- dMMcLM U
—

On Good Triangulations in Three Dimensions*

Tamal K. Dey Chanderjit L. Bajaj Kokichi Sugihara

Department of Computer Science
Purdue University
West Lafayette, IN 47907

Abstract

In this paper, we give an algorithm that triangulates the convex hull of a three dimensional point
set with guaranteed quality tetrahedra. Good triangulations of convex polyhedra are a special case of
this problem. We also give a bound on the number of additional points used to achieve these guarantees
and report on the techniques we use to produce a robust implementation of this algorithm under finite
precision arithmetic.

1 Introduction

Triangulation of a point set or a polytope is an important problem with applications for finite element
simulations in CAD/CAM. Though a number of algorithms exist for triangulating a point set or a polytope
in two and three dimensions [1, 6, 11, 13], few of them address the problem of guaranteeing the shape of -
the triangular elements. To reduce ill-conditioning as well as discretization error, finite element methods
require triangular meshes of bounded aspect ratio [2, 12]. By aspect ratio of triangles or tetrahedra, one
may consider the ratio of the radii of the circumscribing circle to that of inscribing circle (spheres in case
of tetrahedra).

In 2D, there are basically two approaches known so far to produce guaranteed quality triangulations.
The first approach, based on Constrained Delaunay Triangulations, was first suggested by Chew [7]. He
guarantees that all triangles produced in the final triangulation have angles between 30° and 120°. In [8]
we improved this algorithm with minor modifications to guarantee the boundary triangles to have better

“angle bounds (between 38.9° and 97.2°). There is another approach based on Grid Overlaying which was
first used by Baker, Grosse, and Raferty in [3] to produce a non-obtuse triangulation of a polygon. In
. [8], we proposed a simpler method based on this grid approach to triangulate a polygon with good angles.
Recently, in [5], Bern, Eppstein, and Gilbert give algorithms for producing good triangulations which uses
a special type of a grid that simulates the planar subdivision with the quadtree.

It is suggestive to see whether the two approaches in 2D generalize in 3D. Bern, Eppstein, and Gilebert
[5] generalize their quadtree approach in 2D to produce a good triangulation of a 3D point set. Their
method, however, introduces points outside the convex hull of the input point set. In a recent paper,
Mitchell and Vavasis [14] use the same approach in attempt to produce guaranteed quality triangulations
of polytopes. Their method, however, has not yet been proved to be correct. In this paper we build on the
Constrained Delaunay approach of Chew. This approach has certain advantages over the grid overlaying
approach. The algorithm with the Constrained Delaunay approach is simple and generalizes easily in 3D.

. *Supported in part by ARO Contract DAAG29-85-C0018 under Cornell MSI, NSF grant DMS 88-16286 and ONR contract
N00014-88-K-0402.)

On the other hand grid overlaying approach seems to lead to many special cases when generalized to 3D.
In this approach most of the new points are added along certain preferred directions since they lie on
orthogonal grid planes. This may lead to undesirable artifacts in the numerical solutions obtained through
these triangular meshes.

Although generalization of Chew’s 2D algorithm is straightforward, the fact that it produces good
tetrahedra is not obvious. We show that Chew’s 2D algorithm as extended in this paper for triangulating
a 3D point set indeed produces good tetrahedra. In particular we prove that four out of five possible
types-of bad tetrahedra are never produced if we assume lower and upper bounds on the dihedral angles
of the adjacent facets on the convex hull boundary. Unfortunately the assumption of an upper bound
on the dihedral angles leads to a constant number of vertices on the convex hull boundary. Thus, this
assumption prohibits us to consider the triangulation of general convex polytopes as special case. The
algorithm, however, guarantees that all tetrahedra having at least one vertex not on the boundary are
good irrespective of the large dihedral angles. Thus this algorithm can still be applied to general convex
polytopes where “most” of the tetrahedra are guaranteed to be good. The bad tetrahedra, in this case,
are produced due to the badness in the input.
~ Our main results are as follows: (i) We show that the generalization of Chew’s a.lgonthm produces a
good triangulation of a 3D point set. In particular, it never produces four out of five possible bad tetrahedra
if we assume lower and upper bounds on the dihedral angles of the boundary of the convex hull: If we do
not assume any upper bound on the dihedral angles, all tetrahedra except the ones with all vertices on
the boundary satisfy the above property. (ii) We give a bound on the number of additional points used to
achieve this guarantee. We also report on the techniques we use to produce a robust implementation of
this 3D triangulation algorithm in the presence of numerical errors under finite precision arithmetic.

2 Preliminaries
2.1 Characterizing Bad Tetrahedra

In three dimensions, a tetrahedron that is not of bounded aspect ratio can be degenerate or bad in three
possible wa.ys as described in [4]. The following two parameters w, x characterize bad tetrahedra as follows.
Letw = Z and x = % where R is the radius of the circumscribing sphere of a tetrahedron, L and !/ are
the lengths of its longest and shortest edges respectively.

Category(i): w = O(1),x > 1.

Category(ii): w » 1.

‘Category(iii): w = O(1), k = 0(1)

Definition: A sliver is a tetrahedron that is formed by four almost copla.nar points and all of whose solid
angles are very close to zero.

Category(i) corresponds to tetrahedra that have a very short edge relative to other edges and:have cir-
cumscribing spheres that do not have an arbitrarily large radius compared to the length of the longest
edge. Specifically, category(i) consists of type(i) and type(ii) tetrahedra. Type(i) tetrahedra are needle-
like tetrahedra in which one of the solid angles is highly acute and the face opposite to it has a negligible
area (Figure 1(a)). Type(ii) tetrahedra are slivers with a very short edge (Figure 1(b)).

Category(ii) corresponds to tetrahedra that have a circumscribing sphere with arbitrarily large ra-
dius compared to the longest edge. Specifically, category(ii) consists of type(iii) and type(iv) tetrahedra.
Type(iii) tetrahedra are flat tetrahedra which have one of the solid angles highly obtuse (Figure 2(a)).
Type(iv) tetrahedra are slivers which lie very close to the surface of their large circumscribing spheres
(Figure 2(b)). Category(iii) consists of type(v) tetrahedra. Type(v) tetrahedra are slivers whose edges
have lengths within a constant factor of each other and which do not have a close incidence with the

(a) : (b)

Figure 1: Category(i) tetrahedra

A/@

(a) (b)

Figure 2: Category(ii) tetrahedra

surface of the circumscribing sphere (Figure 3). We present an algorithm that triangulates the convex

Figure 3: Category(iii) tetrahedra

hull of a three dimensional point set with the guarantee that type(i) through type(iv) tetrahedra are not
generated.

2.2 2D Algorithm

The core of the algorithm presented in this paper consists of the Delaunay triangulation which is the
straight line dual of the Voronoi diagram. In two dimensions, the circumscribing circle of a triangle in
the Delaunay triangulation of a point set does not contain any other point inside it. Similarly, in three
dimensions, the circumscribing sphere of a tetrahedron in the Delaunay triangulation does not contain any
other points inside it. This property of the Delaunay triangulation is utilized by Chew in two dimensions to
produce good triangulations. He adds the centers of the circumscribing circles of large radius. Of course,
the edges of the boundary (boundary of the convex hull in case of point set; given explicit polygonal
boundary otherwise) have to satisfy certain length criteria. In his algorithm, Chew used edge lengths in
between d and v/3d where any pair of input points is at least d units away from each other. In the modified
algorithm of [8], we require edge lengths in between d and 1.5d. This gives two distinct advantages.

1. It is easier to divide edges between d and 1.5d in practice.
2. The triangles that have circumcenters outside the boundary have better bounds on their angles.

We present below this modified algorithm for good triangulation of a point set in two dimensions.

Algorithm 2D-TRI:
_Input: Finite number of points in plane.

Ini)ut Conditions: There exists a quantity d, such that all boundary edges (convex hull edges) are breakable
into segments of lengths in between d and 1.5d and no two points are closer than d.

Step 1. Break the edges of the convex hull into segments of lengths in between d and 1.5d.
Step 2. Construct the Delat'may triangulation of the resulting point set.

Step 3. Find a triangle g satisfying the following properties: (i) the radius of the circumscribing circle ¢ of
g is greater than d, (ii) the center of c is inside the boundary.

Step 4. If no triangle g is found in Step 3, return the current triangulation. Otherwise, add the circumcenter
. of g to the current point set and go to Step 2.

Of course, to satisfy the input conditions of the algorithm 2D-TRI, we have to show that such a d
exists. Let d; be the minimum distance between any two input points.. Let d; be the minimum distance
between a point and a boundary edge and d3 be the minimum length of any boundary edge. A simple

4

minded choice of d would be d = min(d,,d,, ég). With this choice of d, all boundary edges have lengths
greater than or equal to 3d. Such edges can be easily divided into segments which have lengths in between
d and 1.5d. However, if the boundary has a very sharp internal angle # at a vertex v, the new points
introduced on the edges e, , e; incident on v may be closer than d. We divide the edges e, ez in such a way
that the segments incident on v have lengths 1.5d. The other two endpoints of these segments are at a
distance of 3d sin -g-. For this distance to be greater than d, we need 6 > 2sin~! % With this scheme, each
edge is divided in such a way that two segments incident on the two endpoints have lengths of 1.5d. Thus
each edge must have a length of at least 6d (3d umts for two extreme segments and another 3d units for
middle segments). We define d as'd = min(d;, dg,). _Wxth the assumption that § > 2sin™! 1, this choice
of d satisfies the input conditions of the algorithm 2D-TR.I.

Note that in the algorithm 2D-TRI, we check whether the new points to be added are within the
boundary or not. Any triangle with the circumcenter lying outside the boundary must be obtuse and has
edges of lengths in between d and 1.5d. The radius of circumscribing circle of such triangles can not be
greater than d. Thus the check whether the circumcenter lies inside the boundary or not is redundant.

Algorithm 2D-TRI produces a planar triangulation T that has the following properties.

Property 1: All edges in T have lengths in between d and 2d and in particular all boundary edges have
lengths in between d and 1.5d.

Property 2: The circumscribing circle of all triangles in T has radius less than or equal to d.

2.3 Geometric Lemmas

We use the following geometric lemmas in the next section.

Lemma 2.1: Let T be a Delaunay triangulation of a point set in two dimensions. Let R be the maximum
radius of all circumscribing circles of Delaunay triangles in T'. The radius of any empty circle whose center
lies inside T is less than or equal to R.

Proof: See Theorem 6.15[15]. &

In the rest of the paper, we use cl(¢) to denote the “disk” enclosed by a c1rcle ¢ and cl(s) to denote the
“ball” enclosed by a sphere s. . '

Definition: Let ¢ be a circle drawn on a sphere s. Let p;p; be the axis which is perpéndicnla.r to the
supporting plane of ¢ and which passes through the center of c. This axis intersects s.at p; and p;. The
points p;, p2 are called the poles corresponding to the circle c.

Lemma 2.2: Let ¢ be a circle with radius less than or equal to r drawn on a sphere s. Let the distance
between cl(c) and its nearest pole be greater than or equal to d. The radius R of s must satisfy the
condition R < —if;—

Proof: Consider the circle ¢ as shown in Figure 4 with the nearest pole p;. Let a, b be the centers
of s and c respectively. Obviously, |ab] < (R — d). Consider the right angled triangle Aabt where ¢
is a point on the circle c. Since the radius of ¢ is less than or equal to r, we have |bt] < r. Hence,
at]? = R? = |ab]> + [bt]2 < (R—d)? + r giving RS T1E. &

Figure 4: Lemma 2.2

3 3D Algorithm

We assume that a finite number of points is given in three dimensional space. We call the boundary of
the convex hull of these points the boundary. In what follows, by the convex hull of a point set, we mean
its interior along with its boundary. A point is called an internal point if it is not on the boundary and is
called a boundary point otherwise. The facets of the boundary are referred to as boundary facets and:the
edges on the boundary facets are called boundary edges. The dihedral angles between adjacent boundary
facets are referred to as input dihedral angles. '

Algorithm 3D-TRI:
Input: Finite number of points in three dimensional space.

Step 1. Let d; be the minimum distance between any two points; d; be the minimum distance from:an
internal point to a boundary facet; d3 be the minimum distance between a vertex and an edge on a facet;
d, be the minimum distance between two nonadjacent boundary facets. Choose r = %{di,'dz, ds,ds}.

~ Step 2. Break all edges so-that each segment has length in between r and 1.5r.

Step 3. Triangulate each facet of the boundary using the algorithm 2D-TRI with d = r. The Step 1 of the
algorithm 2D-TRI is not executed since the edges are already broken accordingly.

Step 4. Let P be the current point set. Construct a 3D Delaunay triangulation T(P) of the point set P.

Step 5. Search for a tetrahedron ¢ in T'(P) satisfying the following properties: (i) the circumscribing sphere
s of t has a radius greater than 2r, (ii) the center v of s lies inside the boundary. "

Step 6. If no tetrahedron is found in Step 5, return the current triangulation. Otherwise,.add v to current
point set and go back to Step 4.

With the above choice of r and with the assumption that all the face-angles of the facets on:the

boundary satisfy the minimum angle criterion, it is possible to triangulate them by 2D-TRI maintaining
the edge lengths as stated. In the following Lemma, we prove that the above procedure terminates.

Lemma 3.1: Algorithm 3D-TRI terminates.

Proof: Algorithm 2D-TRI terminates since the points added by it are always at a certain distance from all
other points. There can be only finitely many such points inside the given polygonal boundary. Extending
this argument to Algorithm 3D-TRI, we can observe that all the circumcenters of tetrahedra that are added
as new points are at a distance of at least 2r from all other points. There can be only finitely many such
points inside the convex hull of the input points, which assures the termination of the Algorithm 3D-TRI.

&

Lemma 38.2: Any point on a boundary facet that does not lie on a bouhda.ry edge must be at a distance
of at least 4r from all edges of that facet.

Proof: Consider a point p on a facet f. Let e be any edge of f. Note that the edge e is divided
into smaller edges e;, ey, ...,e, through the triangulation of the boundary facets adjacent to e. Drop a
perpendicular from p on the line supporting e. If the perpendicular intersects the edge e, let ¢; be the
edge bf the triangulation on e which is intersected by it. According to property 1, all boundary edges of
the triangulation of f must have lengths in between r and 1.5r. Further, the point p is at least r units
away from the end points of ¢;. Thus, the minimum distance between p and e, is at least 41’. In case
the perpendicular dropped from p does not intersect e, it must intersect some other edge €’ of f. In that
" case, the distance between p and e must be greater than the distance between p and e’. We can estimate
the minimum distance between p and e by estimating the same between p and ¢/. While estimating the
distance between p and ¢, if it occurs that the perpendicular dropped from p does not intersect ¢’, we will
have another edge to estimate the minimum distance between p and €’. Since there are finite number of
edges and since each time we go to a next edge, its distance from p gets smaller than the previous one,
there must be an edge of f which is intersected by the perpendicular dropped from p. Let ¢” be the first
such edge encountered in the above process. As argued above, the distance between p and e” is at least
4r. Hence, the distance between p and e is at least 11—7r. Thus, any point on a boundary facet that does

not lie on a boundary edge must be at a distance of at least 41‘ from all edges of that facet.d

Lemma 3.3: All edges in the triangulation produced by the algorithm $D-TRI have lengths greater than
lmin Where lpmin = min(r, 4rsin ggl). Here 8, is the minimum input dihedral angle. :

Proof: Initially, all internal points are at a distance of at least 67 units from every other point. Two
boundary points, lying on non adjacent facets, are at least 6r units away from each other. These conditions
are ensured by the particular choice of r. A boundary point is at a distance of at least r from every other
point on the same facet which is ensured by the algorithm 2D-TRI. The points added by the algorithm
3D-TRI are always at a distance of at least 2r from every other point. Thus, all points except the points
on the adjacent facets are at a distance of at least r from each other. To estimate the minimum distance
between any two points on the adjacent boundary facets, consider two points p;, p2 lying on the adjacent
facets fi, fa respectively. Let e be the edge shared by f; and f;. Let T be the plane that passes through
p1 and is perpendicular to e. Let T intersect e at p;. The normal dropped from p; on T lies on the plane
supporting f» and is parallel to e. Let it meet T at pj. In the right-angled triangle pyp2p5, IP1p2| > P10
since pyp; is the hypotenuse. Consider the triangle p;p5p3. Let the minimum dihedral angle between any

two adjacent facets be §,,. From the above discussion, it follows that |p1p3| > 4r and |phpa| > %zr. Thus,

7

the distance between p;, p) and hence between p;, p2 is at least 4r sin le. Hence, all edges in the final
triangulation produced by the algorithm $D-TRI have lengths greater than lyin = min(r, 4r sin Qg*). &

Lemma 3.4: Let d be the distance of a point p present as a vertex in the triangulation produced by the
algorithm 8D-TRI from any boundary facet on which p does not lie. d > r if p is an internal point and
d> 4r sin 6, if p is a boundary point. Here 0, is the angle such that all input dihedral angles are within
6m and 180° — 0. '

Proof: If p is an internal input point, we already know p is at least r units away from every:boundary
facet. We can show that if p is an added internal point, it is also r units away from every boundary facets.
p is at least 2r units away from every other point. Let f be the closest boundary facet to p. The foot
of the perpendicular dropped from p on the supporting plane of f lies inside a triangle, say Agst on f.
Consider the tetrahedron formed by p, g, s,t. Since all edges of the triangle Agst have lengths of at most
2r and the point p is at least 2r away from g, s,t, the minimum height of p from Agst is achieved when
pgst is a regular tetrahedron with all edge lengths equal to 2r. This height is greater than r.

Consider the case when p is a boundary point. By the choice of r, any point on a boundary facet'is
at least r units away from any other nonadjacent facet. We prove that if p lies on a boundary facet but
not on a boundary edge, it is at a distance of at least 34&r sinf,, from all adjacent facets. Let p lie on
f1 and let f, be any facet adjacent to f;. In Lemma 3.2, we proved that the distance of p from any line
supporting an edge of the facet f; is at least 41-. Let I be the distance of p from the line where f; and f;
meet. The distance d of p from f; is given by d = Isin @ where @ is the dihedral angle between f; and f.
Putting the minimum value of / and @ gives the lower bound on d. Thus, the distance of a point from any
facet that does not contain it is at least dpyin = min(r, 34&r sinOp,) = 5?1‘ sinfy,. &

4 Qualities of Tetrahedra

Definition: A tetrahedron in the final triangulation is said to have a good circumcenter if the center of its
circumscribing sphere lies inside or on the boundary (convex hull boundary). Conversely, a tetrahedron:is
said to have a bad circumcenter if the center of its circumscribing sphere lies outside the boundary.

We classify the tetrahedra with bad circumcenters into two classes, namely class A and class B.

Definition: A tetrahedron ¢ with a bad circumcenter is called a class A tetrahedron if it satisfies the
following property. There exists a facet f intersected by the circumseribing sphere s of ¢ in such a way
that the foot of the perpendicular dropped from the center of s on the supporting plane of f lies inside f.
Any other tetrahedron with a bad circumcenter is called a class B tetrahedron. See figure 5 and figure 6.

We further divide the class A tetrahedra into class Al and class A2 tetrahedra and the class B tetrahedra
into class B1 and class B2 tetrahedra.

Definition: A class A tetrahedron is called a class Al tetrahedron if it has an internal point as its vertex.
Any other class A tetrahedron is calléd class A2 tetrahedron. Similarly, we define class Bl and class B2
tetrahedra.)

* Assuming a lower bound on the input dihedral angles, we can prove that .“most” of the tetrahedra produced
by 3D-TRI cannot be in category(i) or category(ii). Assuming both lower and upper bounds on the
input dihedral angles, we can prove that all tetrahedra produced by 3D-TRI cannot be in category(i) or

category(ii). We show that all edges in the final triangulation has a lower bound on their lengths if we
assume a lower bound on the input dihedral angles. Intuitively, this is true because all points added by 2D-
TRI and 3D-TRI cannot be too close to any other existing point. Next we show that all tetrahedra have a
circumscribing sphere that is not too large. Intuitively, a tetrahedron with good circumcenter cannot have
a large circumscribing sphere because our algorithm could add its circumcenter. A class A tetrahedron
cannot have a large circumscribing sphere because our algorithm would add a point to a boundary facet
between the tetrahedron and its circumcenter. Finally, the circumscribing sphere of a class B tetrahedron
is broken up by a point added to a boundary edge. Although we cannot avoid category(iii) tetrahedra,
occurrences of them in practice are rare, as stated in [4]. Finally, in most of the cases these category(iii)
. tetrahedra can often be avoided by introducing a suitable point inside the circumscribing sphere. See [4].

Class A tetrahedroa

........

some
........................
.e.

boundary facet

Figure 5: class A tetrahedron

Lemma 4.1: Assuming a lower bound on the input dihedral angles, no tetrahedron with good circumcenter
can be in category(i) or category(ii). . '

Proof: All tetrahedra in the final triangulation having good circumcenters must have circumscribing
spheres with radii less than or equal to 2r, because otherwise these circumcenters would have been intro-
duced as new points. Hence, all these tetrahedra have edges of length less than or equal to 4r. By Lemma

3.3, all edges have lengths greater than min(r, 4r sin le) where 6,, is the minimum input dihedral angle.
Thus, x for these tetrahedra can be at most max(4,7_7—:r¢_F). Assuming a lower bound on the input

dibedral angles, we get x for these tetrahedra to be of O(1) which violates the condition for category(i)
tetrahedra. Further, w for these tetrahedra can be at most max(2, m) = O(1) which prohibits them

" to be in category(ii). &
Lemma 4.2: Assuming a lower bound on the input dihedral angles, no class Al tetrahedron can be in

category(i) or category(ii); assuming both lower and upper bounds on the input dihedral angles, no class
A2 tetrahedron can be in category(i) or category(ii). .)

9

class B tetrahedron

Figure 6: class B tetrahedron

Proof: Let t be a class A tetrahedron with the circumscribing sphere s. By the definition of class A
tetrahedron, there exists a boundary facet f such that the foot of the perpendicular dropped from the
center of s on the supporting plane of f lies inside f. Let ¢ be the circle of intersection of s with the
supporting plane of f. Let p be the vertex of ¢ that is farthest from f and has a distance of d from it. If ¢ is
a class Al tetrahedron, d > r. If t is a class A2 tetrahedron, d > 34£r sin 0,, where all input dihedral angles
are in between 6, and 180° — @,,,. The center of the circle ¢ lies inside f. Thus, the center must lie inside
the triangulation T of f produced by the algorithm £D-TRI. Further, ¢ must be an empty circle since s
does not include any point of f inside it. See figure 5. By property 2, all triangles of T have circumscribing
circles of radii less than or equal to r. Hence, according to Lemma 2.1, ¢ must have a radius less than or
equal to r. The vertex p lying on s must be at a distance of at least d from cl(c). Further, the vertex p and
the center of s lie on the opposite sides of cl(c). This implies cl(c) is at a distance of at least d from its
‘nearest pole. Thus, according to Lemma 2.2, s must have a radius less than or equal to kyr where k; = 1if
tis a class Al tetrahedron and k; = (ﬁﬂ-ﬂ + 7-—) if t is a class A2 tetrahedron. This puts an upper
bound of 2k;r on the lengths of the edges of t. By Lemma 3.3, all edges of ¢ are greater than k3r where
k2 = O(1) if we assume a lower bound on the input dihedral angles. Hence, if ¢ is a class Al tetrahedron,

x for t are O(1) assuming a lower bound on the input dihedral angles. If ¢ is a class A2 tetrahedron, w,
x for ¢ are O(1) assuming both lower and upper bounds on the input dihedral angles (A lower bound on
0m puts lower and upper bounds on the dihedral angles between adjacent boundary facets). This prohibits
it to be in category(i) or category(ii). & :

Lemma 4.3: Let t be a class B tetrahedron with the circumscribing sphere s. There must exist two

boundary facets f1, f; intersected by s with the following criterion:

Let ¢ be any circle drawn on s where cl(c) is nqrmal to the line where f;, f, meet. The feet of the
perpendiculars dropped from the center of ¢ on the supporting planes P, and P; of f; and f; lie outside

the line segments ¢l(c) N fi, cl(e) N fa.

10

e(gnt,y

Case & Case b

Figure 7: Lemma 4.3.

Proof: Consider a boundary facet f; that has the convex hull and the center of s on opposite sides. Since
t has a bad circumcenter, such a facet always exists. Consider any other facet f; sharing an edge with
f1 that has been intersected by s. Drop perpendiculars from the center of s on the supporting planes of
fi and fo. The feet of these perpendiculars lie outside f;, f2 since ¢ is a class B tetrahedron. Consider
the great circle ¢/ of s whose supporting plane is normal to the edge shared by f; and f;. The feet of the
perpendiculars dropped from the center of s on the supporting planes P; and P; of f; and f; cannot lie on
the line segments cl(¢’) N f; and cl(¢/) N fy. Two different cases are shown in figure 7. This immediately
implies that the condition stated in Lemma 4.3 is true for any circle ¢ on s that has a supporting plane
parallel to that of ¢’.&

Lemma 4.4: Assuming a lower bound on the input dihedral angles, no class Bl tetrahedron can be in .
category(i) or category(ii); assuming both lower and upper bounds on the input dihedral angles, no class
B2 tetrahedron can be in category(i) or category(ii). ‘

. Proof: Let t be a class B tetrahedron. Let the circumscribing sphere s of t intersect the boundary edge e
shared by the facets f; and f; which satisfy the criterion as stated in Lemma 4.3. The endpoints of the
edge segment e, on e which is intersected by s cannot be inside s. Let w, y be the points where s intersects
en,. Further, let a and R denote the center and radius of s respectively.

Case(i): The tetrahedron t has a vertex p that lies neither on the facet f; nor on the facet f;. Note that
a class B1 tetrahedron always satisfies this condition. Consider the circle ¢ on s with ¢l(c) perpendicular
to e, and passing through p. Let R’ be the radius of ¢. Join the center b of ¢ with the point u where
cl(c) meets e,. Extend the line bu beyond u until it intersects ¢ at v as shown in figure 8. Let |bu| = z.
Certainly, |uv] = R’ — z. Let d denote the minimum distance of p from the two facets f; and f;. There
are two subcases as shown in figure 8. In subcase i(a), the center of ¢ lies in the sides of the planes
containing f;, f2 which are opposite to those containing the convex hull. It is not difficult to see that in
this subcase d < |uv| = R’ ~ z. Since, R > R/, we have d < R~ z. To estimate a lower bound on z, drop a

11

[(I E
deInt, A I

(d)

(a) ‘
Case i(a) c..._ im

Figure 8: Lemma 4.4, case (i).

perpendicular az from the center a of s on e,. This endicular has the same length as bu. Consider the
triangle Aawy. We observe that |az| = \/ R3 - I%ZE Since e, can have a length of at most 1.5r, we have

z = |az] > /R? - %’. Thus,d < R —/R? - %. We already know d > r if t is-a class Bl tetrahedron
and d 2> 4r 8in by, if t is a class B2 tetrahedron (follows from Lemma 3.4). Hence for class B1 tetrahedra,

’ 9r?
< - AR e el
r < R R T

25
- 32’

Vir 2972
—3 finbm < R‘\/R - I6

78in?0,, +9'r
8v7sinb,

and for class B2 tetrahedra,

Now, consider the subcase §(3). In this subcase, one of the supporting planes of f;.and f; has the center
of ¢ and the convex hull on its opposite sides and the other one has them on same side. Without loss of
generality, assume that the supporting plane of f; has them on same side as shown in figure 8(b). The
line segments cl(c) N f; and el(c) N f, make angles less than equal t0.90° with uv. Otherwise, f;, f2 do
not satisfy the criterion as stated in Lemma 4.3. In this subcase, we have d < R — z since the distance of

12

(

v from the supporting plane of f; is greater than that of p from the same plane. Thus, in both subcases
i(a) and (), we have R < ¥ if ¢ is a class B1 tetrahedron, and
_ -,
R< 7 sin 0.,,. + 91-
8v/7 sin O,
if t is a class B2 tetrahedron.

cc)nt,

() (b)
Case ii(a) Case ii(b)

Figure 9: Lemma 4.4, case (ii).

Case(ii): All vertices of the tetrahedron ¢ lie either on f; or on f;. This immediately implies that one of
the vertices of t lies on f; but not on f; and another on f; but not on f;. Note that ¢ cannot be a class

_ B1 tetrahedron in this case. Consider the vertex p, lying on f; but not on f;. Let ¢ be the circle passing

through p; with cl(c) being perpendicular to e,. As in the previous case, let b be the center of ¢, u be the
foot of the perpendicular dropped from b to en, and v be the point of intersection of the line bu and the
circle ¢ such that u is in between b and v. Again, we have two subcases as shown in Figure 9. Consider
the subcase ii(a). We have |pu] < J“'—:'-’}l-, where 6, is the angle between p;u and uv. We proved in lemma
3.2 that the distance of any point on a boundary facet that does not lie on any of its edges is at least 4r
away from any of its edges. Thus, |pyu| > 4’-. Hence, 41' Swr < %‘f;, where z = |bu|. Similarly,
considering the vertex p; of ¢ lying on f; but not on f;, we can prove that 41‘ < %&, where 85 is the
angle between cl(c)N f2-and uv. The angle § = 6, + 6; is the dihedral angle between f; and f;. Since one
of 8,0, is less than or equal to 90° and the cos function decreases monotonically from 0° to 90°, we have
'{j—r < %"—i By the same argument as in case(i), we get z > \/Rz ~ Zr2. Hence,

. R—\[R3 - &r2
AP 167

41'_ cos%

13

B < 2?2+ Erlcos? §
- 4r cos g—
Assuming an upper bound on 8 < (180° — 8,,) we have,
: 2 6m
R< 7sin T+ 9

8/7sin Qg* T

Now, consider the subcase ii(b). The angles between uv and the line segments cl(c)N f; and cl(c) N f2 are
less than 90° since otherwise f, f, violate the condition of Lemma 4.3. Without loss of generality. assume
that 6, < 6,. The distance between v and cl(c) N f; is greater than that between py:and el(c) N f2. This
implies d < R — z giving the same upper bound on R as we derived in case(i).

Thus, all class B1 tetrahedra have a circumscribing sphere of radius k;r where k3 = O(1). Assuming
a lower bound on the input dihedral angles, all edges have lengths k;r where k3 =:0(1) (recall Lemma
3.3). This makes w and x of these tetrahedra to be O(1) and thus prohibits them to be in-category(i) or
category(ii). Class B2 tetrahedra have a circumscribing sphere of radius k,r where k;.= O(1) if we assume
both lower and upper bounds on the input dihedral angles. The fact that they cannot be in category(i) or
category(ii) with this assumption is immediate.d

The following’ Theorem is immediated from Lemmas 4.1, 4.2, and 4.4.

Theorem 4.1: Algorithm $D-TRI triangulates the convex hull of a three dimensional point set with the
following properties: (i) Tetrahedra with at least one internal vertex can not be of type(i) through: type(iv)
if we assume a lower bound on the input dihedral angles, (ii) rest of the tetrahedra.cannot be of type(i)
through type(iv) if we assume both lower and upper bounds on the input dihedral angles.

5 Complexity

Algorithm $D-TRI produces tetrahedra whose edges are greater than l,,.,-,. as defined in Lemma 3.3. The
circumscribing sphere of each such tetrahedron must have a volume of Q(i3;,). Let V be the volume of the
convex hull of the given point set. Let n and n, be the number of points present in the input and output
respectively. Certainly, n, = O(F_) Consider a triangulation T of the input point set where |T'| = O(n).
Such a triangulation is always possxble as follows. Compute the convex hull of the input point set. A linear
triangulation of the convex hull is always possible. Insert the rest of the point one at a time by joining
it to the four corners of the tetrahedron containing it. This guarantees a linear triangulation of the input
point set. See [11] for details. Let L be the largest edge length in 7. All tetrahedra in T have a volume
less than L3. Thus, V = O(nL3). This gives an upper bound of O(n;@-) on n,. Putting A =-T.I..-T' we
have n, = O(nA3). The quantity A captures the notion of how badly distributed the input point set is.
The basis of $D-TRI is the incremental Delaunay triangulation algorithm. We use Watson’s algorithm
(18] for this purpose. In this algorithm, all tetrahedra whose circumscribing spheres: contain the:inserted
point inside are removed. The new point is connected to the triangles present in the boundary of the union
of all removed tetrahedra to produce new triangulation. In $D-TRI we introduce the circumcenters of
tetrahedra that satisfy specific properties as new points. We maintain a linked list of all such tetrahedra
throughout the algorithm. In the internal structure of each tetrahedron, we maintain a field to indicate
whether it is still present in the current triangulation or not. We can pick a tetrahedron ¢ whose circum-
center is to be added by scanning the linked list of tetrahedra. During this scanning, the tetrahedra that
are not present in the current triangulation are also encountered. They are, however, scanned only once

14

and thus contribute O(ng) to the overall complexity. We can determine all tetrahedra to be removed and
to be added in O(n,) time once we have chosen t. This is because there are at most O(n,) tetrahedra to
be removed and added for each insertion and they form a connected component together. marking the
removed tetrahedra and updating the list for added tetrahedra takes O(n,) time. Thus, inserting all valid
circumcenters takes O(n2) time. Algorithm 2D-TRI cannot take more than O(n2) time [8]. Hence, $D-TRI
takes O(n2) = O(n2A®) time and O(n,) = O(nA3) space.

6 Implementation Issues

 We consider the problem of numerical errors under finite precision arithmetic while implementing the
algorithm $D-TRI The basic numerical computation in the incremental Delaunay triangulation is the
insphere test. This test tells us whether a point is inside the circumscribing sphere of a tetrahedron
or not. In presence of numerical error this test may provide inaccurate answers. This, in turn, may
cause the program to fail. To overcome this problem, we use certain topological properties of the 3D
triangulations to guide the answers of the insphere tests. The four necessary properties are (i):for each
vertex v, the subgraph spanned by the set V of vertices adjacent to v (v ¢ V') has a planar embedding
with all triangular faces except possibly the outer face, (ii) each triangular face is incident on at most two
tetrahedra, (iii) Orientations of the faces in tetrahedra are such that a face incident on two tetrahedra has
opposite orientations on them, (iii) the boundary of the triangulation is connected and is homeomorphic
to a sphere. Of course, these properties are not sufficient to guarantee a valid triangulation, however, they
are useful to reduce the inconsistency in numerical tests. In [17] we give an algorithm for 3D Delaunay
triangulation that never fails and the output always satisfies the above four conditions.

Another difficulty that arises under finite precision arithmetic is the following. With numerical errors,
the computed points on the boundary facets may not be exactly coplanar, and without proper care they may
form very thin tetrahedra. While constructing the triangulation of the point set obtained by triangulating
all boundary facets, we take into account the topological constraint that the points generated on a boundary
facet are coplanar. We have implemented our good triangulation algorithm on SUN workstationsin AKCL.
An example where a convex polytope is triangulated is shown in figure 10. For clarity we show only the
triangulations on the facets. The original polytope had 8 factes. The final number of facets produced is
170. .

7 Conclusion

The good triangulation algorithm of convex polyhedra together with the convex decomposition algorithm of
nonconvex polyhedra [9] gives a method for good triangulations of nonconvex polyhedra as well. However, -
- this method has the limitation that the convex polyhedra produced by the convex decomposition algorithm
may be very bad in shape. An algorithm that achieves good triangulations directly of nonconvex polyhedra
is more practical.

Though, in our algorithm we avoided type(i) through type(iv) tetrahedra, we could not avoid some
special type of slivers i.e., type(v) tetrahedra. Our immediate goal is to find a new method or modify
this algorithm so that we can avoid these slivers too. The difficulty with the avoidance of these slivers
comes from the fact that an upper bound on the radius of circumscribing sphere and a lower bound on
lengths of the edges of a tetrahedron do not prohibit it to be a type(v) tetrahedron. A lower bound
on the radius of the inscribing sphere together with an upper bound on the radius of the circumscribing
sphere of a tetrahedron avoids such tetrahedra. But, currently we are unable to achieve both these bounds
simultaneously. '

15

16

Acknowledgements: We are thankful to two referees for their valuable comments. A preliminary version
of this paper appeared in the Proc. of the Symposium on Solid Modeling Foundations and CAD/CAM
Applications, 1991, Tezas, pp. 431-441.

References

[1] D. Avis and H. ELGindy, (1986), “Triangulating Simplicial Point Sets in Space”, Proc. 2nd. Ann.
ACM Symposium on Computational Geometry, pp. 133-141.

[2] Babuska and A.K.Aziz, (1976), “On the Angle Condition in the Finite Element Method”, SIAM
Numerical Analysis, 13, 214-226.

[3] B. S. Baker, E. Grosse, and C.S. Rafferty, (1988), “Nonobtuse Triangulation of Polygons”, Discrete
and Computational Geometry, 3, 147-168.

[4] T.J. Baker, (1989), “Automatic Mesh Generation for Complex Three-Dimensional Regions Using a
Constrained Delaunay Triangulation”, Engineering with Computers, 5, 161-175.

[5] M. Bern, D. Eppstein, and J. Gilbert, (1990), “Provably Good Mesh Generation”, Proc. 31st Annual
IEEE Symposium on Foundations of Computer Science, pp. 231-241.

(6] B. Chazelle and L. Palios, (1990), “Triangulating a Non-convex Polytope”, Discrete and Computational
Geometry, 5, pp. 505-526.

[7] L. P. Chew, (1989), “Guaranteed-Quality Triangular Meshes”, Technical Repbrt TR-89-983, Cornell
University.

[8] T. Dey, (1990), “Good Triangulations in Plane”, Proc. 6f Second Canadian Conference in Computa-
tional Geomeiry, 102-106.

[9] T. Dey, (1991), “Triangulation and CSG Representation of Polyhedra with Arbitrary Genus”, to
appear in the Proc. of 7th Annual Symposium on Computational Geometry, to be held at North
Conway, New Hampshire, 10-12 June, 1991.

[10] H. Edelsbrunner,(1989), “Spatial Triangulations with Dihedral Angle Conditions”, Proc of Intl. Work-
shop on Discrete Algorithms and Complezity, Fukuoka, Japan, 83-89.

[11] H. Edelsbrunner, F.P. Preparata and D.B. West, (1986), “Tetrahedrizing Point Sets in Three Dimen-
sions”, Tech. Report UIUCDCS-R-86-1310.

[12] 1. Fried, (1972), “Condition of Finite Element Matrices Generated from Nonuniform Meshes”, AIAA
J., 10, pp. 219-221.

[13] B. Joe., (1989), “Three-dimensional Triangulations from Local Transformations”, SIAM J. Sci. Stat.
Comput., 10, pp. 718-741.

[14] S.A. Mitchell, and S.A. Vavasis, (1990), “Quality Mesh Generation in Three Dimensions”, unpublished
manuscript. -

[15] F.P. Preparata, and M.I. Shamos, (1986), “Computational Geometry, An Introduction”, Springer-
Verlag.

17

[16) D.T. Lee, and A.K. Lin,(1986), ”Generalized Delaunay tria..ngu.lition for planar graphs”, Discrete and
Computational Geometry, 1, 201-217.

[17] T. Dey, K. Sugihara, and C. Bajaj, (1991), “Triangulations in Three Dimensions with Pinite Precision
Arithmetic”, in preparation.

[18] D. F. Watson, (1981), “Computing the n-Dimensional Tesselation with Applications to Voronoi Poly-
topes”, The Computer Journal, 24, pp. 167-172.

18

