently

1 2n 1 n! 1 n!
tan S gan <n) (f’ﬁ ([%}!)3> 2 3% Uk (n—j— k)

3,k>0
Jt+k<n

(**)

e (1) (5 )

Stirling’s fomula shows that

1 (2n> 1l 1 (2n)! V2

22TL n

and one has finally
e o] oo oo 1
ug = Uoy < K — < 00
S = S < K 3
k=1 n=1 n=1
for an appropriate constant K.

Theorem 2 (Polya, 1921). The simple random walk on Z¢ is

recurrent if d=1ord =2
{ transient if d > 3.

Proof. The proof above for d = 3 carries over (with minor changes only) to the case d > 3.
O

Feller adds that, in dimension 3, the probability of return to the initial position is about
0.35, and the expected number of returns is consequently

0.35 0.35
0.65 k(0.35)F = 0.65 = = 0.53
; (0.35) (1 —0.35)2 0.65

(Section 7 of Chapter 14 in [Fel]).

The following result, considerably deeper, is due to Varopoulos (see [VSC], in particular
the end of Chapter VI).



Theorem 3 (Varopoulos, 1980 ’s). Let I' be a finitely generated group and let
p: ' — [0,1]

be a symmetric probability measure on I" with finite support which generates I'. If the
random walk defined by I' and p is recurrent, then

either I is a finite group,
or I' has a subgroup of finite index isomorphic to 7Z,

or T has a subgroup of finite index isomorphic to Z>.

EXERCISES AND COMPLEMENTS

(1) Consider analogous problems to the circle problem in dimensions d > 3, and with
ellipsoids instead of with balls.

[Hint: see e.g. Lichtin’s paper quoted at the end of 1.1.]

(2) Explain Formula (*) above, showing that the probability us, for Z2 is the square of
the probability us, for Z.

[Hint: see if necessary [DoS], Section 7.6.]

(3) For positive integers a, b such that a < b, check that a!b! > (a + 1)!(b — 1)!. Deduce
from this Equality (x*) used above, shortly before Theorem 2.

(4) Check the details of the proof of Theorem 2 for d > 3.

(5) A walker on N is in 0 at time 0 and in 1 at time 1. If he is in &k at time n > 1,
then either £ = 0 and he stays there at time n + 1, or ¥ > 1 and he moves equiprobably
one step left or one step right. Denote by PJ* the probability for the walker to be in k at

time n, and set Py(z) = Y o0 PP'z" (a formal power series, which is called the generating
function of the sequence (P})

n20>'
(i) Compute PJ* for n < 10.
(i) Check that one has

Po(z) = 1+ Z[Po(z) — 1} + %Pl(z) ,

Pi(z) = 2[1+%P2(Z)J ;

1 1
Pk(z) = pr’“—l(z) + §P}C+1(Z)} for all k Z 2.

(ii1) Deduce from (ii) that



for all ¥ > 1 and that
1—+V1— 22
1—2 ‘
Check that the first terms of the Taylor developement of this series at the origin fit with
the figures found in (i).

Po(Z) =1+

(iv) For any convergent power series around the origin f(z) = Y, o, fu2", check that

A=2f') = () = 3 nlfa—fa)e™

n>1

In particular, for f = P, one has

(1 =2)P(2) — Po(z) = ——Tz_7 -1 =Y nE-Pp

n>1

1, 13, 135 1 [2k
= —1 O BTy - BT A T N 2k+1
TETRE oyt Toust T +22"’<k>z *

Check that these values of n(Py — Py~") confirm the values found in (i).

(v) Show that the expected duration

n(Py =Pyt

n=1

of return to the origin is infinite.

[Hint. One may use the following consequence of Abel’s theorem, from the theory of
functions of one complex variable: if f(z) = 3", ., fn2" is a holomorphic function in the
open unit disc and if the series is convergent at the point 1, then

lim f(r) = > fa ]

r—1 n>0

(vi) For a direct estimate of the expected duration of return to the origin, see also
Section 3 of Chapter 14 in [Fel].

(6) There has been a lot of work done on problems of self-avoiding walks. Consider
an integer d > 2 and the lattice Z%. A self-avoiding walk of length N in Z¢ is a sequence
(w(0),w(1),...,w(N)) of points in Z¢ such that w(j) # w(k) for 5,k € {0,1,...,N},j #k
and such that w(j) is a neighbour of w(j — 1) for j € {1,...,N}. Let ¢4y denote the
number of these with w(0) the origin and let

(wMB) = —— 3wV

Cd’ w of length N
w(0)=0




denote the mean-square displacement (where ||w(N)|| denotes a Euclidean norm). It is an
easy exercise to show that

d < limsup(cd,N)% < 2d-1
N-—00

for all d > 2.
Two basic problems are to understand cq n and (Jw(N )[2> for large N. One of the first
result in this area is that the limit

1
= lim (¢ N
Hd N—)oo( d’N)
exists (Hammersley and Morton, 1954); it is called the connective constant for dimension
d. The exact value of pg is unknown, even if d = 2 or d = 3. For the mean-square
displacement. let us mention the conjecture according to which

o {Jw@)?)
]\}l—{noo N2v

exists and is neither 0 nor oo for the value v = %. There are conjectural asymptoptic
behaviours for large N of the form

can ~ ApNNTT!

(lw(N)|*) ~ DN

where A, D, p1, v, v are constants depending on the dimension d. Many of these constants
have conjectural values which are not rigorously demonstrated.

Research in this field is strongly motivated by various applications, such as models for
linear polymer molecules in chemical physics, spin models for ferromagnetism in statistical
physics, or percolation theory. For a recent state of the art, see [MaS].
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