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Abstract

A new approach to analyze simplicial complezes
wn Buclidean 3-space R3 is described. First, meth-
ods from topology are used to analyze triangulated 3-
manifolds in R®. Then it is shown that these methods
can wn fact be applied to arbitrary simplicial complezes
in R® after (stmulating) the process of thickening a
complex to a 3-manifold homotopic to il. As a conse-
quence considerable structural information about the
compler can be determined and certain discrete prob-
lems solved as well.

For example, il is shown how to determine the ho-
mology groups, as well as concrete representations of
their generators, for a given complex K. Further,
quen a {-cycle or 2-cycle in K it is shown how to
express this cycle in terms of the generators of a ho-
mology group, which solves the problem of classifying
cycles up to their homology class. An application is to
the classification of simplicial maps up to their actions
on homology groups.

Recent developments in analyzing molecular struc-
tures through a dwal simplicial complez, called Delau-
nay complex, has further enhanced the need for com-
puting structural information about simplicial com-
plezes in R®. This paper develops basic techniques
to manipulate and analyze structures of compleres in
R?

Keywords: Manifolds, surfaces, algebralc topology, knots, links,
simplicial complexes, simplicial maps, homology groups, betti num-
bers, algorithms, computational topology.

1 Introduction

Classification of topological spaces and functions is
a primary goal in algebraic topology. The homology
groups of a topological space T are invariants that are
often computed in order to classify T'. Given a contin-
uous function f : 1} — T4 between topological spaces
the induced homomorphisms between corresponding
homology groups help classify f. It is therefore im-
portant not only to compute the homology groups of
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a topological space, but also a representation of the
elements of these groups that in turn allows represen-
tation of the induced homomorphisms.

Of particular practical significance are subspaces of
Euclidean 3-space R3. Such subspaces are of course
realizable in the real world and, further, the zeroth,
first, and second betti numbers (ie. ranks of the cor-
responding homology groups) have intuitive geometric
interpretations as the number of components, tunnels,
and voids, respectively. A typical discrete represen-
tation of such a subspace is as a simplicial complex
embedded in R3, and of a function is as a simplicial
map between complexes.

There is a classical algorithm to compute the ho-
mology groups of an arbitrary simplicial complex, see
[13], based on reducing certain matrices to a canon-
1cal form, called Smith normal form. Unfortunately,
the reduction of a matrix to its Smith normal form 1s
a severe computational bottleneck for which the best
known algorithm seems to have a worst-case upper
bound that is quite a large polynomial in the size of
the input [10]. Donald and Chang [5] though contend
that most complexes that occur in geometric design,
as well as their matrices, are sparse and that the clas-
sical algorithm therefore expectedly completes in time
quadratic in the size of the complex.

Delfinado and Edelsbrunner [1} describe an algo-
rithm, avoiding the computational bottleneck of re-
duction to Smith normal form, that computes the betti
numbers of a simplicial complex in R3. Their method
1s an incremental one that assembles the complex sim-
plex by simplex, and at each step updates the betti
numbers of the current complex. It runs optimally in
time and space linear in the size of the complex. How-
ever, their method does not produce representations
of generators of the homology groups, and therefore
cannot be further applied to analyze the structure of
a simplicial complex or simplicial maps.

We describe here a new approach to analyze com-
plexes in R3. Our approach is based on first using
methods from topology to derive algorithms for a com-



pact triangulated 3-manifold. Because of the relative
niceness of compact 3-manifolds in R? as topological
objects we are able to apply classical results. How-
ever, Props. 1-4 that form the basis of our algorithms
for 3-manifolds seem not to have appeared as yet in
the mathematics literature.

Next we show that these algorithms can apply to
simplicial complexes as well, after thickening a given
complex to a topological 3-manifold that is homotopic
to it, so retaining identical homology. Actually, we
simulate such a thickening as we never need to com-
pute an explicit triangulation of the thickened mani-
fold. We deseribe algorithms to:

. Determine the ranks of homology groups (betti
numbers) of a complex K in R? optimally in time
and space linear in the size n of K.

Although this algorithm is of the same complexity
as that of [1] our new insight into the generators of
the homology groups allows a somewhat simpler

non-incremental algorithm that is different from
[

2. Compute geometric realizations of a set of gener-

a,tors of the first and second homology groups of

K (for the zeroth homology group this 1s trivial)

in O(ng) and O(n n) time (and space), respectively,
where 7 is an invariant of K s.t. always g < n.

3. Given a l-cycle or 2-cycle of size k in K, compute
an expression of the homology class of this cycle
in terms of the generators of the corresponding
homology group, in O(ngk) or O(n+k) time (and
space). respectively. This in turn allows to:

(a) Decide if a cycle is null-homologous, or if two
cycles are co-homologous, in other words,
classify cycles up to their homology class.
A geometric interpretation of a cycle being
null-homologous is as follows: roughly, a 1-
cycle 1s null-homologous if it is the boundary
of a (2-dimensional) surface in K, while a 2-
cycle 1s null-homologous if 1t is the boundary
of a solid object in K. (See Dey [2] for cor-
responding results for 2-manifolds.)

(b) Compute the induced homomorphism of a
simplicial map between two complexes, in
other words, classify simplicial maps up to
their action on homology groups.

[t 1s appealing and instructive how geometric in-
sights often help improve the efficiency of our algo-
rithms. Further, our methods allow more insight into
the structure of simplicial complexes in R2 than ear-
lier ones as geometric realizations of the generators of
the first and second homology groups allow “visualiza-
tion” of tunnels and voids. Consequent applications
are probable in such areas as solid modeling, molecular
modeling, and alpha-shapes [6, 7, 8, 9].

In molecular bioclogy, for example, homology of
structures of polypeptide chains is often examined to
determine similarities. An exciting recent develop-
ment in the work on alpha-shapes is the formaliza-
tion by Edelsbrunner, Facello, and Liang [8] of the

notion of “pockets” or imperfect voids in the three-
dimensional structures of macromolecules, which is
used in molecular docking. They model the molecules
as a union of three-dimensional balls that represent
atoms. It is shown in [6, 8] that the space generated
by this union is homotopic to a simplicial complex,
called the Delaunay complex, which is the dual of the
weighted Voronoi diagram of the balls. The defini-
tion and the algorithm for pockets are based on this
Delaunay complex. Consequently, it is hoped that en-
hancements in understanding simplicial complexes in
R3 would benefit the computational aspects of molec-
ular structures. For example, initially finding genera-
tors of the first homology group could be an approach
to determining imperfect tunnels in three-dimensional
structures.

In the following we omit all discussion of the prereg-
uisite mathematics that includes elementary algebraic
topology, knot theory, and manifold theory. Excellent
sources for such material include [13, 15, 16] and we
shall point to others as we proceed. However, most of
our results are geometrically quite intuitive, and our
approach in this version has been to avoid much math-
ematics in the proofs in favor of intuitive justification.

In Sec. 2 we prove results for 3-manifolds. We
show how these results apply to simplicial complexes
in Sec. 3. We discuss the complexity of implementa-
tion and conclude in Sec. 4.

2 3-manifolds in R?

We were in fact first motivated by rather elegant al-
gorithms that we found to determine homology groups
and their generators for compact 3-manifolds in R>.

Let M be a compact connected triangulated
3-manifold in R? (any compact 3-manifold is triangu-
lable, see [12]). Say M = |K]|, the underlying space
of a simplicial complex K. M must necessarily be
orientable with non-empty boundary B SM), where
Bd(M) is a disjoint union of, say, r closed connected
orientable surfaces S;, 1 < 7 < r, of genus g¢;, re-
spectively. A triangulation of Bd(M) is obtained as a
subcomplex 0K of K. We shall henceforth often not
distinguish between K and M.

At this point it may be useful to give an intuitive
description of M. It has an “enclosing” surface, say
Sy (adjacent to the unbounded component of the com-
plement of M in R3); M is then formed from the
solid M’, bounded by S,, by excision to form r — 1
“voids” inside M’ that are bounded by the surfaces
Si, 1 < i< r—1. The homeomorphic type of M of
course depends not only on the S; but also on their
disposition inside S, and w.r.t. each other: they may
be arbitrarily linked and knotted, see Fig. 1.

Anticipating that when we simulate the thickening
of a complex 1nto a 3-manifold we shall only obtain
explicit descriptions of the boundary of the thickened
manifold, in the following we attempt to compute the
homology groups of M and their generators in terms
of the bounding surfaces S;.

Consider a doubling of M, the manifold My ob-
tained by taking a homeomorphic copy M’ of M and
identifying corresponding points on their boundaries,



see (12, 16). Then My is a compact connected ori-
entable and closed (ie. boundaryless) 3-manifold, no
longer embeddable in R?® of course. A triangulation
KNq of My can be obtained by correspondingly dou-
Flil}]g K (or possibly a barycentric subdivision of K
12]).

Now the Euler characteristic of K,
X(K4) = 2x(K) = x(0K),

but the Euler characteristic of a compact closed
3-manifold is by Poincaré duality (see {13]). There-
fore,

V(hg) = 0= x(0K) = 2x(K).

Further, given the relation between the Euler charac-
teristic and genus of a surface (see [11}),

»

VOK) =) (2 2¢) = 2r — QZr:gi.

i=1 i=1
Therefore,
(K)=7r-3 g
i=1
But Buler’s formula gives (see [13]),

VW) = B0(I5) = 1(K) + B2(K) — Ba(K),
where the betti number §;(K) is the rank of the ho-
mology group H;(K). We know Go(K) = 1 as K is
connected, and F3(A) = 0 as there exists no non-

trivial 3-cycle in R?. Therefore,

H(K) = 14 B(K)— x(K)

L+ Bo(K) = (r= 3 4i)
i=1

= ) g+ Pa(R) —(r—1).
i=1

Proposition 1 gy(R) = r —
classes of the surfaces, [S;],1
Ho(K).

1, and the homology
<t < r—1, generate

Proof Sketch. 'The S;;1 < ¢ < r — 1, represent » — 1
independent 2-cycles as they do not bound a 3-chain
(a solid object) 1n K.

Further, any 2-cycle in R is a “sum” of closed con-
nected surfaces. Any such closed surface S must con-
tain some (possibly empty) subset of {S; : 1 < ¢ <
r — 1} in its interior. Say S contains S;,,...,S;,
in its interior. Then, [S] = —([S;,] + ... + [Si]),
as 5.5 ....,5;, together clearly bound a 3-chain
(which is the solid object with S as the enclosing sur-
face, and the S;, bounding voids inside it), so that
[S5]+ [Si, ]+ ...+ [Si.] = 0, with appropriate orienta-
Lrons

Bg., in Fig. 1, [51] + [So] + [S3] = 0, as 51,59, 53
together bound the 3-chain represented by K itself. O

Before considering H1(K) we need to fix some ter-
minology regarding the generators of the homology
group H;(S) of a closed orientable surface S. If the
genus of S is g, then H1(S) =Z & ... & Z (2g terms),
the free Abelian group of rank 2g. A set of 2¢ gen-
erating cycles of H1(S) consists of g latitudinal and ¢
longitudinal generating cycles. This set of 2¢ generat-
ing cycles may be computed from a triangulation of S
by the method of Vegter and Yap [19]

An intuitive geometric idea of generating cycles
may be had by considering a torus embedded in R?
without any “knotting”. See Fig. 2 for an example of
a torus of genus 3 in R3: imagining the inside of the
torus to be filled to a solid, we see that exactly 3 of the
generators become contractible — these are the latitu-
dinal generators. However, distinction between latitu-
dinal and longitudinal generators may not be quite so
simple if a surface is embedded with knots and links
(we do not as yet formalize the notions of knotting and
linking) as, eg., in Fig. 1. A surface in R3 is either a
sphere or sum of tori, and each torus is constructed by
rotating one generator along another generator. Any
of these two generators may be a knot in R2, so pro-
ducing knotted surfaces. Further, different tori may
be linked with one another. We defer consideration of
how, in fact, to generally distinguish between longitu-
dinal and latitudinal generators to later in this section.

Proposition 2 8i(K) = >1_, g;. Let Cj |,...Cy .
and Cli,l,...,C{’g, be g; latitudinal and longitudinal
generating cycles of S;, respectively, 1 <i <.

Then, the set of 3., gi homology classes of cycles

X =UZi{[Cra] - [CLy v AlCr, - [Cr, 1)
forms a basis of Hi(K).

Proof Sketch. The first equation follows from Eqn. 1
and Prop. 1.

Recall that M = |K| with the outer surface S, and
inner surfaces S;,2 = 1,...,r—1. Let L = S;US5...US,.
Observe that any closed surface S in R? divides R3
into two disjoint open connected components, de-
noted Cs and C%, such that Cs UCL, US = R3,
Bd(Cs) = Bd(C%) = S, and Cs is bounded while
C% is unbounded.

Let M’ be another compact 3-manifold (not nec-
essarily connected) which is formed as follows. Con-
sider embeddings of the surfaces S;, 7 = 1,2,...,r in
R? without any knotting or linking. Let S! denote the
newly embedded surface S;, where S7,5%,...,S._ are
assumed embedded in Cg;. Define M’ by

M' = (Cs;UCs;...UCs:_ YU(Csr )U(S7USy...US, ) Upeo,

where po, denotes the point at infinity.
Informally, M’ is obtained by filling the inside of
surfaces S7,55, ..., S._;, which are homeomorphic to

S1,S59,...,5r-1, respectively, and are without any



knotting or linking, and then filling the outside of sur-
face S7, which is homeomorphic to S,, together with
a single point compactification at infinity. The com-
pact manifold M’ can be thought of as a complement
of M, but without any knotting or linking among its
hounding surfaces.

It may be shown that the latitudinal generators of
51084, 51_, and the longitudinal generators of S,
fm m a basis of H{(M’). We omit details here. A
natural extension of this approach for the manifold A
faces difficulty due to the possible knotting and linking
ol 1ts surfaces. To overcome this we proceed as follows.
Take the union of M and M’ and then identify Bd(M)
and Bd(M') to create the space, denoted T', where
this idenmflcatlon uses the homeomorphisms h; : S; —

for ¢+ = 1, , such that h; takes latltudlnal and
longmldmal genelators of S; to the latitudinal and
longitudinal generators of S} respectively. Certainly T
18 a compact 3-manifold without boundary, and hence
has Euler characteristic x(7") = 0 by Poincaré duality.
It can be proved that the second homology group of
Ioie. Hy(T), is trivial giving 82(T) = 0. We omit a
foxmal proof of this fact in this version. Also Go(T)
and Gs(1') are both 1 since there is only one component
in 7. and only one generator, namely T itself, for 3-
cveles. Since y(T) = 0 = ﬁo(T) 5 (T )+62( ) —
73(7T"). we have §1(T) = 0. Hence, Hl(T) is trivial as
well.

Now L = M N M’ after identification. Observe
that L i3 the union of the set of tori that constitute
Bd(M) = Bd(M'"). The following piece of the Mayer-
Vietoris sequence of (A, M’) is exact (see [13] for rel-
evant definitions):

Ho(T) — Hy(L) % Hy(M)® Hy(M') — H\(T).
As H (7)) and and [{5(T) are both trivial, the fol-

lowing is exact,

0-— Hi(L) 2 Hi(M)® H (M) —0,

so that ¢ 1s an isomorphism. As a result, a ba-
sis of Hy(L) must be split into two parts such that
one part is mapped to a basis of Hi(M) and the
remainder is mapped to a basis of Hi(M') by ¢ in
a one-to-one manner. The isomorphism ¢ respects
the homeomorphisms I; between Bd(M) and Bd(M')
used for identification. Consequently, ¢ maps the lat-
itudinal generators of Sy, 55, ..., 5,_1 and the longitu-
dinal generators of S, to the latitudinal generators of
51,55, ...,.5. | and to the longitudinal generators of
S7, respectively, which form a basis of Hy(M'). This
mmplies that ¢ maps the remaining generators in L,
r.e. the longitudinal generators of Sy, 55, ..., S,~1 and
the latitudinal generators of S,, to a basis of Hy(M).
It follows, therefore, that

1CL 1y uAlCr, -

forms a basis of H,(M).

N = U:Jl [(72,1}» - [Cl,gr]}

Figs. 3 and 4 illustrate this proposition for different
cases. In Fig. 3 the surfaces S; are not knotted or
linked. In such cases the latitudinal generators of the
Si;1 <4 < r—1, and the longitudinal generators of
S, are not null- homologous (identity in H1(R)), whlle
the remaining generators are null-homologous. Eg., i
Fig. 3 it is easy to imagine the longitudinal generators
of S1 and S5 and the latitudinal generator of S3 each
bounding a distinct disc in K (in fact, Seifert surfaces
[15], on which each can “contract” to a point), while
the other 3 generators do not. The homology classes of
generators that are not null-homologous form a basis
of Hy(K).

Even if the S; are knotted and linked the second
part is seen to be true after some reflection. Eg.,
consider Fig. 4(a) where the torus 57 “winds” twice

through torus Ss. No longer is 012,1 null-homologous,
but [C?,] = 2[C] ,], as a disc bounded by C?, is punc-
tured twice by cycles homotopicto C},,r Thus, despite
the linking, {[C} ], [C},], [C},]} is still a basis of
Hi(K).

In Fig. 4(b) neither C'lly1 nor C’%’l is null-
homologous, but [C}] = [CF,] and [C} ,] = [C] ], as
one can imagine two annular strips in K, one bounded
by Cf, and C?,, and the other by C} ; and Cp ,, so
that these pairs of cycles are co-homologous, respec-
tively (one cycle can “transform” to the other of the
pair along the annulus). Thus, {[Ci,l]’ [012,1]> [CIQ’Q]}
is a basis of H,(K). O

Now that we have succeeded in determining geo-
metric realizations of sets of generators of H(K) and
Ho(K), we proceed to the problem of determining for
a given l-cycle or 2-cycle in K an expression in terms
of these generators.

For a 2-cycle in K represented by a surface S the
following is an easy consequence of the method of
proof of Prop. 1:

Proposition 3 Given a surface S in K, [S] is the
negative of the sum of those [S;] (from [S1], .. ., [Sr_l])
such that S; 1s contained in the interior of S a

Before considering 1-cycles in K we need to formal-
ize the notion of the linking number L(C1, Cs) of two
disjoint oriented polygonal knots C; and Co in R3.
Intuitively, L(C1, C3) counts the number of times one
of C; and Cy winds through the other. We give be-
low two equivalent definitions (from [15]); the first one
should motivate the next proposition, while the second
suggests a method to compute the linking number:

1. As Hi(R® — Cy) = Z, the integers, [15], we can
choose a generator [C'] of this group (in fact C’
may be chosen to be a latitudinal generating cycle
of a tubular toroidal neighborhood of C3). Then,
if the homology class [C}] = n[C'] in H1(R3—C5),
define L(Cy,Cy) = n.

2. Consider a regular projection 7 of Cy U s on to
a plane P that is below both C; and C,. (pro-



Jection 7 : C; UCy — P is regular if |77 1(p)| <
2,Vp € P). For each point p € P at which 7(C))
imtersects 7(Cy), and where C; crosses under Co
(above p). assign a crossing number of +1 accord-
ing to the orientation of the crossing, see Fig. 5(a).
If the suim of all crossing numbers at intersection
points on P (assign a crossing number of 0 if C;
crosses above ('y) is n, define L(Cy, Cy) = n.

Eg., in Fig. 5(b) (unfortunately on paper we can
only depict projections and not the curves in 3-space!)

L(CL. Cy) = 2.

Proposition 4 Giuwen a I-cycle C in the interior of
K that is an embedding of S* (in other words, a polyg-
onal knot: all I-cycles in K are sums of such knots),
[C] 15 a linear sum of the homology classes of the gen-
crating cycles as follows,

r—1 ¢ gr
[CT=3"> a[Ci + > ar[Cry),
1=1 k=1 k=1

where,
ap = LICCHO) 1 <i<r—1,1<k<g;, and
ap = L(C, Ur,k)a 1<k <y,

Simply, the coefficient, in the above sum, of a lati-
tudinal (longitudinal) generating cycle is the linking
number of C' and the corresponding longitudinal (lat-
itudinal) cycle. Note. The linking numbers are well-
defined as C', which is in the interior of K, is disjoint
from the generating cycles. We discuss later how to
{a) choose appropriate orientations on the generating
cycles, and (b) deal with the case when C does not lie
mn the anterior of .

Proof Sketch. First we give intuitive justification.
Consider the sinple situation shown in Fig. 6(a). Here
L. C,]yl) =1, L(C, Cﬁl) = —1 and L(C,C’gl) =0,
and it is clear that indeed [C] = [C] |] — [CZ ], by
observing that a disc bounded by C'is punctured once
each by cycles homotopic to C} ; and C} |, respec-
tively.

In Fig. 6(b) L(C, 011,1) = L(C, C%,,1) =1, and con-
sidering that an annular strip bounded by C' and C12,1

7

15 punctured by a cycle homotopic to C} ; confirms
that [(] = (C} ] + [C},].
A general proof can be based on an inductive ap-

plication of the first definition of the linking number
given above, which we omit here. O

A couple of questions arise (that may already have
occurred to the reader):

L. Given a set of 2g; generating cycles of the surface
S;, computed eg. by the method of Vegter and
Yap [19], how do we distinguish between latitudi-
nal and longitudinal ones? Recall that we do not
necessarily have a triangulation of the ambient
space, le. any information about the disposition
of S; w.r.t. the rest of R3.

2. The first question in fact leads to asking, given
an embedding of K, how do we decide which of
the bounding surfaces is the enclosing surface S,
(moreover, can we decide which is the “interior”
of a given bounding surface)?

Let us resolve the second question first. For this shoot
a ray 7 in an arbitrary direction from a point on any
surface S;. In linear time compute all intersection
points along # with surfaces S;. The last intersec-
tion point along ¥ must necessarily be due to S,, thus
identifying the outer surface.

However, a geometric insight allows us to avoid al-
together shooting rays to detect the enclosing surface,
and to implement Prop. 3 in linear time. To under-
stand this first consider an analogous situation in R
depicted in Fig 7, where either bounding circle Cy or
Cs may be embedded as the “enclosing” circle of the
annulus A, and the two embeddings vary by a home-
omorphism of a neighborhood of A in R2. This sug-
gests, in the situation of Prop. 3, to simply “designate”
any one bounding surface as the enclosing surface S,
and designate that side of S to be interior that does
not contain S,. Observe that we can distinguish the
two sides of S (which splits K into two connected com-
ponents), and the surfaces S; contained in either, by
a simple linear time search.

Another geometric insight helps us resolve the first
question. We introduce the method of barycentric per-
turbation: i

For each surface S;, construct the generators C’L’k
and Cj) in longitudinal/latitudinal pairs by the
method of Vegter and Yap [19, Lemma 4.3]. For each
k =1,..., g, this method produces the pair of cycles

Tk and C',’y,C intersecting at a single point, and such
that cycles from distinct pairs do not intersect. To dis-
tinguish the latitudinal and longitudinal generators in
a palr, we construct the first barycentric subdivision
K’ of K [13]. Consider the longitudinal generating
cycle Cj . If C}y is perturbed in K', minimally to
avoid intersecting C};’k in K’, then it is geometrically
evident that the linking number of C',’ly,c (after pertur-
bation) and Cf ; is 0. See Fig. 8. However, if a lat-
itudinal generating cycle Ci,k is similarly minimally
perturbed in K’, the linking number of Cprand Oy
becomes +1. Choose orientations of the generating
cycles so that this linking number in fact becomes 1.

The situation is symmetric for the enclosing surface
Sy. A longitudinal generating cycle of a pair perturbs
to link (with linking number 41) with the other gener-
ating cycle, while the latitudinal generating cycle does
not link with the other generating cycle after minimal
perturbation.

Next, consider the problem of computing linking
numbers in Prop. 4 when the given 1-cycle C does not
lie in the interior of K, but in fact intersects at least
one generating cycle. The solution of course is to min-
imally perturb C in K’ so that it avoids intersections.

We should remark that the reason to go to the first
barycentric subdivision K’ to perform perturbations



is that it is just fine enough that we can perturb (ho-
motopically) a 1-cycle C to avoid intersections it orig-
mally had in A" without causing a new one.

To sum up we answer the first question as follows:

If we know the enclosing surface S, (after say ray-
shooting) then we can distinguish latitudinal and lon-
gitudinal generating cycles using above ideas. Inter-
estingly, even without finding S, (and thereby saving
complexity), we can, using the similar ideas, compute
some generating set of cycles for K: consider each
bounding surface in turn, compute a set of its gener-
ating cycles in pairs, minimally perturb each cycle of
every pair in turn, and retain (with appropriate orien-
tations) exactly those that link non-trivially with the
other generating cycle of that pair after perturbation
(of course, we do not know which is latitudinal or lon-
gitudinall).

Comment. Another interesting insight suggests
that, even if we did not proceed as above to find a basis
of generating cycles, it would nevertheless be possible
to classify 1-cycles up to a homology class. The reason
15 that any cycle in K cannot link non-trivially with a
latitudinal (longitudinal) generating cycle of an inside
(outside) bounding surface, as it would have to “leave”
I to do so: thus a cycle is null-homologous exactly
when it links trivially with every generating cycle of
all the bounding surfaces. This idea will subsequently
help improve the implementation of our algorithms.

Simplicial Maps

Now that we can compute an expression of an ar-
bitrary I- or 2-cycle in the triangulation K of a 3-
manifold M in term of the generators of the first and
second homology groups of M| it is possible to inves-
tigate a simplicial map f : Ky — K2 between the
trangulations of two 3-manifolds:

Compute sets of generators of H;(K;) and Hy(Ky).
Determine the images of these generators in K5 under
[ (f takes 1-cycles to 1-cycles and 2-cycles to 2-cycles),
and compute an expression of these images in terms
of generators of Hi(K3) and Ho(K,). This classifies
J up to the homomorphism it induces on homology
groups.

Further Analysis of the Structure of a 3-Manifold

As we remarked earlier the homeomorphic type of
a 3-manifold M in R® depends not only on the bound-
ing surfaces S; but also on the knotting and linking of
these surfaces. Once we have determined the bound-
ing surfaces .5; and computed sets of generating cycles
for each, more information may be derived about the
structure of M by computing linking numbers of var-
lous pairs of gencrating cycles of different S;. This
gives information about the disposition of the voids
hounded by the S; w.r.t. each other, eg. for a mani-
fold as in Fig. 1.

3  Simplicial Complexes in R?

A triangulated object K in R® may of course not
be a manifold. It may have both 1-dimensional and
3-dimensional parts while its 2-dimensional part may

be “honeycombed”, see Fig. 9(a): the collection of
d-simplexes of K that are not a face of any (d 4 1)-
simplex of K, together with all faces of such d-
simplexes, constitutes a subcomplex K’ C K, called
the

d-dimensional part of K. In this section we show how
K may be thickened to a 3-manifold M that is ho-
motopic to K, so that the results for 3-manifolds of
the previous section can apply to analyze the struc-
ture of K, as well as analyze simplicial maps between
two such complexes K; and K,. Qur discussion will
be somewhat informal but hopefully we will convince
the reader of the validity of our procedure.

First, we note that for ease of presentation we shall
excise 1-(and 0-)dimensional parts of K as necessary.
These parts are graphs that are structurally simple
to handle and we can either (a) deal with them sepa-
rately, or (b) thicken each graph to a tubular neighbor-
hood and attach back after thickening the remainder
of K. See Fig. 9(b).

A hive is defined to be an at most 3-dimensional
simplicial complex where every 1l-simplex is the face
of two or more 2-simplexes (ie. triangles). An edge
e of a triangle ¢ of a simplicial complex is said to be
bare if it is only a face of ¢ and no other triangle. A
triangle is said to be bare if it has at least one bare
edge. Thus a hive is an at most 3-dimensional complex
with no bare triangles. Intuitively, a hive is a “closed
multi-chambered” object.

Fig. 10 indicates a scheme to homotopically trans-
form a complex K without 1(or 0)-dimensional parts
into a hive H by systematically removing bare trian-
gles.

Now, it should be intuitively clear that a hive H
can be thickened to a 3-manifold M homotopic to it.
We shall see that the process of thickening may in fact
be “simulated” without computing an explicit trian-
gulation of M.

Consider a triangle t of H and choose a vector @
normal to ¢ (ie. a choice of a side of t), such that ¢ is
not the face of a tetrahedron on that side. Imagine
thickening ¢ by the width of a small € in the direction
of 7i. For each edge e; of ¢, 7 = 1,2, 3, find the triangle
t; with e; as edge that is adjacent to ¢ by rotation
around e; in the direction #. As H is a hive such {;
exist, and as the embedding of H in R? is assumed
known, each ¢; may be found by a search through the
linked list of triangles adjacent to e;.

Now, imagine thickening each ¢; correspondingly by
a width of € on the side that it is struck by the rota-
tion around e; as described above. We may continue
this procedure at the remaining borders of the ¢;, and
further on through H in a breadth-first manner.

Finally, we shall indeed have a thickening of H to
a 3-manifold M such that each bounding surface of
M retracts homotopically on to a surface represented
by a connected component of the graph G whose ver-
tices are pairs (¢, i), where ¢ ranges over triangles that
do not face tetrahedrons on both sides and the 7 (at
most 2 per t) indicate the sides of ¢ not facing a tetra-
hedron. Adjacencies of vertices in G are defined as
above (a later version of [1] considers a similar graph
as well). Thus, if T is a triangulation of M then we



immediately have an explicit triangulation 97 of the
boundary Bd(M) of M.

Note though that we have avoided discussing cer-
tain subtleties in the thickening procedure that arise,
eg., when two surfaces meet at a single a vertex.

Computing betti numbers and generators

In fact it may be seen that x(87) = 2x(H)
which, 1"011()\“1153 the formulae in Sec. 2, implies that
21 L 9i =1 —\(H), where r is the number of bound-

ing surfaces (= number of components of () and the
¢i, 1 < i <, are the genus of the bounding surfaces.

Thus after detecting all S;, it 1s a matter of simple
simplex counting in H to determine X7_, ¢; and hence
the bettl number 3 by Prop. 2. The number of
S;’s determine the second betti number 53 by Prop.
2. This eliminates the 1-cycle detection step entirely
from the algorithm of [1]. Further, Props. 1 and 2
may also be applied to compute a representation of
the generators of Hi(H) and Ho(H) .

Application of Prop. 3 to express a 2-cycle in terms
of generators of H.4(H) is straightforward as well.
However, application of Prop. 4 requires a little care
i that after the projection of a generating cycle of
M and a cycle in H on a plane, it should be taken
mto account, when deciding the crossing number at
an intersection, that the generating cycle is a small
distance away i a known direction (thus allowing de-
termination of the orientation at each crossing) from
triangles of H.

Comment. We need not have excised
I-(and 0-)dimensional parts or transformed to a hive
hefore thickening, but it seems in fact more intuitive
and convenient to describe the thickening of a hive.

4 Complexities and Conclusions

We assume that the triangulated manifold or com-
plex is represented in a practical data structure, eg.
as the one described in [9]. The only non-standard
subroutines that are required to implement our algo-
rithms are to:

1. Compute the first barycentric subdivision and per-
form barycenlric perturbation of a cycle.

The first barycentric subdivision is easily checked
to be an O(n) time and space procedure given a
triangulation of size n. Minimally perturbing a
cyele of length k requires essentially to traverse it
edge by edge. incurring O(1) cost to avoid each
intersection, for a total of O(k) time and space.

2. Compule lhe 2g generators of a iriangulated sur-
face S;.

For this we invoke the algorithm of Vegter and
Yap [19 Th. 4.2] that runs in time and space
O(g;n;), where the triangulation of S; is of size
n; and r/, is its genus (for a total complexity of

O(nij) for r surfaces, where 57, n; = O(n) and
G = maxi<i<r §i)

3. Compute the the linking number of two disjoint
oriented polygonal knots Cy and Co in R3.

Assume C; and C, are of lengths k1 and ks, re-
spectively. Project the knots in linear time on an
arbitrary plane gif the projection is not regular it
can be perturbed slightly to regularize) to obtain
two closed polygonal curves C and C} of lengths
k1 and ko, respectively, on the plane. Compute
all intersections of C| and C using even the naive
algorithm in O Icllcl) time and space (any algo-
rithm would have a similar worst-case because of
output size [14]). It is then possible to determine
in constant time per intersection point p the cross-
ing number at p by referring back to the points of
C; and C that lie above p. The total complexity
is O(k1k2) in time and space.

Assuming now that § = maxi<i<, ¢;, the maximum
of the genus of the bounding surfaces of the complex
K after thickening, it is not hard to verify our claims
of time and space complexity for the problems men-
tioned in Sec. 1. For example, determining the ho-
mology class of a cycle of length k involves computing
its linking number with each of a generating set of

" 1-cycles, requiring O(ngk) time totally. It is crucial

to note though that following the comment in Sec. 2
we need only find a generating set for Hi(K). Find-
ing a basis of H(K) could blow up the complexity to
O(n?%g) from O(ng).

There is considerable scope for further investiga-
tion:

e Find tight complexity bounds for the problems
considered here. We do not know if our algo-
rithms are optimal, except for ones that are triv-
1ally so.

e Find similar algorithms for the homotopy groups.
This of course is much harder and one might
therefore consider more restricted class of com-
plexes that tend to arise naturally (see [4]).

o Extend these methods of analysis to topologi-
cal objects, in particular simplicial complexes, 1n
spaces of dimension higher than 3.

e Find applications to real world objects. There
seem interesting possibilities. Topology has long
been applied in the physical sciences, and cur-
rently exciting applications are being found in
molecular biology [8, 17].

o See [3, 18] for a survey of related problems in the
rapidly growing field of computational topology.
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