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1 Introduction

The main purpose behind decomposing an object into simpler components is to simplify a problem for
complex objects into a number of subproblems dealing with simple objects. In particular, the problem of
partitioning a three dimensional polyhedron into simpler parts arises in mesh generation for finite element
methods, CAD/CAM applications, computer graphics, motion planning and solid modeling. Though
several decomposition problems have been widely researched in two dimensions, very few results exist for
their three dimensional counterparts. Two such problems, triangulation and CSG (Constructive Solid
Geometry) decomposition of polyhedra are addressed in this paper. We study the complexity of the plane
insertion paradigm when applied for these two problems. In this paradigm a polyhedron is sliced with
planes successively that resolve the reflex edges called notches ! [3]. Chazelle used this paradigm to give
an O(n7?) time and O(nr?) space algorithm for decomposing a polyhedron with n edges and r notches
into convex pieces.

In triangulation we seek for a simplicial decomposition of the given polyhedron that forms a simplicial
complex. This means that any two tetrahedra in the triangulation either do not meet or meet along a full
facet, or a full edge, or at a vertex. Sometimes-this type of simplicial decomposition is called face-to-face

-triangulation. In three dimensions, there are polyhedra that are not triangulable without additional points
called Steiner points. Moreover, as shown by Rupert and Seidel [15], the general problem of determining
whether a polyhedron is triangulable without Steiner points or not is NP-hard. Due to these constraints
we consider the problem of triangulation with Steiner points. Chazelle showed that (r?) convex pieces
are necessary for decomposing certain class of polyhedra into convex pieces. This suggests an (r?) worst
case lower bound on the output size of the triangulations of polyhedra. In [4], Chazelle and Palios have
used a technique different from plane insertion to give an O((n + r?)log+) time algorithm that produces
O(n + r?) size triangulation for simple polyhedra. These polyhedra are homeomorphic to spheres i.e., they
cannot have holes (genus 0) and shells (internal voids) and are manifold 2. Moreover, this method does not
produce a triangulation that is a simplicial complex. However, this method can be modified to produce a -
simplicial complex with some postprocessing. This tends to produce skinny tetrahedra.

In this paper we study and analyze the plane insertion technique for several reasons. First of all it is
simple. It produces face-to-face triangulations of polyhedra with arbitrary genus and shells in a very straight
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these are the edges where the internal dihedral angle subtended by two incident facets is greater than 180°

2each point on the surface of the polyhedron has an e-neighborhood that is homeomorphic to a 2d-ball or haliball



forward manner. Secondly, it is less susceptible to numerical errors that occurs during computations witk
finite precision arithmetic. If the planes are chosen from those that subtend the facets adjacent to the
reflex edges, one can use the original plane equations while computing the coordinates of the new vertices.
This, in effect, reduces the chance of error propagation in numerical computations. Thirdly, plane insertion
technique can be extended to higher dimensions in a very natural way. We show that an O(nr + r3) size
triangulation for polyhedra can be computed in O(nr? + r*logr) time using plane insertions.

Another motivation to study the plane insertion paradigm is its use in Halfspace CSG (HCSG) repre-
sentation of polyhedra. In this representation a polyhedron is expressed in terms of the two regularized
boolean operations, namely, inetersections and unions, that operate on the closed halfspaces supported
by the facets of the polyhedron. Let N(p) represent an e-neighborhood of a point p inside a facet f of a
polyhedron S. Let ri(S) represent the relative interior of S. The literal f* represents the closed halfspace
supported by the facet f such that N(p) N ri(S)N f* is nonempty. The literal f~ represents the other
closed halfspace. Peterson [14] considered the HCSG representations that use only the closed halfspaces
f*’s. This type of CSG expressions are called Peterson-style CSG formulae. Although it is possible to find
such formulae for polygons in 2D, it is not possible to find such formulae for polyhedra in 3D in general [6].
Hence, we allow both closed halfspaces f*’s and f~’s in the HCSG representations of polyhedra. In 2D,
Dobkin, Guibas, Hershberger, and Snoyeyink [6] gave an O(nlogn) algorithm to compute Peterson-style
CSG formulae of size O(n) for polygons with n vertices. They observed that HCSG formulae of size O(7°)
is trivial to obtain for polyhedra with p facets. In [13], Paterson and Yao gave an O(p®) time algorithm to
compute O(p?) size HCSG formulae for polyhedra with convex facets that have constant size. They used
the concept of Binary Space Partition (BSP) trees [10]. We show that the plane insertion paradigm gives
an O(pi) size HCSG formulae for polyhedra that allow nonconvex facets of arbitrary size. This algorithm

runs in O( plf) time. Proving a nontrivial lower bound on the size of HCSG formulae for polyhedra is an
open question. We show an Q(p?) lower bound for HCSG formulae that are in Conjunctive Normal Form(.
(CNF) or in Disjunctive Normal Form (DNF).

2 Plane Insertions

2.1 Notations

Nonconvexity in a manifold polyhedron S is a result of the presence of notches. All notches of a manifold
polyhedron can be removed by repeatedly cutting and splitting it with planes that resolve these notches.
If an edge g with f;, f; as its incident facets is a notch, a plane P, that contains the notch g and subtends
an inner-angle greater than 4 — 180° with both f; and f, is a valid plane that resolves the notch g. The
chosen plane P, is also called the notch plane of g. Clearly, for each notch g, there exist infinite choices for
P,. A notch plane P, may intersect other notches, thereby producing subnotches. See Figure 1.

2.2 Sketch of the Algorithm .

Given a polyhedron § with n edges of which r are notches, a notch of S is removed by cutting it with a
notch plane. This notch plane intersects possibly other notches to create subnotches of those notches. As
the notch elimination process proceeds, the number of polyhedral pieces increases in general. At any generic
step of the algorithm-all subnotches of a notch, possibly present in different polyhedra, are eliminated by
a single notch plane. This process is continued until there is no more notch.

Let S be a polyhedron with a notch g. The intersection of P, with the polyhedron S is a set of isolated
points, segments, and polygons, possibly with holes. We refer to this intersection as cross-sectional map
and denote it as GP,. The unique polygon Q, in GF, containing the notch on its boundary is called the
cut. At any generic step of the plane insertion process, let Sy, 53, ..., Sk be the subpolyhedra containing
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Figure 1: A notch and its notch plane, cross sectional map, cut.

the subnotches g1, g2, ..., g% of a notch g in S. The notch plane P, passes through §,, 5, ..., Sk and possibly
other subpolyhedra Si,1, Sk42,-.., 5. We distinguish between two types of slicings with the notch plane
P,. (i) We can split S5y, S2,...,S; along the cross sectional maps GP,,,GP,,,...,GP,,. Effectively, in this
case we slice all subpolyhedra completely through which P, passes. We call each of this type of slicing
a complete cut. (ii) We can split only S;, Sy, ..., Sk along only the cuts Qg ,Qg;,..-Qg,- We call each of
this type of slicing a bounded cut. Note that, bounded cuts are sufficient to remove notches and they
may not separate the polyhedron into two different pieces. See Figure 1. In this case, two distinct facets
corresponding to Q,,’s are created that overlap geometrically.
We obtain the following Lemma from [2].

Lemma 2.1. A manifold polyhedron S having m edges of which r are notches can be partitioned with
a notch plane P, in O(m + ylogr) time and in O(m) space where y is the number of edges on the cross
sectional map GF,.&

2.3 A 2D Subproblem

Now we focus our attention to a 2D subproblem which is essential for the analysis of bounded cuts. Let L
be a set of r lines in 2D that forms an arrangement A. Let E be a set of edges removed from A such that
all cells in A — E are convex. Let us denote the new arrangement A — E as A~. Let C be a set of cells
in A~ intersected by a line I. The total number of edges in the cells in C determines the zone complexity
z(l,A=,r)of lin A~. Of course, the contribution of a line in any single cell is counted only once although
it may have several consecutive segments on it in that cell. Let ¢(r) = maz{z(l, A~,r)| l is any line in any
such arrangement A~}.

Lemma 2.2: ¢(r) = O(r%).

Proof: Form a bipartite graph G = (V4 UV;, E) where each node in V] corresponds to a cell in C and each
node in V, corresponds to a line in L. An edge e € E connects two vertices v; € V;, v € V3 if the line
corresponding to v, contributes an edge to the cell corresponding to v;. Observe that any four lines in L
can contribute simultaneously to at most two cells in C since they are convex. This means that G cannot
have K, 5 as a subgraph. Thus using the forbidden graph theory [12], G can have at most O(mr% +r)

edges, where |C| = m. Since |C| < r + 1, we have ¢(r) = O(|E|) = O(rg'). é
Suppose a polyhedron § with n edges and r notches has been sliced with a series of bounded cuts. Let 5,
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Figure 2: Zones of a line and cuts.

52, ..., Sk be the polyhedra in the current decomposition, where each S; contains a subnotch g; of a notch
gin S. Let z; be the number of edges on Q,,.

Lemma 2.3: z = TX_ 2, = O(n + ¢(r)).

Proof: Consider the cut Q, produced by the intersection of § with P,. The region in Q, is divided into
smaller cells by the segments of notch lines produced by the intersection of other notch planes with F.
We focus on the cells Q,,,Q,,, ..., @, adjacent to the subnotches g;, g7, ..., gx of the notch g. ;

Consider the set of notch line segments separately that divides Q,. These line segments and the line
L, corresponding to the notch g produce an arrangement T of line segments on the notch plane P,. Notice
that the arrangement T can be thought of as an arrangement A~ for some line arrangement A. The cells
adjacent to the line L, in this arrangement form the zone Z, of L,. Let the set of vertices and edges
of Z, be denoted as V; and E, respectively. At this point we stress the fact that in each single cell of
Z, consecutive segments of a line form a single edge. Actually one can verify that this notion of edges is
consistent with our notion of bounded cuts. Overlaying @, on T produces Q,,,Qg,, ..., @q,- See Figure 2.
These are the cells in T'U Q, that are adjacent to the line L,. Let V] and E; denote the sets of vertices
and edges respectively in Q;,,Qg,, ..., Q.. The vertices in V] can be partitioned into three disjoint sets,
namely, Ty, T, T3. The set T} consists of vertices formed by the intersections of two notch line segments;
T consists of vertices of Q,, and T3 consists of vertices formed by the intersections of notch line segments
with the edges of Q,. Certainly, |T1| = O(q(r)) since overlaying Q; on Z, cannot introduce more vertices
in Ty. If Q, has u’ vertices, |T3| < v'. '

To count the number of vertices in T3, we first assume that Q, does not have any hole. Consider an
edge e in E; that contributes one or more edge segments to E; as a result of intersections with Q,. If e
contributes y edges to Z,, it hides at least y — 2 vertices of Q, from L,. Further, each vertex of Q, is
hidden from L, by a unique segment that is closest to L,. Thus, |T3| < |T2| + 2|Th| = O(v’ + ¢(r))-

_In the case when Q, has holes, we can prove |T3| = O(u' + ¢(r)) by creating a polygon without hole
from Q,. See [2] for details.

Putting all these together, we have |V]| = |Ti}+ |T3| + |T3] = O(v’ + ¢(r)) = O(n + ¢(r)). Since
Qg1+ Qg s Qg form a planar graph, we have z = |3 = O(IV]) = O(n + ()4 -



2.4 Complexity of Bounded Cuts

As observed earlier, all notches of a polyhedron S can be eliminated with a series of bounded cuts. Actually,
if S has r notches, bounded cuts with r notch planes are sufficient to remove all notches. All polyhedra
in the final decomposition after all these bounded cuts are thus convex. The Lemma below estimates the
~ number of edges in the final decomposition.

Lemma 2.4: The total number of edges in the final decomposition of the polyhedron § with r bounded
cuts is O(nr + rq(r)). :

Proof: Edges in the final decomposition consist of newly generated edges by the bounded cuts, and the
edges of S that are not intersected by any notch plane. By Lemma 2.3, a single bounded cut generates
O(n + g(r)) edges. Thus, r bounded cuts generate O(nr + rg(r)) new edges. Hence, the total number of
edges in the final decomposition is O(n + nr + rq(r)) = O(nr + rg(r)).&

Lemma 2.4 gives an upper bound on the total number of edges present in all subpolyhedra encountered
at any generic step of the plane insertion process. However, for our analysis we also need to estimate the
number of edges present on the cross sectional maps produced by a notch plane. Note that this number
is not same as the number of edges in all cuts produced by the notch plane. Let §;, S3,...,5k be the
polyhedra in the current decomposition, where each §; contains a subnotch g; of a notch g. Let y; be the
total number of edges on the cross sectional map in S;.

Lemma 2.5: y = Y5, 4 = O(n + r?). .
Proof: Consider the cells in U5, GP,; created by the notch line segments and the edges of GF; on F,.
The vertices on Uf-‘.__lGPg, can be partitioned into three sets, viz., Ty, T2 and Ts. The set T consists of
vertices that are created by intersections two notch lines. The set T consists of vertices of GP, and the
set T3 consists of vertices that are created by intersections of edges of GFP, and notch lines . Since there
are at most r notch lines , |73 = O(r?). Certainly, |T2| = O(n). By a Lemma in (2], each notch line can
intersect GP, in at most O(r) segments since GF, has at most r polygons containing no more than r reflex
vertices all together. This gives |T3| = O(r2). Thus,

T + [T2] + T3]

W
o
]

= O(n+r)).é

Theorem 2.1: A manifold polyhedron S, possibly with holes and shells and having r notches and n edges
can be decomposed into O(r?) convex polyhedra in O(nr? + r¥) time and O(nr + r$) space.

Proof: Since any notch can have at most r — 1 subnotches during the notch elimination process, there
can be at most r — 1 subpolyhedra involved per bounded cut. Since each subpolyhedron is split into at
most two pieces, each bounded cut produces at most O(r) new polyhedra. Thus r bounded cuts produce
at most O(r?) convex pieces in the final decomposition.

At a generic instance of the algorithm let 53, S2,..., Sk be k distinct (nonconvex) polyhedra in the
current decomposition, where each S; contains a subnotch g; of a notch g that is going to be removed. Let
S; have m; edges of which r; are notches. Let y; be the number of edges on GF, of §; and y = PRLIETS

Applying Lemma 2.1, removal of a notch g can be carried out-in O(XE.(m; + yilogr;) time. By
Lemma 2.4 -5, m; = O(nr 4 rg(r)), and by Lemma 2.5 y = O(n + r?); we have O(Xr  (mi+yilogry) =
O(nr + rg(r) + r?logr). Thus to remove r notches we need O(nr? + r?q(r) + r3logr) time. Using the
bound on ¢(r) in Lemma 2.2, we get an O(nr? + r§) time bound. By Lemma 2.4 the space complexity is

O(nr + rq(r)) = (nr + 13).8



Improvement of Complexity: Recently, Hershberger and Snoyeyink [11] proved that ¢(r) = O(rg') '
Applying this result the plane msertlons when used as bounded cuts decompose a nonconvex polyhedron
into convex pieces in O(nr? +r £l ) time and in O(nr + r¥) space.

3 Triangulation

We observe that triangulating each convex piece as produced by bounded cuts does not yield a triangulation
of the original polyhedron §. Two facets created corresponding to the cut Q@ may be decomposed differently
later by other notch planes. Thus, the triangulation of the portions where these facets touch each other
may not match. This produces a triangulation of S that is not a simplicial complex. We can overcome this
problem if we use complete cuts. For such plane insertions, we cannot use Lemma 2.2 to determine the
space complexity since the new edges created by complete cuts are not restricted to the regions adjacent
to the notch g. In fact, in this case, we have to consider all the edges inside and on U}, GP,; where P,
passes through Sj, Sz, ..., S¢. The natural expectation is that the complete cuts increase the time and space
complexity considerably. In the following two Lemmas we show that the time and space complexities do
not change much due to complete cuts.

Lemma 3.1: If a polyhedron § is decomposed by complete cuts, the number of edges in the final decom-
position is O(nr + r3).
Proof: By a similar argument of Lemma 2.5, the number of edges on and inside | Ji_; GP,, is only O(n+r?).

This implies that one complete cut generates O(n+r?) new edges. Thus, r complete cuts produce O(nr +r3)
new edges.dp

If we use the similar analysis of Theorem 2.1 for complete cuts, we get O(TE, m;) = O(nr + 73) by
Lemma 3.1. This gives a straightforward O(nr? + r4) time complexity for decompositions with complete
cuts. However, the following Lemma prevents this increase in time complexity.

Lemma 3.2: If a polyhedron § is decomposed by complete cuts, the total number of edges in subpolyhedra
51, 83, ..., S¢ through which a complete cut passes is only O(nr).

Proof: Consider the complete cut corresponding to the plane P,. let R be the set of planes used before
P, for other complete cuts. The planes in RU P, form an arrangement A of planes in three dimensions.
The cells adjacent to the plane P, in A constitute the zone Z; of F,. By well known zone theorem [8], the
number of edges in Z, is O(q?) 1f there ‘are ¢ planes in the arrangement. Let A’ be the new arrangement
obtained by superimposing the boundary facets of § on Z,. Consider the cells adjacent to P, that constitute
the zone Z; in A’. Subpolyhedra through which P, passes consist of cells that are members of Z,. Thus,
the number of edges in Z] gives an upper bound on the number of edges of subpolyhedra through whxch P,
passes. To count the numbex of edges in Z;, we carefully analyze the effect of superimposing p boundary
facets of S on Z,. '

Let f; be a facet of S that contributes to the boundaries of some cells in Z,. Consider the lines of
intersections between f; and the facets of Z;. These lines together with the line segments supporting the
edges of f; form an arrangement of line segments on the plane supporting f;. Let B; denote the facets in
this arrangement that are inside f;. Further, let B! denote the set of facets in B; that are adjacent to line
segments supporting the edges of f;; B! denote the rest of the facets in B;. See Figure 3. In the following,
by V(F) and E(F) we denote the number of vertices and edges respectively in a set of facets F.

Let F; denote the set of facets in B that do not have any edge formed by the intersection of P,
with f;; F! denote the rest of the fa.cets in Bf. The facets in F; are created by slicing the cells in Z,
completely by f; such that f; does not intersect P, inside those cells. Consider the facets in F; sepa.rately
They do not intersect F, or have edges inside cells of Z,. For each vertex of Z,, there is at most one
facet in F; that hides the vertex from Py and is closest to Fy. Therefore the number of facets in F; that



Figure 3: The facets in F; are hatched with dotted lines; facets in F! are hatched with solid lines; facets in
B are not hatched.

contribute to Z; is O(g?). Each edge of Z; is cut by at most one of the facets in F;, and the vertices of

these facets are produced only by intersections of edges in Z, with them. Therefore the total complexity of

these facets is 37, E(F;) = O(g?). All other facets in BY (if any) are adjacent to the line of intersection

of f; with P,. Thus, the facets in F; are members of the zone of this line in an arrangement of O(q)

lines. Since there can be at most p lines of intersection between the planes supporting the facets of

S and P, we get YF . E(F!) = O(pq) by applying the zone theorem of line arrangement. This gives
_, E(BY) = 0o, B(F) + E(F)) = 0(pg + ¢*).

To estimate the number of edges in the facets of B}, consider the arrangement of q lines that represent
the intersections between the plane of f; and the planesin R. Now look at the restriction of this arrangement
to the face f;. The complexity of the zone of an edge in this arrangement is O(g+|fi|) (cf. the Combination
Lemma of [7]). Summing over all facets f; gives a bound of O(ng + n) = O(ng) on E(B}). Combining all
these, we get that the number of new edges contributed to Z; as a result of superimposing p facets of §
"on Z, is only O(pq + nq + ¢*) = O(nr) since ¢ = O(r), p = O(n) This immediately implies that Z; has
at most O(r? + nr) = O(nr) edges. Thus, the total number of edges in subpolyhedra S}, Sg, » St through
which the plane P, passes is at most O(nr). &

Theorem 3.1: A manifold polyhedron § with arbitrary genus and having n edges of which r are reflex
can be triangulated with complete cuts in O(nr? + r3logr) time and O(nr + ) space.

Proof: We proceed as in the proof of Theorem 2.1. We get "X, m; = O(nr) using Lemma 3.2. This gives
an O(nr?+r3logr) time bound for convex decomposition through complete cuts. Lemma 3.1 gives O(nr +
r3) space complexity. Each convex piece can be triangulated in a straightforward way by triangulating
its facets and joining all triangles thus produced to a point inside the convex piece. However, we need
to ensure that all pairs of facets that overlap completely on one another have same triangulation. Since
the facets in each such pair have same topological structure and have the same geometric location, any
deterministic algorithm that triangulates a facet can be made to produce same triangulations for both
facets. This triangulation phase does not increase the time and space complexity.d



4 CSG Representation

The plane insertions through bounded cuts as described in section 3 can easily be extented to give HCSG
representation of polyhedra from their boundary representations.

For each notch g in S, if the plane supporting one of the facets adjacent to g is chosen as the notch
plane for g, all facets of the convex pieces in the final decomposition lie only on the supporting planes of the
facets of S. Further, each convex piece can be expressed as the intersection of closed halfspaces supporting
its facets. Finally, § can be represented as the union of the expressions obtained for each convex piece.
This gives a HCSG formula for §. The number of literals in this formula is equal to the number of facets
present in the convex pieces.

Theorem 4 1 For any manifold polyhedron, an HCSG representatnon of size O(pl +1 3) can be computed
in O(pl? + 13 ) time, where p is the number of facets in S of which [/ are adjacent to notches.

Proof: The total number of edges in the final decomposition through bounded cuts is O(nr + ,-%) (using
improved bound of [11] on ¢(r)). Certainly, r = O(l), and since § is a manifold polyhedron n = O(p).
Thus, the total number of facets in the convex pieces of final decomposition is O(pl + 15) which determines
the size of the HCSG representation of S. The time complexity for this HCSG computation is same as
that of computing the convex decomposition of § through bounded cuts. Expressed in terms of p and
this complexity is O(pl? + I¥).8

4.1 Lower Bound

Let (a1j011012...)r1( 021021 222...)72...(@k1 01 ...) be an HCSG formula for a polyhedron where o;;’s and r;’s

denote the operators intersections (N) or unions (U), and a;;’s denote the literals corresponding to th&'
halfspaces. In case where 0;; = N and r; = U for all ¢, j, we say that the given HCSG is in Disjunctive .
Normal Form (DNF). On the other hand, if 0;; = U and r; = N for all i, j, we say that the given formula

is in Conjunctive Normal Form (CNF).

Lemma 4.1: There exists a class of polyhedra for which any DNF HCSG formula has a size of Q(p?),
where p is the number of facets in them.

Proof: Consider the polyhedron S as constructed by Chazelle in [3] to prove a lower bound on the
number of convex pieces needed to decompose a non-convex polyhedron. See Figure 4. The notches of
this polyhedron form two sets of line segments, each lying on the surface of a hyperbolic paraboloid which
have a small distance of € between them. Let ¥ denote the region between these two hyperbolic paraboloid
surfaces each containing r notches. Assuming unit distances between consecutive notches, the volume of
T is Q(er?). Chazelle showed that a single convex polyhedron whose volume lies inside S can occupy
only O(€) volume in ¥, thus requiring Q(r?) convex pieces to cover £. Let C = C; UC, U ... UCj be
a DNF HCSG formula for S where each C; represents the maximal collection of literals along with only
intersection operators in between them. Each C; represents a closed convex polyhedron S; that lies inside
S. The convex polyhedra corresponding to C;,t = 1, ...,k cover the polyhedron S and hence ¥. Thus &
must be Q(r?) giving an Q(r?) lower bound on the size of C. The worst-case lower bound of Q(p?) follows
immediately from the fact that S can be made to have r = Q(p).$

Lemma 4.2: There exists a class of polyhedra for which. any CNF HCSG formula has a size of Q(p?)
where p is the number of facets in them.

Proof: Consider a polyhedron Sy constructed: as follows. Let S; be the unbounded polyhedron obtained
by taking the closure of the complement of the Chazelle’s Polyhedron. The unbounded polyhedron S; has
an internal void whose boundary is same as that of Chazelle's polyhedron. Let S; be a cube, large enoug’
to contain the internal void of S, inside. Let So = cl(S; N §2). The polyhedron S is a closed polyhedron.
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Figure 4: Chazelle’s Polyhedron.

Its outer boundary consists of six facets of the cube S;, and its inner boundary consists of the boundary’
of Chazelle’s polyhedron. Let C = C; N Cz N ...N Ck be a CNF HCSG formula for So where each C;
represents the maximal collection of literals along with only union operators. Let C; = H;; U Hyp... U Hy
where H;;’s represent closed halfspaces. Let H = cI(H) where H represents the complement of H. Let
Cio =Hi nHy ..nH;. The HCSG formula C = C; UC; U..UC is a DNF HCSG formula
that represents two disjoint polyhedra, the Chazelle’s polyhedron and the unbounded polyhedron cl(S;) -
corresponding to the complement of S;. Each C; represents a convex polyhedron that lies completely
either inside the Chazelle’s polyhedron or inside the unbounded polyhedron ¢l(S7). Since the portion
denoted by ¥ in the Chazelle’s polyhedron is covered by convex polyhedra that lie inside it, kK must be
Q(r?). Making r = Q(p), we can have k = Q(p?). &

In Lemma 4.1 we proved that Chazelle's polyhedron has (p?) DNF HCSG formula. However, one can
verify that this polyhedron has O(p) CNF HCSG formula. Similarly, the polyhedron Sp in Lemma 4.2 has
Q(p?) CNF HCSG formula and O(p) DNF HCSG formula. However, it is not difficult to show that there
is a polyhedron for which any CNF or DNF HCSG formula has size Q(p?).

Theorem 4.2: There exists a class of polyhedra for which any CNF or DNF HCSG formula has a size of -
)(p?) where p is the number of facets in them.

Proof: Consider a polyhedron that is formed by gluing Chazelle’s polyhedron with the polyhedron Sp

along one of the six facets of the cube. From the proof of Lemma 4.1 and 4.2, it is clear that any CNF or
DNF HCSG formula for this polyhedron has Q(p?) size.

5 Conclusions

It is often desirable to produce well shaped tetrahedra in a triangulation of polyhedral domains. In [5], we
have given an algorithm to produce guaranteed quality (with respect to shape) triangulation of a convex
polyhedron. To triangulate each convex piece produced by complete cuts, we can use this algorithm if we
are concerned with the shape of the tetrahedra. However, this method has the limitation that the convex
polyhedra produced through the convex decomposition phase may be very bad in shape. An algorithm
that achieves guaranteed quality triangulations directly on nonconvex polyhedra is more practical.

Reducing the time and space complexities for triangulation and reducing the gap between upper and
lower bounds of HCSG representations of polyhedra with arbitrary genus remain as challenging questions.
Currently, research is going on to settle these questions.
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