Optimal Algorithms for Curves on Surfaces

Tamal K. Dey

Dept. of Computer Science
and Engineering
Indian Institute of Technology
Kharagpur 721302
India

e-mail: dey@cse.iitkgp.ernet.in

Abstract

We describe an optimal algorithm to decide if one
closed curve on a triangulated 2-manifold can be con-
linuously transformed to another, i.e., if they are ho-
motopic. Our algorithm runs in O(n + ki + ks) time
and space, where closed curves Cy and Co of lengths
ky and ko, resp.. on a genus g surface M (g # 2 if M
artentable, and g # 3,4 if M is non-orientable) are
presented as edge-verter sequences in « triangulation
T of size n of M. This as well implies an optimal
algorithm to decide if a closed curve on a surface can
be continuously contracted to a point. Except for three
low genus cases, our algorithm completes an investiga-
tion nto the computational complezity of the two clas-
stcal problems for surfaces posed by the mathematician
Max Dehn at the beginning of this century. However,
we make novel applicalions of methods from modern
combinatorial group theory for an approach entirely
different from previous ones, and much simpler {o im-
plement.

1 Introduction

Computational topology is an emerging new subdis-
cipline of computational geometry. There are many
situations in topology when the existence of some
structure & or the decidability of some problem P has
been proved by mathematicians, but the complexity of
S or the efficiency of algorithms to decide P remains
to be thoroughly investigated. Computational topol-
ogy deals with these algorithmic aspects of topology.
A sampling of some relevant recent work may be found
in{2,3,4,5,6, 13, 18].

The topological objects that we consider in this pa-
per are surfaces or, equivalently, 2-manifolds. A 2-
manifold is a topological space that at every point lo-
cally resembles the Euclidean plane. By a surface or 2-
manifold we shall always mean a compact, connected,
and boundaryless 2-manifold. Everyday examples of
such surfaces include spheres and tori (doughnuts).
In fact, any finite object with volume that we care to
cxamine in the three-dimensional world around us is
bounded by an orientable surface, i.e., a surface with
two distinct sides. A well-known exotic example of
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a surface 1s the Klein bottle which is non-orientable
and cannot be physically realized in three-dimensional
space.

Vegter and Yap [18] first examined the computa-
tional problems associated with surfaces, in particular
with the combinatorial representation of surfaces. A
combinatorial representation is a representation as a
discrete structure, a necessary preliminary in any dis-
crete algorithm for a topological object. An example
of a combinatorial representation of a surface M is a
triangulaiion, which consists of a decomposition of M
into finitely many triangles together with a listing of
adjacencies between these triangles.

The particular problems for surfaces that we con-
sider here date back to the beginning of this century
when Max Dehn [1] formulated and mathematically
solved two now-classical problems, the contractability
and transformability problems, as he termed them (see
also Poincaré [12]).

The contractability problem is to decide if a closed
curve C' on a surface M can be continuously con-
tracted to a point, i.e., if C is null-homotopic. Schip-
per [13] first investigated the complexity of an algo-
rithm for the contractability problem that dynami-
cally maintains a part of the universal covering space
of M. Subsequently, Dey [3] and Dey and Schip-
per [5] gave improved implementations of this algo-
rithm. All these use highly complex data structures,
and the best result heretofore is in the latter paper,
using O(n + klogg) time, which is suboptimal, and
O(n + kg space to decide contractability, if C is of
length k& on a genus g surface with a triangulation of
size n.

The second and harder of Dehn’s problems, the
transformability problem, asks when two closed curves
on a surface are continuously transformable into each
other, i.e., if they are homotopic, denoted C; ~ Cs.
For example, in Fig. 1(a), C; ~ Cy but C; #Cs. In
this paper we describe a time and space optimal al-
gorithm for the transformability problem on a genus
g surface M, where ¢ # 2 if M is orientable, and
g # 3,4 if M is non-orientable. Given a triangulation
T of size n of M and closed curves C; and Cy on M



presented as edge-vertex sequences in T of lengths k;
and kq, resp., this algorithm decides if C; and Cy are
homotopic in O(n+ k1 + k2) time and space. This im-
mediately implies an optimal algorithm to decide the
contractability of Cy by choosing 5 to be a point so

Our approach however abandons universal cover-
ing spaces in favor of non-metric combinatorial meth-
ods. Specifically. we find a canonical representation
{or closed curves on M as elements of the fundamen-
tal group w(M), observe that deciding the transforma-
bility of two curves is equivalent to deciding if their
canonical representatives in w(M) are conjugate, and
use methods from combinatorial group theory to ef-
ficiently solve this conjugacy problem given a special
presentation of 7(M). The resulting algorithm is not
only entirely different but much simpler, using data
structures no more complex than required to manipu-
late elementary graphs and stacks.

An interesting interpretation of our result is as a
mechanism to decide if one knot on a surface can be
deformed into another. Given the growing importance
of knot theory in physics [8] and molecular biology (in
the synthesis of DNA molecules [16]), we hope that
results such as this eventually become part of a larger
program to investigate these areas from the point of
view of computational topology. Such a program could
lead to significant practical algorithms.

In Section 2 we discuss some preliminaries. Our
algorithm 1s described in Section 3.

2 Preliminaries

We briefly introduce several terms and notions from
combinatorial group theory that we require later. For
further discussion of group theory we refer to Rotman
(17], and combinatorial group theory, in particular, to
Lyndon and Schupp [10]. To save space we skip all
preliminary discussion of topology and surfaces, and
instead simply refer the reader to Massey [11], Singer
& Thorpe [14], and Stillwell [15].

(iven a set of symbols X, let X~! denote the set
of symbols {a=! : a € X}. A letler is an element
of X U X', A word w on X is a finite sequence
ay ... ap. k > 0, of letters. The length of w, denoted
lw], is k. An elementary transformation of a word w
consists of inserting or deleting a subword of the form
aa” b or a”la.

The free group F'(X) on the set X is the set W(X)
of all words on X modulo the equivalence relation ~,
where w| ~ ws if wy can be derived from w; by a finite
sequence of elementary transformations, and with the
binary operation that is induced by concatenation. X
1s called the set of generators of FéX; In the following
we shall 1dentify a word w € W(X) with its equiva-
lence class in F'(.X'), and denote the (group) inverse of
w by wh,

A word w = aj...ap € F(X) is reduced if it does
not contain two successive letters that are inverses of
each other: if, in addition, aj is not the inverse of a;,
then w s cyclically reduced. Fach element in F(X)
has a unique representation as a reduced word. If
wi, b <@ < q. are words such that in forming the

product z = wy ... w, there is no cancellation (i.e., no
wi, 1 <1< g—1, ends in a letter s.t. w;41 begins with
the inverse of that letter), then we write z = wy ... w,.

A conjugate of a word w is a word of the form ywy=!.

A subset R of F(X) is called symmetrized if all ele-
ments of R are cyclically reduced and, for each r € R,
all cyclic permutations (i.e., cyclically reduced conju-
gates) of both r and »~! are also in R.

A group G is said to have finite presentation (X; R),
where X is a finite set of symbols and R ¢ W(X)
is also finite, if (¢ isomorphic to the quotient group
F(X)/N, where N is the smallest normal subgroup of
F Xg containing R (i.e., N is the normal closure of R
in F'(X)). We say that G is generated by X with the
relations in R, and write G = (X; R).

For example, (z;23) is the 3-element cyclic group,
and (z,y;zyxz~ 'y~ ') is the product of two infinite
cyclic groups, i.e, a free abelian group on two gen-
erators.

The word problem for a group G = (X; R) asks for
an algorithm to decide if an element w € W(X) repre-
sents the identity of G. In general, the word problem
1s unsolvable. The conjugacy problem, which is also
generally unsolvable, asks to decide if two elements
wy,wy € W(X) represent conjugate elements of G,
i.e., if there is ¢ € W(X) such that w; = cwyc™! holds
in G.

Assume now that G = (X; R) is a finite presenta-
tion where R is symmetrized. If r; and r5 are distinct
elements of R such that 1 = bc; and ry = beg, then
b is called a piece of R (consider the product 7 'ry to
see that a piece is a subword of an element of R that
can be non-trivially cancelled by multiplication with
another element of R). R is said to satisfy the small
cancellation condition C’(X), for the positive real A,
if r = bc, where » € R and b i1s a piece of R, im-
plies that |b| < A|r|. The following consequence of
Greendlinger’s Lemma for Sixth-Groups ([7], see also
[10]) is crucial to an efficient solution of the word prob-
lem given certain presentations of fundamental groups
of surfaces:

Proposition 1 If G = (X; R) satisfies C'(5), then
a non-empty reduced word w € W(X) that represents
the identity element of G must contain a subword w'

such that there exists a relation r € R with r = w'w"”
and |w'| > L|r|. &

A word w € F(X) is said to be R-reduced if it
is reduced and does not contain a subword w’ such
that there exists a relation »r € R with » = w'w” and
|w'| > %|7’| It is cyclically R-reduced if it is cyclically
reduced and all its cyclic permutations are R-reduced.

A consequence of another of Greendlinger’s results
[7] (also [10]) that we shall subsequently use to effi-
ciently solve the conjugacy problem for fundamental
groups of surfaces is:

Proposition 2 If G = (X; R) salisfies C'(%), then
two non-empty cyclically R-reduced words wi,ws €
W(X) represent conjugate elements of G if and only
if the equation w} = hwih™! holds in G, where w?



and wh are eyclically reduced conjugates of wi and wo,
vesp., and hois a subword of some relation r € R.

Note that Greendlinger’s original results imply
much more than Props. 1 and 2, but these are suf-
ficient for our purposes.

3 The Algorithm

The mput to the algorithm includes a triangulation
T of size n, consisting of triangles 0., 1 < r < n, of
some surface M, together with cycles Cy and Cq on M
presented as edge-vertex sequences in T of length &k
and ka, respectively. We assume that T is represented
by a data structure that allows access to the edges
of a triangle, as well as the triangles incident on an
edge, in O(1) time. Also, for a reason that will be
apparent later, we assume M to be a genus g manifold,
where ¢ > 3 if M is orientable and ¢ > 5 if M is non-
orientable. We shall deal with the remaining cases
subsequently.

Say v, and vy are two vertices on C'; and Csq, re-
spectively. Find any path D from v to vs, by, say, an
O(n)-time breadth-first search of the 1-skeleton (1.e.,
graph) of T, so that D is an edge-vertex sequence of
length O(n). 1t is known (see [14]) that C; ~ Cy
if and only if C; and D o Cy 0 D™! represent con-
Jugate elements in the fundamental group 7(M), at
base-point v;. Therefore, to avoid clumsy notation
later, we shall fudge a little now and assume that we
are in fact given Cy and D o Cy 0 D™ as input, and
henceforth denote the latter as Cy. We shall also as-
sume that the edge-vertex sequence representing C is
VL€ 12 .01k, V1 k41 and that representing C is
Pog€aqte .. 02 k,U2 kotd, where v = Vi = V21 =
Vliy+1 = Vo k,+1. Neither the extra time to find D
nor the extra O(n) part in kg due to the “hidden” D
and D~1 affect our future claims on time and space,
as they are all of the form O(n + ky + k2).

I'he algorithm consists of two phases: the first
phase converts the geornetric problem of deciding
transformability to the combinatorial one of deciding
if two elements in a group are conjugate, while the
sccond phase solves this conjugacy problem. It is in
the crucial second phase that we apply our new com-
binatorial methods.

3.1 Phasel

This phase consists of two subphases similar to pro-
cedures in Dey [3]. However, in order to make this
discussion self-contained, we give a brief description.

3.1.1 Subphase la
We shall find a polygonal schema (see [11, 15, 18]) P

representing M such that P has a triangulation T
contaming the same number of triangles as T. We
shall also find a representations of C; and C, on P.
The procedure is to construct a sequence of poly-
gons . .., P, by successively attaching triangles
corresponding to triangles in 7. Omitting further de-
tails of the procedure, we simply observe that on com-
pletion we shall have a polygon P with a triangulation
1. consisting of the triangles o/, 1 < r < n, such that

(a) there is a one-to-one correspondence between
the triangles of 7" and 7", together with a vertex-to-
vertex identification specified for each pair of corre-
sponding triangles,

(b) each edge ¢’ on bd(P) has a partner edge ¢’ on
bd(P; such that they both correspond to a single edge
e in T'; further, assuming some arbitrary orientation
on the edges of T' (say, induced by the data struc-
ture representing these edges), we have an orientation
on the edges of bd(P) induced by the vertex-to-vertex
identification specified in the correspondence between
triangles of 1" and 7", and,

(c) we can obtain M by attaching partnered edges
of bd(P), taking care to match orientations (as given
in (b)) when attaching edges. More precisely, there is
a homeomorphism ¢ from M to the quotient space of
P modulo the identification of partnered edges.

Thus, appropriately labeling the edges of bd(P), so
that partnered edges have the same unsigned symbol
and signs represent orientations, P is indeed a polyg-
onal schema for M such that P and M have equal
sized triangulation. Say, bd(P) has edges labeled by
symbols from the set {z;, 27", ..., &, z;!} such that
each unsigned symbol occurs exactly twice.

Next, considering first the cycle C;, we see that its
homeomorphic image by ¢ is an edge-vertex sequence
(1 that consists of a possibly “disconnected” circular
sequence C1 4, .. .,C{}hl, hy < kq, of arcs such that

(a) each arc C1 ; consists of a connected edge-vertex
’
sequence v; €;, Vi, +1 ... v;., where only the first vertex
M

vi; and last vertex vy of the sequence lie on bd(P),

and,

(b) For 1 < j < h, the last vertex vi of C1 ; and the
first vertex v;,,, of Cp ;41 on bd(P) are identified by
the partnering of oriented edges of bd(P) (of course,
“hl + 1 — 1))).

Similar remarks apply to Cs so that its homeomor-
phic image by ¢ is an edge-vertex sequence C} that
consists of the circular sequence of arcs €3 5, ..., C5
hg S kQA

See Fig. 2, forgetting for purpose of convenient il-
lustration, the restriction that genus ¢ > 3, if M 1is
orientable.

3.1.2 Subphase 1b

The size of the polygonal schema P (i.e., the number
of edges on bd(P) = 2m), found by Subphase la, may
be Q(n). We shall next find a polygonal schema @ for
M which is of minimal size. Such a polygonal schema
() is called a reduced polygonal schema for M (see
[3, 18]), and, in fact, bd(Q) will have 4g or 2g edges,
according as M is orientable or not.

Denote by G the 1-complex (i.e., graph) formed by
taking bd(P) and identifying partnered edges so that
orientations match along identified edges. Let Y be a
spanning tree of G, and B = {by,...,b;} be the set of
edges of G not in Y. Call the edges of G in Y excess.

Form the polygonal schema @ as follows: proceed
through the sequence of symbols that define P, i.e.,



(a)

(b)

Figure 1: (a) A double torus, an orientable surface of genus 2. (b) A polygonal schema in canonical form for the

double torus.

the labels of bd(P), deleting those that correspond to
an excess edge of (. Recall that each edge of G was
formed by identifying two partnered edges, so that
cach excess edge will result in the deletion of a part-
nered pair of symbols; call such deleted symbols ez-
cess symbols. Declare @) to be the polygonal schema
defined by the sequence of symbols that remain after
deleting excess symbols from P. Clearly, the length of
this sequence is 2, as 2 symbols remain for each edge
in 3. Let us write this sequence as yy...ys;, where
each unsigned symbol y; is one of {b1,...,b;}, and the
sign Is assigned according to orientation. See Fig. 2.

Now the projection map from G to the quotient
space (/Y may be checked to be a homotopy equiv-
alence (G/Y may be thought of as G with the span-
ning tree Y contracted to a point). Considering G as a
subspace of M via the homeomorphism ¢, this homo-
topy equivalence extends to the projection from M to
M/Y . However, M/Y is homeomorphic to the man-
ifold M’ that is represented by the polygonal schema
(2. Thus, we have a projection ¥ : M — M’ whichis a
homotopy equivalence. It follows that, as surfaces, M
and M’ are homeomorphic, and ) may be considered
a polyvgonal schema for M.

Omitting proof we claim that @ is, in fact, a re-
duced polygonal schema for M| so that [ = 2¢g if M is
orientable, and [ = 4 if M is not orientable; further,
(M) =a(M')=(by,....b;y1...yn).

Since 1 is a homotopy equivalence, deciding the
conjugacy of €'y and (s in 7(M) is equivalent to de-
ciding the conjugacy of ¥(C7) and ¥(C2) in w(M').
Let us now try to compute the element zx € w(M')
that the cycle ¥(C'x) represents, X =1, 2.

I'irst, some observations about the projection .
Consider 1 as a map from P to @, by identifying
points of P and () with the corresponding points in
the respective quotient spaces M and M’. We see
then that ¢ projects bd(P) onto bd(Q), and the inte-
rior int(P) of P onto int(Q). It is only ¥|bd(P) that
concerns us. Specifically, the behavior of ¥ on bd(P) is

as follows: 9 projects each edge on bd(P), labeled with
a non-excess symbol, onto the corresponding edge on
bd(Q); each sequence of edges on bd(P) labeled with
excess symbols, that lies between two edges e and e
labeled with non-excess symbols, is projected to the
common endpoint between the edges corresponding to
e and ¢’ on bd(Q).

Next, consider ¢(C1): regarding ¢ as a map from
P to @, ¥(C1) is the same as ¢(C7). And, from Sub-
phase la we have the arc sequence C{)l, e C{,hl of
C’. Now, the image ¥(C] ;) = ¥(viei;vi,41 .. i)
starts at the vertex ¢(v;;) and ends at the vertex
w(vi;_), both on bd(Q), and no interior vertex of ¢(C7)
lies on 6d(Q). Let the sequence of symbols labelin
edges of bd(Q) clockwise between v (v;;) and 1/)(1),;%
be Yr, ;y ..., ¥s,,; (note that ry ; may be greater than
s1,5: the list y1,...,ya1 is clockwise circular around
bd(@)). Then, the path ¥(C7 ;) is homotopic, with
end-points fixed, to the cycle on M’ that is repre-
sented in w(M’) by the product -, ;...ys, ;. Denote
this product by (r1 j,s1 ;). Completing the traversal
of the arc sequence Cf ;,...,C7, of Cf, we have a
representation of the cycle ¥(C7) = 9¥(C4) as a prod-
uct z1 = (r1,1,81,1) .- - (T1.h,, S1.,), Where by < kq, in
T(M') = (by,....b;;y1...yz). See Fig. 2.

Similarly, we can find a representation of the cycle
»(Cy) = t/)(ng as a product
Z9g = (7‘2}1, S2.1 -~~(7'2,h2, 32,}12)’ where hg S ]{,’2.

Therefore, to solve the original homotopy problem
we now have to determine if z; and 25 represent conju-
gate elements in w(M'). We solve this combinatorial
problem in Phase 2.

3.2 Phase 2

We have from Phase 1 words

2 = (ri,811). . (ria,818,) and 2z =
(ro,1,821) .- (P2,hy, S2.8,) In F(by ... b;), and must
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Iigure 2 A polygonal schema P for a double torus and its reduction @, not in canonical form: (i) The broken
limes show part of the triangulation 7" of P, (ii) The bold lines in P and Q) show cycles C’ and ¥(C’), respectively,
(i) A symbol b; in parenthesis indicates that the corresponding edge of P is associated with the edge b; of the
spanning tree (¢, (iv) The dotted lines indicate some vertex mappings by ¢, (v) ¥(C') = (1,1)(7,8)(6,4)(5, 3).

decide 1 they represent conjugate elements in the
group 7(M') = (br,.. . bi;y1 .. y2).

["irst, we require certain notations and preprocess-
g, fwy, we € F(by,... by)areequalin F(by, ..., b),
1.c. as strings, denote this as wy = ws; while, if wy and
ws represent equal elements of (M), i.e. they project
to equal elements in (by,...,b1;;91 .. .ya1), denote this
as wy & wy. Of course, w1 = wqa = wy & wo.

Denote by (u,v) the product given by the sub-
word y7 ' ...y ! of the circular sequence of symbols
Yo - .,z/]"] (with y;ll following yl_lz imagine travers-
g () counterclockunse). If either (r,s) or (u,v) con-
sists of a single letter. write it as that letter (e.g.,

(r.17) Is written as y,, (u,u) as y; !, and we assume
this 15 always done when required). Let |(r,s)| and
[(w. v}] denote the length of the product that each rep-

resents. A consequence of the representation 7(M') =
(b Jbiyr o ym) s

Proposition 3 (r,s) R (r—1,s+1),
where [(r— 1,5+ 1)] = 20 = |(r,s)], and (r,s)7! =
{4+ 1.r—1)=(s,7). A sumilar statement holds for
(). s

Preprocess zx. X = 1,2, as follows:
For each term (rx j,sx ;) of z,

{a) if 1 < |(rxj,sx;)] <, leave it unchanged (if
lrx ;. sy ;) = 1 it is written as a single letter, of
course ),

(b) if I < |(rxj,sx;)| < 20 — 1, replace it by
(TX}]' —Lsx;+ 1),

(c) if |(rx,;,sx;)| = 20 = 1, replace it by the single
letter yr_xld_l, and,

(d) if [(rx;, sx,;)| = 21, delete it.

This O(hx )-time preprocessing gives, for X = 1,2,
a product zy = cx,1---Cx,ny , St k' < hx, and
z% =2 zx by Prop. 3, of terms either of the form (7, 5),
of length < I, or of the forms W and y,, of length <
l. Call such terms rectified terms, and such a product

a rectified product, and denote the number of terms as
the height of the product.

Let y = 41 ...y2 and let R denote the set of 4/ re-
lations, each of length 2I, consisting of y, y~!, and
all their cyclic permutations. It may be seen that
7(M'y = (b1,...,b;; R), where R is now a finite sym-
metrized set of relations (in fact, each ¥ € R is a
conjugate of either yor y™ !, soy=1&y =1).

A crucial consequence of @ being a reduced polyg-
onal schema, we omit all proofs, is:

Proposition 4 Considering y to be circular sequence
of symbols of length 21, a given pair of adjacent sym-
bols y;yi+1 at position i in y cannot occur at any other
posttion wn y, and the pair y;_llyi_l cannot occur at all

iny (ie, yiyiy1 cannot occur at all in y=1). &

which allows us to employ Greendlinger’s powerful re-
sults:



Proposition 5 /i follows from Prop. 4 that the set
af relations H satisfies the small cancellation condi-

tion ("(41 if M' is orientable (when 21 = 4g),
and C'(5-—) if M" is non-orientable (when 21 = 2g).

The ref(nf wz!/I our restriction that g > 3 1f M s ori-
entable, and g > 5 if M is non-orientable, R always
satisfies C'(%), and so also C'(%).

It follows then from Prop. 1 that, if a nonempty
w e (b, ... b)) s represented as a rectified product,
then, either

Low#l, or

20w can be shortened to a rectified product w
of lesser height by concatenating two adjacent
terms of w and replacing them, possibly applying
Prop. 3, with one term, so that w =~ . &

Comment: It is precisely because @ is in reduced
rather than canonical form (see [18] and Fig. 1(b)) that
we need Greendlinger’s results to prove that Dehn-type
algorithins (see [10]) apply to the word and conjugacy
problems for m(M').

The preceding proposition suggests a procedure
to find a canonical representation of each w €
by, .., b;) as an equal word in w(M’). The idea
is to use a stack S to successively insert terms from w,
in the process combining adjacent terms when possible
according to clause 2 of Prop. 5. Thus the contents
of S arc always rectified terms. We first define two
functions push(c) and apply(c), where c is a rectified
termi.

Define push(c) to be the operation of pushing ¢
into S. There are 12 cases to consider for the function
apply(c), given by the 3 possibilities for ¢ (the forms

(r.s). (u,v), or y,) and 4 for S (it is empty, or its top

term is of the form (r, s), (1, v), or y,). In the 3 cases

that 5 is empty, define apply(c ) = push(c). When S
15 not empty, we shall define apply(c) only for the 3
cases that arise given ¢ = (r,s). The other 6 cases
may be similarly defined. Let the top element of S be
d. The 3 cases we consider are:

(a) d = (u,v):
function apply(c) (* given ¢ = (r,s) and d = (u,v)
*
):
begin
pop S

i* labels are for referencing in a subsequent discussion
W
Nrifr= o + 1 then

begin

il |(w, s)| <! then push(u, s)

else if { < |(u, s)] < 21 then apply(u — 1,5+ 1)

else (* [(u,s)] = 2{,s0 ¢ = d~! *} do nothing

end
B: else il y, = y~! then push(u v— 1), push(r + 1, s)
(S else push(u v), push(r,s)
end

(b) d = (u,0):

function apply(c) (* given ¢ = (r,s) and d = (u,v)
*);
begin
pop 3;
if y;! = y,_1 then
begin
if |(r—1,s)| < then push(u v+ 1), push(r—1,s)
else (¥ [(r —1,8)| =1+ 1*) push(u,v+ 1),
push(r —2,541)
en
else if y;
begln
if u appears before s going clockwise from r then
apply(u + 1, 5) .
else if v appears after s going clockwise from r then
apply(u,s + 1)
else (* u = s, and ¢ = d~! *) do nothing
end
else push(u,v), push(r, s)
end

=y ! then

(c) d = yu:

function apply(c) (* given ¢ = (r,s) and d = y, *);
begin
pop S;
if ¥ = yr-_1 then
begin
if |(r — 1, s)| <1 then push(r — 1,s)
else (* |(r—1,8)| =14 1%*) push(r —2,s+1)
end
else if y, = y; ! then apply(r +1,s)
else push y,, push(r, s)
end

Our procedure to find a canonical form for w €
F(bl,...,bl) Is:

function canonical (input: word w given as a recti-
fied product ¢; ...cp);

begin
S — .
for j := 1 to A’ do apply ¢;

return @ w, the word conta,lned as a rectified product in
S readmg the terms from bottom to top

end

The following efficiently solves the word problem
for m(M'):

Proposition 6 For a rectified product w = ¢y .. .cpr,
canonical(w) is R-reduced. Therefore, by Prop. 1,
w = 1 if and only if canonical(w) = 1, the empty
word. &

Call a rectified product w = e¢1...cp stable if
canonical(w) = w. The following two lemmas should
be intuitively clear, and we omit proofs.



Lemmma 1 For a  rectified product w, :
cunontcal(w) = ¢y ...cpr, then each of the rectified
products ¢y .. _¢j, j < h", is stable. s

Lemma 2 [fw = ¢1...epn is a stable product, then
! “roocrt (here (r )7L = (s,7)

5018w = e
(w.v) = (v,u)). In other words, canonical(w™') =
(canonical(w))™t.

Further, if w = ¢y ...cpv 15 a cyclically reduced
stable product, then so is every cyclic permutation of
Cr oo Chor

?

The next lemma requires careful analysis of the
function apply:

Lemma 3 If w = ¢;...cpn 15 a stable product (of
hewght h'' ) and ¢ s a rectified term, then, either

[ hewghi(canonical(we)) =
canonical(we) = we, or

h" + 1, when

=

height{canonical(wc)) = K, when

canonical(we) = ¢y .. .cpr_y1 ¢, where ¢’ 2 cpi c,
or

3. height(canonical(we)) = b — 1, when ¢ = c;)
and canonical(we) = e .. .cpu_y.

A simalar statement holds for canonical(cw).

Proaof. Clases | and 3 are straightforward to verify as
in these cases apply does not recur. For case 2 we have
to check the various possibilities in the function apply.
For example, in case (a) of apply(c), where d = cp,
the only possibility for S to decrease, other than when
c=d ' is when r = v+ 1 and I < |(u,s)] < 2{, in
which case the recursive call is to apply(u — 1,5+ 1)
on stack S — d. Now, suppose the top of S — d is of
the form d’ = (u/,v’), when we are again in a case
analogous to (a), in that the top of the stack and the
element applyed are of the same form. However, in
this situation, the only clause of the conditional state-
ment that is applicable must be that labeled C (given
labeling similar to (a) in this analogous case) leaving
the height of S at h”. For if not, if either clauses la-
beled A or B3 is applicable, that would imply that d’
is of such a value that w = ¢; ...d'd cannot be stable,
contradicting an initial assumption. This, of course,
has to be carefully checked and we omit details.

We also omit discussing the other cases.

The second statement of the lemma follows from
the first and Lemma 2. )

Our main claim is the following:

Proposition 7 The word canonical{w) is indeed a
canonical form for words of F(by, ..., b;) that repre-
sent the same element of w(M'). Precisely, wy & wa
if and only if canonical(w,) = canonical(ws).

Proof.  Examining function canonical it is easily
checked that, for any w, canonical{w) = w. It follows
that canonical(w,) = canonical(wy) = wi = wy.

Conversely, suppose that w; & ws, and let
canonical(wy) =c¢11 .. .1,y and
canonical(wy) = ¢c21 .. -C2,hY-
We shall prove the equality canonical(w;) =
canonical(wg) by induction on min(hY,hy). If
min(h{, hY) = 0, the equality follows from Prop. 6.
Assume 1nductively that the equality is true if
min(hy, hy) < N, for some N > 0, and consider the
case when, in fact, min(hY, %) = N+1, where, w.lo.g,
we suppose that AY = N + 1.
Since, wy & wy and wx & canonical(wyx), X =
1,2, we have
canonical(wy) ~ canonical(wy) =
€11 .- ~Cl,h’1’ R Capee .CQ}hIQI =

~ -1
Cl,1v~~cl,h’1’~1 NCZ,lH-CQ,h;’(Cl,h’I' )

Now, by Lemma 1, the product on the LHS of the last
equation is stable, i.e.,

canonical(ci,n .. .c1pr—1) = €1,1...C1 Y1
Therefore, by the inductive hypothesis we must have
_ : 1
Cl1 .- CLpoy = canonical(cay .. ez, ne(ci ™))

For the preceding equation to hold we must further
have, by Lemma 3, that

1,y = Capy and ¢11.. SCLpi—1 = C2,1 .. Copyo,
which implies that,
C1,1---CLhY = C2,1...Co,nY, and, indeed,

canonical(w,) = canonical(ws).

We return to the problem of deciding if z
cx,1---Cxpt, X = 1,2, represent conjugate elemen
of the group #(M’) = (b1,....b;; 91 ... y21)-

Compute canontcal(zy) = ¢, ... ¢k hy > S3Y; X =

I

—

S

1,2. Since 2z = canonical(z ), the problem of de-
ciding the conjugacy of z%, X = 1,2, in «(M'),
is equivalent to that of deciding the conjugacy of
canonical(z), X = 1,2, in 7(M'). We may as-
sume canonical(z%) # 1, X = 1,2, as otherwise the
problem 1s trivial. Both c%, .. 'C.CX,hi,’(’ X =12 and
each of their cyclic permutations are R-reduced, and
we may further assume that they are cyclically re-
duced (for, if not, they may be rendered so by simple
linear-time preprocessing). So, assume k- -Cfx,hg{’
X = 1,2, are non-empty cyclically R-reduced words,
and, w.l.o.g, assume that A < h¥.
Since R satisfies C'(%) (see Prop. 5) we have, by
c J—
Prop. 2, that c¢%, .. X hi s X = 1,2, represent con-
jugate elements of w(M’) if and only if there exists ¢
such that

(chl"'cgyhg)* %C(C‘i,l...ci)hlll)* C_l, (1)



where (e ;... ¢ )" is a cyclic permutation of
: Y

i % . X = 1,2, and ¢ is a subword of some

X1 X, h¥. ’

relation y € R. By Prop. 3 we may assume that
¢ = (r,s). and, say, equation (1), in fact, holds with

;o C x __ c ¢ ¢
(Cxn Oxopr ) = g XA Cxa Xk -1
where
- 1
| <ix <hh, X =1,2.
Thus equation (1) becomes

e

s [ <
iz CanyCa1---Cog, 1 N

By Prop. 7, equation (2) holds if and only if

. seallef c e c —
canonical(cs ;.. oy - .62’1»2__1) =

- . . C c c c -1

canonical(c cf SOl gl C gy C ). (3)

Stnee ¢y e Xo= 1,2, s stable it may be

deduced from Lemmas 2 and 3 that
canonical(es ;.. (OS5 €y € ) =
(3:;;,1'2 - ~C§,hgc’§,l . 'Cg,iz—l’ (4)
and

., Py MRS v c ¢ -1y —
canonical(c ef .. Oyl € )=

XS . 4 ¢ "
C ol G pCly - G a O (5)

where, etther ¢ = ¢ ¢f ;,» the concatenation of two rec-

tified terms, or ¢ is one rectified term s.t. ¢/ & ¢ ¢§ i
:

and a similar statement relates ¢/ and ¢§ -1 e~ L
,

With equations (4) and (5), rewrite (3) as

¢ C ¢ [4 —
Cody - ConyCoy - Cayym1 =

Ao .C c c 1"
C Ol i€ Crg 2 C (6)

Examining equation (6), we see that the string
“{1-. .| iy with some two adjacent terms deleted
! 0

(possibly the first and the last), must occur as a sub-
string of the circularstring ¢§ | ...¢5 ;. (with the first
: L

term following the last). Whether this is true may be
checked with a linear-time Knuth-Morris-Pratt match-
ing algorithm [9]. If it is indeed true then we can
further determine in constant time if there does exist
¢ = (r,s) s.t. equation (6), in fact, holds.

This completes our description of the procedure to

decide if 2% . X = 1,2, represent conjugate elements
of m(M').
Analysis: It is not hard to verify that Sub-

phases la and 1b each complete in O(n + ki + k2)
time and space. As for Phase 2, it is sufficient to ana-
lyze function canonical observing that each iteration
of the for loop

a) adds at most one term to the stack, and,
Eb% costs O(1+ number of terms it deletes from the
stack).

It follows that the total cost of canonicalis O(h’). Tt
may then be verified that Phase 2 completes in O(n +
k1 + k) time and space.

Remarks: When M is orientable with genus g = 0
(sphere), 1 (torus) and when M is non-orientable with
genus g = 1 (klein bottle), the transformability prob-
lem can be easily solved in optimal time and space us-
ing the method described in [1]. The only exceptional
cases that remain are ¢ = 2 (double torus) when M
is orientable, and g = 3,4 when M is non-orientable.
Unfortunately, our main algebraic tool Prop. 2 fails
in these cases. However, the contractibility problem
for these cases can be solved in O(n + (k1 + k2) logg))
time and O(n + k; + k2) space using the algorithm of
[5], which is optimal since ¢ is bounded.

We summarize in the following:

Theorem 1 Given a triangulation T of size n of a
genus g surface M,

(i) it can be decided if a closed curve C presented as
edge-vertexr sequences of length k in T is contratible in
optimal O(n + k) time and space, and

(#1) it can be decided if two such closed curves Cy and
Cy of lengths k1 and ko, resp., are homotopic in op-
timal O(n + k1 + ky) time and space except for cases,
where M is genus 2 orientable surface, or genus 3 or
genus 4 non-orientable surface. &
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