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On the number of simplicial complexes in R?
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Using a simplex-crossing counting technique we prove: if the number of non-improperly intersecting simplices
with vertices in a set S of n labeled points in R? is O(n[4/2]), then there are 20 different geometric
simplicial complexes with vertices in S. © 1997 Elsevier Science B.V.
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1. Introduction

In this paper we consider the problem of counting the number of combinatorially different geometric
simplicial complexes with vertices in a fixed set of n labeled points in R9, the d-dimensional real
space. Geometric simplicial complexes consist of geometric simplices rather than topological simplices.
Precise definitions are given in Section 2.

A related problem of counting the number of combinatorially different triangulations with vertices
in a fixed labeled point set is considered in [4,8]. Let t4(n) and s4(n) denote the maximum number of
different topological and geometric triangulations respectively of S9, the d-dimensional sphere, with
n being the number of vertices. Kalai [8] showed that

canzJ < logty(n) < @nfd/ﬂ logn

for some constants ¢, cp. In [4], Dey showed that log sq(n) = O(n[4/?1) if at most O(nl4/2Y [d/2]-
simplices can be embedded in R without any crossing. Actually, this upper bound also holds for
log r4(n), where r4(n) is the maximum number of geometric triangulations possible with n points
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inR% By a geometric triangulation of a point set in R? we mean a triangulation of the convy,
of the point set with geometric simplices. The only known lower bound for logrg(n) is Q(n).

Let k4(S) denote the number of different geometric simplicial complexes with vertices in 5 set §
of labeled points in R%, and let

X huJp

= <q(S).
K4(n) i k4 (S)

In contrast to geometric triangulations, it is easy to establish an Q(n [d/ 2]) lower bound on the logarithiy
of rq(n). However, the upper bound on the number of geometric triangulations does not provide an
upper bound on the number of geometric simplicial complexes. This is because, for d > 2, not a]|
simplicial complexes in R? are extendable to a triangulation of the underlying point set. For example,
the boundary complex of the Schénardt polytope [11] is not extendable to a triangulation of the
corresponding vertex ‘set.

Previous results on the number of simplicial complexes dealt with all possible simplicial complexes
on n vertices in all dimensions. Let simp(n) denote this number. It follows from the results of
[9,10] that log simp(n) = ©/(( ny21))- This paper concentrates on counting the number of simplicia]

complexes in a fixed dimension R% Specifically, we show that log kgq(n) = O(nl#/21) matching the
lower bound if no more than O(nl4/21) simplices can be embedded in R? without crossing. In light
of the result of Goodman and Pollack [7], this bound for a fixed point set can be extended to cover
all point sets of some fixed cardinality. More specifically, they show that there are at most 20(nlogn)
combinatorially different configurations of n points in R%. This result combined with ours shows that
there are at most 20(%'*/*1+nlogn) combinatorially different geometric simplicial complexes with
points in R? provided at most O(nf df 2]) simplices are embeddable in R without crossing.

The rest of the paper is organized as follows. In the next section, we introduce some terminology
and present the statement of our main result. In Section 3, we prove a crossing result. Our method is
an extension of the method in [5], where it was used to prove a bound on the number of crossings of

triangles in R3. Section 4 generalizes the argument for counting triangulations in [4] to establish the
main result. In Section 5 we state some open problems.

2. Definitions and preliminaries

A d-simplex o is the convex hull of an affinely independent point set 7" of size d+1. If V C T, then

oy is a face of or. A (geometric) simplicial complex K is a finite collection of simplices satisfying
the following properties:

(a) ifaTelCandVQT,thenaVEIC, and
(b) if oy, 0y € K, then oy N oy = ovnr.

K is a k-complex if the largest dimension of a simplex in K is k. For any collection £ of simplices
(not necessarily a simplicial complex), we define

LY)={ser | o is a j-simplex}.
L£O) is the set of vertices of L.

Two simplicial complexes K, K, with vertices in the same labeled point set are combinatorially
different if and only if there exists a simplex oy such that oy € K; and ov ¢ Ky or oy ¢ Ky and
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oy € K. Let 1q(S) denote the number of different geometric simplicial complexes with vertices in

he convex
ull a labeled fixed point set S C R4, and let

i.s Q(n)
tices in a set § kq(n) = 5 r{}?% kd(S)-
CR4 |5|=n

We prove the following theorem.

Theorem 1. log x4(n) = O(nl4/?Y), if at most O(n!4/21) simplices are embedable in RY without

crossing.

It is easy to see that logxg(n) = Q(nl4?1). Let p(t) = (t,82,...,t%) € R? be a point on the
moment curve [6]. Let $ = {p(i) |1 =1,... ,n} and let T = [d/2]. Let K denote the collection of
all simplices o, T C S, |T| < 7. Then for any two simplices, oy, ov € K, |U| +|V| < d+ 1. Since
S is in general position, oy and oy are faces of oyuv. It follows that XC is a simplicial complex. Let
/. denote the collection of (7 — 1)-simplices in K. Clearly, the cardinality of L is ©(n"). For every
L CL, (K- L)uL is a simplicial complex. This proves the lower bound.

The combinatorial bounds proved in this paper are based on the following proposition.

n the logarithm
not provide an
d > 2, not all

t. For example,

gulation of the

icial complexes
~ the results of
er of simplicial

) matching the
ossing. In light
ended to cover
most 20(nlogn)
ours shows that
nplexes with n
sing.
ne terminology
Our method is
of crossings of
to establish the

Conjecture 2. If K is a simplicial complex embedded in RY, then the total number of simplices in K
is O(n[d/ 21Y, where n is the number of vertices of K.

If KC is a d-complex, the conjecture is true as shown in [2]. It is widely believed that the conjecture
is true in general. Two simplices ou and oy have an improper intersection if they intersect but the
intersection is not oy (that is, the intersection is not a common face). Conjecture 2 says that the
size of a collection of simplices, with vertices from amongst n fixed points in R<, such that no two
 simplices in the collection have an improper intersection is O(n™), where T = [d/ 2]. Two simplices
oy and oy cross if they have an improper intersection and UNV = 0. A collection of simplices is
crossing-free if no two simplices in the collection cross. An improper intersection is a non-crossing
intersection if it is not a crossing. To prove Theorem 1, we will need a bound on the size of a collection

of crossing-free simplices.

Remark. Since the total number of simplices with vertices in a fixed point set S C R? of size n is
(n*1), it follows that

f)() n IOgTL
)

if Conjecture 2 is true. We aim to strengthen this bound to 20(n7),

o

IfV C T, then
lices satisfying

L of simplicke‘sv
3. A lower bound on the number of crossings

Let £ be some collection of simplices with vertices from a labeled fixed point set S C R% of
cardinality n. Further suppose thatif oy € Land V C T, then oy € L. Let t;, denote the cardinality
of £, 0 < k < d. As before, we let 7= [d/2]. Let 29 (n, j,t;) denote the number of crossings

~-ombinatorially
of distinct pairs of j-simplices in L. Below, we shall prove a lower bound on z(@(n, j,t;) when

ravgélcland
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’ Uog k< £F) js a simplicial complex. Note that this requirement and Conjecture 2 imply that ¢;, < CcLnT
for some constants ¢, 0 < k < 7. We shall need the following lemma which can be found in [4,5].

Lemma 3. For k; + ky > d, let Ay C R? be a ki-simplex that improperly intersects a ka-simpley

Ay C RY. Then there exists an li-face o1 of Ay and an ly-face oy of Ay such that £y + £y = g and
o1 crosses o».

Using Lemma 3 and Conjecture 2, we give below a bound on the number of J-simplices in £ if g
two j-simplices of £ cross. :

Lemma 4. If Conjecture 2 is true then the Jollowing holds. If t;, < cyn” for some constants Ch,

0 < k < j, then there exists a constant ¢ so that if t; > cn’, then there exists a pair of crossing
j-simplices in L. '

Proof. Conjecture 2 guarantees a pair of improperly intersecting j-simplices if t; > b;n” for some
constant b;. Suppose that there is no crossing pair amongst the t; j-simplices in £. The outline of the
proof is the following. We shall remove from £ one of the two Jj-simplices involved in a non-crossing
intersection. We show that we remove at most byn” J-simplices by this process, for some constant b,
At the end, we are left with at least (c—b,)n” j-simplices such that no two of them have a non-crossing
intersection. If ¢ — b, > by, then Conjecture 2 contradicts the supposition that there is no crossing pair
of j-simplices.

We remove j-simplices involved in non-crossing intersections according to the following procedure.
We let £’ denote the current set of J-simplices; initially, £’ is the same as £U), but it changes as
we remove j-simplices. We are done when £’ does not contain a pair of improperly intersecting
J-simplices. Let o7, 0y € L' be a pair of improperly intersecting j-simplices. By Lemma 3, there
exists a face ox of oy which crosses a face oy of oy. Let I = U N'V. Observe that I is non-empty
since otherwise oy and oy cross. Let Iy = I N X and Iy = INY. We have two cases: (a) Ix
or Iy is empty, (b) both Ix and Iy are non-empty. We remove improperly intersecting pairs in two
phases. In phase (i), the pairs that satisfy (a) are removed and in a subsequent phase (ii), the rest of
the improperly -intersecting pairs (which satisfy (b)) are removed.

Phase (i). Without loss of generality assume that Ix = (. Let

Yy ={oz € L' | 0z is incident to ox}.
Phase (ii). Let
Yy ={oz € L' | 0z is incident to ox}.

In each phase, we remove all simplices in Xy from £. In phase (i), we charge oz_y one unit for
the removal of every j-simplex oz € Xy and in phase (ii), we charge oz_y for the removal of every
Jj-simplex oz € Yy. Below, we show that no simplex is charged more than a constant number of
units.

Consider a simplex oz_y charged at some step during phase (i). Let 1 = ZNV. Then Z -V =
Z —I. In phase (i) we assumed that Ix = ) and so it follows that X NV = ( and hence o - is a face
of oz_5. We are guaranteed that I; is non-empty since otherwise oz and oy cross. First, we show
that oz_, is never charged at a later step. Suppose oz_ 1, is charged at a later step for the removal
of some simplex oz from Xy. Irrespective of whether this happens in phase (i) or phase (ii), 0z-I




at iy < cppT
nd in [4,5],

a ky-simplex
- Eg =d and
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But then oz would be removed from L' when Xy was processed. So, oz—r, cannot

e charged at a later step. This also means that oz_y, was not charged by an earlier step. Finally, it
|V|) = (/1) units.

clear that the step of removing the simplices in Xy can charge oz_j, at most (l Il |73

Now consider a simplex oz_y charged at some step during phase (ii). Because of the above
rgument, oz_y was not charged during phase (i). Let I» = Z NY. I, must be non-empty since
therwise oz and oy intersect improperly and Iy = I, = ( satisfies condition (a) implying that oy
hould have been removed from Xz during phase (@). Since ox and oy cross, we have XNY =0
and so oy isaface of 0z—y = 0z-I- Now oz_1, cannot be charged at a later step for the removal
f some simplex oz from Xy because if oz, is a face of oz, then oz would be removed from £’

hen Xy was processed. This also means that 07—z, was not charged by an earlier step in phase (ii).

As before, the step of removing the simplices in v can charge 07—z, at most (m) = (jl}tll) units.

Let b3 = D o<k« Ck- SINCE the size of Upgr<; £%) is at most byn7, it follows that the total number

f j-simplices removed is at most byn”, where by = 29Flp;. O
Now, we are ready to prove a lower bound on z(? (n, g, t;).

Lemma 5. Let j > 7. If for some constants ¢, Cj—1, ti_1 < ci_n" and there exists a air of crossin
J j j j p g
i-simplices whenever t; > cn’, then there exist constants ¢, h so that

L+7;
(d) i '>, n ' n
’ (”’j’tj)/c<2j+2> (t”/<j+1>> ’

when t; > hn™. Here
j+1
= > 1.
E Ay
Proof. Since we are interested in a lower bound, we can assume that £ realizes the lower bound

for (@ (n, j,t;). Let bound denote the term

() (G0) T

We shall proceed by induction on t = %;. We choose h = ¢ + 1. We have at least t —cn” 2 n
crossings since there is a crossing for every j-simplex above cn’.

First, we dispense with the case where n is no greater than the constant ng = 2j + 2. In this case,
+is also a constant, and we can make bound < 1 by simply choosing a sufficiently small ¢. Thus,
the lower bound holds in this case since as we saw above, we have at least n” crossings. For the rest
of the induction step, we will assume that n > ng. ‘We have two cases.

Since we have at least n” crossings, it suffices to show that bound < n”. Since n > 2j + 2,

‘ (J'—Til-l) > bynd*! for some constant b. Since t < (h+ cj—1)n”, we have
T2 (h+ Cj_1)1+7j nT(it1)

bound < = bn',
OunE S €T I ) 2

where by = ¢ (h + cj—1)'T /b(lH'Vj ) is a constant. by < 1 if ¢ is small enough.
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Case 2 (induction step). ¢ > (h+cj_1)n".

Let T'(w) denote the set of J-simplices in £U) that are not incident to a vertex w e £(0) and Je
t(w) = |T'(w)|. Now t(w) >t —t;_ 1 > hn™. For every pair of crossing j-simplices A; and 4, We
count all vertices except those incident to Ay and A,. Alternatively, this count can be obtained by
summing up all crossings between J-simplices in T'(w) for each vertex w. Thus, we have

we L0

n—1 n— 1\t
>c'< . >< g t(w)“w/( ) )
) .
2+2)\ & i1

by induction, since ¢(w) > An™. Now Dower® tHw) =(n—j— 1)t. Thus

> Hw) > (ﬂ)

n
weL (0}
This implies that

_ i T4y
Dty >d— T < n 1) (M)
n—27—-2\254+2 ”(7;;1)

)
>c . — .
2j+2 (j—?—l)

By the pigeon-hole principle, it follows that there is at least one j-simplex in £) that crosses at
least z(9) (n,3,t5)/t; other J-simplices. Hence we have the following lemma.

Lemma 6. Ler Conjecture 2 hold and let J 2 7. Then there exists a J-simplex in L that crosses at
least h;t7i /n(%‘ DG oper J-simplices of L for some constant h; >0, when t = t; > hn”, where
h is the constant in Lemma 5.

4. Counting the number of simplicial complexes

Let S C R? be a labeled fixed point set of cardinality n. Let F (j) denote the set of all simplicial
J-complexes with vertices in S. Let A(F) denote the set of all J-simplices with vertices in S. For a
simplicial complex K € F(j — 1) and a collection of J-simplices T' C A(5), define

LGT,K)={KUT' |T'CT, KUT is a simplicial complex }.

Thus L(j, T, K) is the collection of simplicial j-complexes X such that J-simplices of K’ come from
T and the k-dimensional simplices of X’ are the same as those in K, 0 < k < j. Define

e .
FOLK) = mac |2,T,K)|
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and

FGity= Y, F@GLK).

KeF(G-1)

_ Observe that F(j, (;41)) = [F(5)]- We shall show that F(j,t) = 200" for 0 < j < d if Conjecture 2
~ holds. Since

o= £ 72

it follows that k4(S) = 20(n™) Thus to establish Theorem 1, we only need to prove the following
_ lemma.

Lemma 7. F(j,t) = 2°0") if Conjecture 2 holds.

Proof. We shall use induction, both on j and i. We shall show that for every K € F (7 — 1),
F(5,t,K) = 20(n™), This implies that there exists a constant ¢ > 0 such that F'(5,t,K) < 2¢n" We
shall inductively assume that

|F(j — 1] < 2 HEben,
whence it follows that
F(j,t) = Z F(j,t,K) < onT+(j—)en" gen” _ onT+jen”
KeF(G—1)
and so
| F(j)] < 2n7Hen” = 2007,

For j < 7, the number of j-simplices with vertices in S is bounded by n/t! < n”. Thus [A(j)]
is bounded by O(n7), and so the size of the power set of A(j) is at most 20(n7)_ This implies
that F'(5,t,K) = 20("") for any complex K € F(j — 1). Because of the above argument and since
|F(0)| = 27, it follows that the inductive hypothesis holds for j < 7. In the following, we consider
the case when j > 7, and induct on f.

First, we dispense with the case j = d. Let K € F(d—1). Let I' € A(d) be a collection of

~ d-simplices so that for every o € I', KU {o} is a d-complex. We claim that a (d — 1)-simplex oy of
K can be incident to at most 2 d-simplices in I'. Suppose not and let oyugp,}s TUU{p} and oyy{ps}

be three d-simplices of I" incident to oy At least two points from pi, p2 and p3, say p1 and po, lie on

 the same side of the hyperplane aff(U). But then or,(,} improperly intersects some (d — 1)-face o’

of oyufp,}> OF vice-versa. Without loss of generality, assume that o¢u{p,} improperly intersects some
(d — 1)-face o' of ayy(p,}- Since o' € K, it follows that IC U {ogu{p,} } is not a simplicial complex,

 contradicting the assumption that oyu{p,} € I". Thus at most 2 d-simplices of I" can be incident to

a (d — 1)-simplex of K. Since Conjecture 2 implies that the number of (d — 1)-simplices in KC is
O(n7), it follows that the size of I" is O(n7). For any t, F(j,t,K) < |£(j, T, K)| and so we have
F(5,t,K) = 70(n™) Ip the following, we only consider the case when 7 <j<d.

Let \; > 2 be a large enough constant (to be determined later) so that A; > h and h; > 7; /Aj, where
b is the constant in Lemma 5 and h; is the constant in Lemma 6. Recall v; = (j+1)/(j+1—7) > L.
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Fix a complex K € F(j — 1), and consider a set 7' C A(j) of size ¢ that realizes the maximup
F(j,t,KC). When t < Ajn7, the number of subsets 7" of T is bounded by 2°") The bound on
F(j,t,K) follows.
Let t > A;jn”. We show that F'(j,¢,K) < C™ f(j,t), where
.2 - 'TLT’yj /t’yj_‘
A+ , t !
C=(2);) i1/ and f(j,t) = <n_T> :
Certain useful properties of f(j,t) are discussed in Appendix A. In particular, property (P1) states
that f(5,2) < 1 for Ajn™ <t < (1), implying that F(5,t,K) = 290""). We divide the proof intg
two cases.
Case 1 (base case). /\jnT'V< <2007,
Recall A; > 2. Since the number of subsets of 7" is at most 22A77 we have

T T inT I j ! .
F(j,t,]C) <22A]‘TL < (2)\j)/\jn (t/nT)AJ V3 7 f(],t)

D16t = £, 8).

1 o
n (i

< @AM 2O

Case 2 (induction step). t > 2A;n".
Since K is a simplicial complex, by Conjecture 2 the number of %-simplices in K is O(n™) for
0 <k < j. So Lemma 6 applies with £ = U T. Let ¢ be the J-simplex in T that crosses at least
i vtV
Tns=DGH) Z X
other j-simplices of T'. We get the following recurrence:

F(j,t,K) < F(j,t—1,K) + F j,t— 227 i
j” ~ .77 b ]7 A]nTFY_']’ .

Let p=1t/n". Then 2X; < p < n/*1-7,
r)/-t')'j 7.p’7j nTYi s
b= /\jjn'rw =pn’ — ]/\jTLT’Yj = pn (1 = (73/27)p™/ 0177 [n7)
>pn" (1 —~;/A;) because p < nIt1—7
> /\jnT if /\_7‘ > 2")/]'.

So we can apply the inductive assumption and get

F,t,K) < F(G,t — 1L,K) + F( gt — 42
]77 ~ ]a ) .77 )\]’TLTrYj’

<O f(t— 1)+ f( 0 — 25
: ARy
<C™ f(4,t) by property (P5) of f(,1).
We note that property (P5) applies only when p is larger than the maximum of (2/\;)1/ % and et/ (G~ +
1/n". We can coerce p to be always larger than this maximum by choosing a sufficiently large A;
since p > 2)\;.
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To wrap up the proof, we simply choose A; large enough so that it satisfies the requirements of the

1€ MaxXimy
n above proof and so that the properties of f(j,t) discussed in Appendix A hold. O

e bound op

5. Concluding remarks

We have derived an asymptotically tight upper bound on log kg(n) based on a conjecture that
v (P1) states any si_mplicial complex embeddable m Rd.without improper intersection contains at rr}ost Q(n[d/ 2])
e proof into simplices. A natural question that arises 18 whether these bounds extend to topological simplicial
complexes. Let A1 denote a geometric (n — 1)-simplex and let £ be the collection of all j-faces
of Ap1, 0 < j<d+1 Let [ be a subcomplex of £ and let g: Ugerr @ — R4 be an embedding.
Then K = {g(o) | 0 € L'} is a topological simplicial complex in R?. The vertex set of K is
g(L' (©)). Although we assumed a linear embedding of simplices, our result is valid for any fixed map
g Uper o — R4 such that ¢ restricted to each o € £ is an embedding. However, our counting
method fails when several such maps are considered. Hence, the result does not immediately extend
to topological simplicial complexes since it 18 possible to embed the simplices of £ in R? in more
than one way.
Related to determining the number of geometric simplicial complexes is the question of determining
the number of geometric triangulations, rq(n), on n vertices in RY. Clearly, the upper bound on

s O(n") for log kg(n) holds for logrg(n), see also [4). As mentioned in Section 1, the lower bound on log ra(n) is
ses at least Q(n). Reducing the huge gap between the upper and lower bounds on log rq(n) remains a challenge
_ to date.
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1

Appendix A. Properties of f(j,t) = (t/ )"/

We shall assume that £ < nitl.

n
P1 )<l forn” <E< | .
P11 f(:1) (j L 1>
This is easy to see since ¢ /n™ = 1, and the exponent is negative.

T4

0 n
i) = = £(j . it > ey
®2) (5,1 = 5,701 > A fl.t) ifi>e n'.

del Ji=1) 1 Again, this is straightforward since

y large A .t = f<jvt>Aj7g (”j ~ Dl (ni> - 1)‘
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This implies that f(j,¢) is a monotonically increasing function of ¢ when ¢ > e!/(i—Dp7.

Yi

- - t if £ > e2/(u—1)ypT

By the mean value theorem, f(j,t)— f(j,t—1) = f'(j,¢') for some t—1 < ¢’ < t. By property (P2)
n"

f(j7t) - f(jat—' 1) > /\jW—f(jat— 1)
(P3) follows.

2

P4y f (Jst— e ) <X (.0,

Ant ) S I

where A, = (477)%" is a constant, provided \; > 2v; and 7 < j < d.
Let

Yt
- A;nTi )

Since

t’yj—l t T/(G+1-7) W
= . <1
nTi <7’L]+1 )
and A; > 27;, we have 0 <y < 1/2. As aresult, 1 + 1 < 1/(1 — p)%~". This is easy to see when
v = 2 since we have 1/(1—p)%~2 > 1 > 1 — 1. The only case when ¥; < 2 is when the dimension T
d is even and j = d. But this is precluded since j < d.
Observe that f(j,t) = (t/n™)~%/k. Also, ]

£, 41 = p)) = f<j,t - ;ﬁ:;) = a(j,t, W0, £, 1),
")

where

"/j—l
and b(],t,,u,) = ((1 — M)_I/M)’Yj/(l_lf") )

nT

N\ /)5
CL(j,t,,U) = <—>

Now,

. _ j—1 -
a(j ) = (¢/n7) T g gyt

SFU)™ since T4+p<1/(1— )%™ and f(j,¢) < 1
FG, ™ [t

We claim that
glp)=1-p)Vr <4 for0<p<1/2.

To see this, note that by Taylor series expansion

L
Ing(p) =)  —,
0 141




roperty (P2),

to see when
e dimension
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whibh is an increasing function of p > 0. Since o® is an increasing function of z, it follows that
g(p) < g(1/2) =4for 0 <p < 1/2. Now,

. _ y;—1
b(j,t7/,1,) = ((1 — M)_l/u)%/(l py"
T gince 42 (1-— Iu)—l/u

< (473')2T since 0<p<1/2 and 75— 1<

< 4/ 0=1)

£

(PS) f(jat_ 1)+f(.77t— }\’Z];,_LT.),].> < f(]at)

when 7 < j <d,
¢ > max {¥/ ("7 + 1, (2)\;)1/”“#}
and A; > 2>\;~, where . is the constant in (P4).
Because of properties (P3) and (P4), it suffices to show that
ij / nT"Y.’f

£ 4 AT AT

<l

_ which is equivalent to showing that

¢ AN 1/j
T Z /) :
s )\j — )\j

_ The inequality holds because the term on the right is bounded by (2>\’j)1/ Vi,
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