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1. Introduction

Let f € Ry, ...,x] be a polynomial which is non degenerate (over R) with respect to
1its Newton polyhedron I'(f) at the origin (see [AVG] and [DS1,1.1]). Assume also that
f(0) = 0 and that 0 is a critical point of f. Fix n € (N\ {0})" and let ¢ : R" — R be
a C™ function with compact support contained in a sufficiently small neighbourhood of
0. We are interested in the integral

for « € C.Re(s) > 0, where 2771 = ;17;“_].’17;'2_]...x:’l”_l with 7 = (n1,...,m,). It is

well-known that the function s — Z(s) has an analytic continuation to a meromorphie
function on C which we denote again by Z(s).

Put sy = —‘-{‘(—)1 where ty € R 1s the smallest value of ¢ such that tn € T'(f). Denote by 7
the intersection of all facets of T'(f) which contain t4n, and let py be the codimension
of 7y in R". We will always suppose that sg ¢ Z.

It ix well-known [V2, 1.4] that all poles of Z(s) are real and < s, except possibly
sowie poles which are integers. (These exceptions do not “contribute” to the asymptotic
expansion of /R, ()2 T @ e =1y for 7 — 400 of. [V2, 0.4], and we consider them
as “trivial”). Moreover if Z(s) has a pole at so then its multiplicity is < py,

see W20 1.4] and [DS1. 1.3].
One expects that “usually” sy 1s a pole of Z(s) with multiplicity pg for suitable o, hut
there are however exceptions as is shown in [DS2, § 6.2]. It is an open problem to
determine these exceptional cases.

Instead of working with Z(s) we will often consider the integral
I(s) = / ()P V() du
Jrn

for s € C. Re(s) > 0, where Ry = {t € R|t > 0}; Z(s) and I(s) being related as explained
in [DS1.1.16]. The function s — I(s) has an analytic continuation to a meromorphic
tunction ou € which we denote again by I(s). Similarly as for Z(s), if I{s) has a pole
at sy then its multiplicity is < pg.
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The prinecipal result of this paper is a formula (Theorem 2.1) for lim (s —s¢)”°I(s). As
5—>8Sq

a consequence of this formula and [DS2, §6.2] we obtain in §5 the following result which
was conjectured in [DS2, Conjecture 3] :

Theorem 1.1 Suppose that the face 7o 1s unstable. If Z(s) has a pole at sy then its
meltiplicity 1s < po.

As in [DS2, §1] we call a face 7 of T'(f) unstable if there exists an index j (1 < 5 < n)
such that the following two conditions are satisfied :
(1) 7 C {{ovgee,ap) ERM0<a; <1} and 7 & {(aq,...,a5) € R"|ar; = 0},

lel(l

(11) for cach compact face o of I'(f) contained in 7 N {{«y,...,q,,) € R"|a; = 1}, the
polynomial f, does not vanish on (R \ {0})", where f, is defined as follows :

For any face o of T(f) we put f, 1= > c qnyn Gax®, where f(x) =3 yn ag®.

We tried for a long time to prove Theorem 1.1 by using only the methods of [DS2], but
we never succeeded in this way.

The authors of the present paper first proved Theorem 2.1 by using methods of [DS1]
and [S]. But here Theorem 2.1 is proved by using toroidal resolution of singularities and
ideas of Langlands [La]. Some more details can be found in [L].

2. Statement of the principal result

Let Fy. .. F,. be the facets of I'(f) that contain tyn. Let {7, be the vector, with com-
poucnts relative prime in N, orthogonal to Fj, and let Np, be min{(z, &g )|z € T(f)}.
Put 7, — S Rilp.

After a permutation of the coordinates we may assume that the standard basis e, ..., ¢,
of R” satisties R" = 7 + Z;’:pﬁ_l Re; and €,,41, ...¢,, are those among ey, ..., e,, which

~ . 0
are parallel to 7y, where 7 is the vectorspace spanned by 7.
- £r o T
Let I be conv{0, T}f}y IEV_?:’ €po+1s---€n }, Where conv indicates the convex hull. We

denote by Vol(K) the volume of K.

Theorem 2.1. With the above notation and assumptions, we have that

S— 8¢

(2.1.1) lim (s — sg)P° / |f()[Fa Yool )du
. RZ{_
cqads
1! Vol ('IX—) P‘/r/ vo ‘fro(la . 1,yp0+],...7yn)|so(,9(0, ...,O,ynl+], ---7yn)
RTI—
+

‘_)1.).) n

-1
H y;“ dype+1 N oo A dys,.
J=po+1
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Here the Principal Value Integral PV fRn—po ... 18 by definition the value at (s9,0) of the
+

imcromorphic continuation to C of the function

I(s.0) = | fro(Ls s Lypotts s Un ) 0(0, o, 0, Yinger s oo, Ym)
Jrrmro

5 DR +
(2.1.3) n m
n; —1 9 _
I v I 7+ 0 dypers A A dya,
i=pot1 i=pot1

defined for Re(s) > 0 and gzgi; sufficiently big. This meromorphic continuation to C?
crists and s indeed holomorphic at (s¢,0). Moreover if sy > —1, then the integral in
(2.1.2) converqes absolutely and equals 1ts principal value (v.e. the value at (s9,0) of the
meromorphie continuation of I(s,0)).

Theorems 1.1 and 2.1 remain valid with |f| replaced by fy := max(f,0) and f,,
by ( fr,)4. Indeed the proofs remain the same. If 79 is simplicial and if each term in
fr corresponds to a vertex of 7, then we moreover obtained, by using Theorem 2.1,
an cxplicit formula for img ., (s — 59)?°Z(s) in terms of special values of the ganumna
funection (see [L].)

3. Toric manifolds

Let L be a lattice in R", for example Z". A cone A in R" is called L-simple if it 1s
generated by a set of veetors which are part of a basis for L. Let F' be a fan (see [AVG,
p. 192- 193 ]) consisting of L-simple cones in R™ (i.e. a L-simple fan). To the pair
(L. F'} one assoclates in a canonical way a real analytic manifold X g (called the toric
manifold associated to L, F') see [AVG, p. 193-196]. Each n-dimensional cone A € F
vields an open subset U pa of Xp p which is a copy of R” (called a standard chart!),
and cach ordered basis {&;,...,&,} of A yields affine coordinates (yi,...,yn) on UL pa
tcalled the standard coordinates associated to the basis {£1,....€,}). A fan F) is finer
rhan o fan F, (notation Iy < F}), if each cone of F| is contained in a cone of F,. To fans
F < F" and lattices L € L' in R™ one associates in a canonical way an analytic map
XNy — Xy pr, (see [AVG, p. 197] when L = L'). Even when L is not contained in L',
there 15 a natural map 7+ X p(Ry) — X (R4 ) which is given on corresponding
charts by monomials with nonnegative real exponents. (With X p(R;) we mean the
set of points on X g which have nonnegative standard coordinates). More precisely let
A e FLA" € F' be n-dimensional with A C A" and let {&,...,&,}, vesp. {£],...,€,,} be
ordered sets of generators for A, resp. A’ that are part of a basis for L resp. L'. Then
the restrietion of the natural map 7 to Uy g A takes values in Ups pr ar and is given in
the standard coordinates (associated to {&1,..., &}, vesp. {€],..,€,1) by v =[], y: "

tor ;= 1.....n. where ¢;; 1s given by & = E;L:.l (:ijf;.

"The standard charts cover the manifold X, p
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4. Proof of Theorem 2.1

. 0 . . . . .
We assiume that 7 is Z"-simple. The general case is left to the reader and is obtained
by making a sum over the cones in a subdivision of 7o in Z"-simple cones. For ease of
notation we also suppose that n = (1,1,...,1).

Let Ly = Z" and Fy be a Ly-simple fan subordinated (in the sense of [AVG, p. 199]) to
the Newtonpolyhedron I'(f) of f at 0. Then the natural map 7; : X, p, — R" is an
cimbedded resolution of singularities of f in a neighbourhood of the origin in R™ [AVG,
p. 201 Théoreme 2.

Varchenko [V2] has studied the meromorphic continuation of fR" |f|5p- 2" 1dx by using
the resolution 7y, pulling back the integral by 7. We assume the reader 1s familiar with

tlus work.

Next we define the closed submanifold Y of X, g (with codimension pg), by requiring
for every n-dimensional A € F that

U ranNY =0, if 70 £ A

Uy raNY = locus (yg =yo = ... = y,, =0), if 7o C A
where (yy. ...y, ) are the standard coordinates associated to an ordered basis {1, ..., &, }
of A with &.....¢,, € 70'(,. It is easy to verify (and well-known in the theory of toric

varicties [Da. 5.7] and [F, 3.1]) that Y = X, g, where the lattice L, and the fan F,
i R"77% are constructed as follows : Let Fy be the set consisting of all A € Fy which

contain 7. Then the lattice L, and the fan F, are obtained by projecting L; and F
parallel to 7 onto Re , 41 +...+Re,, = R*7*o. Note that the cones of Fy are Ly- simple.

Put Ly = Ze, 41 + ... + Zeyp, CR"7P0 and let Fy be the fan in R" 770 consisting of all
octants (Le. all the connected components of (R\ {0})"#°). Then Xy, p, = (Pg)" 0,
where PL denotes the real projective line.

By refining the fan Fy) we may suppose that F, < F3. Then there is a natural map

T2 V(Ry) = Xiom(Ry) = Xy p(Ry) = (B, )"0,
as explained in 3. (Here PI]Ri+ = IF"[IR \ { the negative real numnbers }.)

We are gomg to study the meromorphic continuation of the integral I(s, ¢) in (2.1.3) by
pulling 1t back through 7y to an integral on Y(R,).
Let 5 on (PL)" =70 be given by

= (e L gt e 2 00(0, 0, 0, 2 o 2 )|z A Adzy,,

where 2, 4., 2, are the standard affine coordinates on R" 770 and put

m

Dy o= | fro (Lo L2 pory oo 2 )| and hg i= H (:']2- +1)7".
J=pot1
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Note that I(s,0) = jﬁ&:—po |y 3750 ho|fy = fY(RJr) |y o ma|* %0 |hy o w73 ().

- ) ) ) 0
Let A € Fy be n-dimensional and generated by &1, ..., &, with &,...,&,, € To.
Put N, = min{{x.&)e € T(f)} and v; = sum of the coordinates & ; of §. It is a
straightforward excersise to verify that on Y N UL, A we have

po £o * ]
\, RN |12, welms (ol 20 ]
(" (n! Vol (K) | | Ni)m5(v) = =L
II;I] ‘ |dyr A oo A dyp,| e o
' - o Tdp0TT
where (yy.....y,) are the standard coordinates associated to {&1,...,£,}. (Note that

Nisg+vi=0fori=1,..,p0.)

Formmla (s) is really the key of the proof of the Theorem. It relates PV fRi—po v to
a principal value integral on Y(Ry ) of the right side of (*). But Langlands’ work [La]
implies that a differently defined principal value integral on Y (R4 ) of the right side of
{+1 cquals the limit in (2.1.1). So to prove Theorem 2.1 it suffices to show that the
two definitions of the PV coincide, which is not difficult. However we prefer to give a
scelfeontained proof of Theorem 2.1, without using Langlands’ theory.

From [V1. p.260] it follows that at each point P € Y (R4 )NUL, g, a whichis contained
i a sutficiently small neighbourhood of 777(0), there exist local coordinates yj, ...,y
on Uy g A centered at P such that locally at P we have :

(1) ¢ =y, for ¢ = 1,...,pg and for any 1 in {po + 1,...,n} with y;(P) = 0; thus YV’
is given by yy = ... =y, = 0 and the positivity of all standard coordinates on
Uy, 1A s equivalent to the positivity of these y! for which y;(P) = 0.

iy wr el = fon P lo Ty il M dyy A A dyy, ),
where 0y and ve are nonvanishing analytic functions, (N, 1)) = (V;,v;) for any i

with ¢, (P) =0 and (N/,v]) € {(1,1).(0. 1)} if y;(P) # O.“ l
(i) 757 = (n!Vol(K) [[2, Ni)™! H?:pﬁ_l |y§|NfSO+Vf_1><
(or]*olvaf(p o Wl))\y, _ =O|dy;30+1 Ao Ny
Thix follows from () and ( iia, andp(ilolds for any C"*°-function ¢ on R".
1 1105l = I TT g 175 0 73] = ] TT 41 15

where ;. b; € Q and w, w are nonvanishing functions with « analytic and with w
. . C; . . . .
analvtic in y! ™ for suitable ¢; € Q,¢; > 0,4 = pg +1,....,n. This follows easily from

(111) and the nature of m,. Moreover one can take ¢; = 1 when y;(P) # 0.

Note that the exponents Nlsg 4+ v/ — 1 for « = py + 1.....n are among the numbers

P so € 7Z. 0, Njsog+v; —1>—=1for j =pg+1,...,n,

hecause Nlsg + 0 = Niso + v; > 0 when y;(P) = 0,1 > po.
Henee we see that the integrand of I(s, () = fY(]R’AH |ha 0w |* =0 hy o my['75 (v) locally
looks like the integrand in the integral J(k,¢) in Lemma 4.1 below, with k replaced by

s = sg. v by v, 6 by |v2l(¢ o my) and (N;,v;) by (N/,vl). Because I(s,f) converges
absolutely for any compactly supported C*°-function ¢ on R", whenever Re(s) > 0 and
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Re )
Reis) i
a; = b; = 0. for all i = pg + 1,...,n. Thus by using a suitable partition of unity? on
X, ., (and the properness of 1) we obtain by Lemma 4.1 below that (2.1.1) equals
(2.1.2). and that the meromorphic continuation of I(s, ¢) is analytic in (s, 0). Finally
the last assertion of the Theorem follows from (#*) which 1mplies that

’+ o Y = .[y(RJr) 75(7y) converges when so > —1. [

is sufficiently big, we see that b; > 0,a; > 0if b; = 0 and Nlsy + v > 0 if

Lemma 4.1. Let Nov; € RON; > 0,05 > 0, for o = 1,....n. Let 55 € R.osg < 0.
Supposc that Nisy +v; = 0 for i = 1,...,p0 < n and that Niso + v; € —N for 1 > py.
Let 8 be o C™ function on R™ with compact support, and v an analytic nonvanishing
function on a neighbourhood of the support of 8. Then

(1) the meromorhpic continuation of

n

(5 — 50)°° / 6\v|S(H yNistwimly dy; A ... N dy,
YR

1=1
s holomorphac an s with value say A.

(1) Moreover let a;, by € R for « = pg + 1,...,n and let w,w be real valued functions
Of Ypostennn yn € R which do not vanish and which are analytic in |y;| for suitable

o € Q.c; >0 for it =pg+1,...,n, on a neighbourhood of the support of 8. Consider
the integral

Jh ) = /I»“h(O (G‘Ulm)‘yl . | | yN so+vi—1+ta;k+b; ()|u|k|w|[dyp0+l/\.../\dyn.
i " =Yp0 =
M z—p0+]

Supposc that by > 0,a; = 0 3f b; = 0 and N;sg +v; > 0 of a5 = by = 0, for all

re=po 4+ 1o o n. Assume that Niso + v; > 0 whenever ¢; ¢ N Then for Re(k) and
/[T“»% sufficiently big. the integral J(k,€) converges absolutely to an analytic function
which has a meromorphic continuation to (C2 Moreover this meromorphic continuation

is holomorphic at (0.0) with value A ]2

z—l

Proof. Consider the integral

. Po 12
Glo ko () = ('\,750)/)0 / 9|U| HyN stvi— H y;’\’;s-*—m—l-}-aik-i—bif)tu‘k|w‘£dyl/\. . ./\dyn.
JRY i=1 l_Po-H

[t is clear that this integral converges absolutely to an analytic function G on the open
conunected set

D, = {{s.k.t)€ C*|Re(s) > sp, Re(Nijs +vi+aik+b,0) >0for i = pg+1,...,n} #0,

“Note that lime_., (s — $0)P0 .[XLI Fy (B w1 (| f|*|dz])6 = 0 whenever f is a C°-function with

compact support disjoint with Y
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hecanse Nysy + v = 0 for 7 = 1,...,pg. There exists € in R,e > 0, such that G has a
contimmation to an analytic function, again denoted by G, on the open connected set

= (s k) € (C3|Re(.s) > so—¢, Re(Nis+vit+ak+b;¢) > 0 for i = po+1,...,n} D Dy.

This follows from integration by parts with respect to the variables yi,...,y,,, to raise
the exponents of these variables. Moreover the function G on D has a meromorphic
contimation [G],. to C*. Indeed this follows again by partial integration when all ¢;
arc integral and one reduces to this case by a change of variables y; = yéd with de N.
Moreover |G, 1s holomorphic at (sg.0,0) because it follows from N;sg + v; ¢ —N, for
¢ py. that integration by parts with respect to the variables y,, for which ¢; € N,
rawses the exponent of y; without mtroducing a pole at (s4,0,0). (Note that we avoid
mteeration by parts with respect to the variables y; for which ¢; ¢ N. An integration
by parts with respect to one of these variables could cause problems and is not needed
hecause we assume N;sg + 17, > 0 for these 1, which implies that the exponent of such
4, has not to be raised.)

We recall the following principle which follows easily from the basic properties of
meromorphic functions in several variables [GF]. Let G be a holomorphic function on a
nonempty open connected subset D of C* which has a meromorphic continuation [G],.
to T, Let L be an affine subspace of C" with L N D # . Then the restriction GiLnp
of G ro LN D has a unique meromorphic continuation [G,aplec to L and [G1aplae 18
holomorphice at P with value [G],.(P) at each point P€ L where [G],. is holomorphic.

By applying this principle with L = {(s, k,{) € C*|k = [ = 0} and P = (5,0,0), we
sec that assertion (1) of lemma 4.1 is true with A=[G],.((s0,0,0)).

Because of the asswunption on ay, by, there moreover exist N.M in N such that
{so) x W C D. where

) . Re(?

W= {(k.() € C*|Re(k) > N, L > M}.
Re(k)

The principle above with L = {54} x C* and P = (s9,0,0) yields that G(seyxw has
a weromorphic continuation to L = {sq} x C* which is holomorphic at (sg,0,0) with
value [G, ((50.0.0)) = A. Thus to prove assertion (ii) of lemma 4.1, it suffices to prove
that Jiy- equals (T1%%, Ni)Gysoyxw- But since Nis 4 v; = Ni(s — so) for e =1,..., py,

this follows casily from the well-known formula

. TN (g, 0 0)
3 01 / i(8—s0)—1 S0 [
him (s — s¢)/ / V(S Y13 Ypo) I I Y; (s=20) dyy A Ndy,, = ’po 7
YN . £0 - . Ni
5 ‘ [0.1] i | =1
which holds for any continuous function v on R x [0,1]7°. O

5. Proof of Theorem 1.1

Applying Theorem 2.1 to both f and f;, we see that lim (s — s¢)?°Z(s) and

S—8¢

(5.1 lim (s — s9)7° / | fro (2)]° 2" Vo) de

5—80 n
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are equal up to a strictly positive factor (which is a quotient of volumes). Hence it
cuffices to prove that the limit in (5.1) is zero, i.e. to prove that Theorem 1.1 holds for
f replaced by fr,. Since all vertices of T'(f,,) are contained in 7y, this can be done by
using material from [DS2] as follows:

Proof for f replaced by fr,. We assume that 79 1s unstable relatively to the index
j=n. For any vector u in RY, we denote by F(u) the set of all x in I'(f-,) where (r,u)
i~ minimal. Let Hy be {& € R"|z,, = 0} and Hy be {r € R"|z,, = 1}. By using the
material of section 4 in [DS2], it suffices to prove that there exists a decomposition of

. . (i (i
R’ in cones C, spanned by {u; b u”)_],

(1) m"*‘Fwi”) #0,

=1

en} such that for every i

(2) at most pg -1 of the ugi) are contained in 70'0,
(3) for every subset J of {1.....n-1 } the face 7 = mjejF(ilgl)) satisfies
(a)it =N Hy = 0. then 7N Hy # 0,

(hyif 70 Hy = 0 and if 7N Hy is compact, then firqy,) does not vanish on

(R\ {0})".

To prove the existence of such a decomposition, we will construct one. We consider the
set of cones {p" N Hylp vertex of T'(f,,)} where p := {u € T'(fr,)|F(u) 3 p} . We refine
this decomposition of R N Hy by dividing every cone in simplicial subcones, to obtain a
decomposition (C;)ier. We claim that the decomposition of R consisting of the cones
= cono(Ch.e,,) for i in 1, satisfies conditions (1),(2) and (3).

Condition (1) is satisfied since the cones C; are subordinated to I'( f,, ).Since 7 is unsta-
ble relatively to a,, we have that dim(?‘o NHy) < dim({T)o) = po which implies (2). For an
arbitrarv i € Tand J subset of {1,...,n—=1}, let 7 be ﬂjEJF(u(jl)). Since 7 is a nonempty
face of I'(fr,) by (1), it contains at least one vertex of I'(fr, ), cf. [R, 18.5.3]. Since each
vertex of I'( fr,) 1s contained in 7g, we conclude that 7 contains at least one vertex of
mu. Sinee 7y is unstable relatively to x,,, all vertices of 7y are contained in Hy U Hy. Let
N Hy =10. then 7N Hy # §§ which proofs (3) (a). Note that 7N H; is a face of I'(f;,).
Suppose woreover that 7 N Hy is compact, then 7 N Hy; = conv{py,....p,r} where the p,
arc vertices of T'(fr,), ef. [R, 18.5.1]. Since each vertex of I'(f,,) is contained in 7y, we
conclude that 7N Hy C 9. Assertion (3) then follows from the unstability of 7,. O
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