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Let R (7). Z(4 ). Z (A ,) be, respectively, the cone over R, the lattice and the cone
over Z, generated by all cuts of the complete graph on n nodes. For i > 0, let A, :={d €
R, () NZ(A ) : d has exactly i realizations in Z (#,)}. We show that Al is infinite,
except for the undecided case Ag # 0 and empty A, fori=0, n<5and fori>2, n<3.
The set 4} contains 0, 1,2c nonsimplicial points for n < 4, n =S, n > 6, respectively. On
the other hand. there exists a finite number t(n) such that t(n)d € Z (A ,) for any d € AY;
we also estimate such scales for classes of points. We construct families of points of 49
and Z. (A ). especially on a O-lifting of a simplicial facet, and points d € R (.#",) with
dip=tforl <i<n—1

1. Introduction

In this paper we study integral points of cones. Suppose there is a cone C in R” that is
generated by its extreme rays ey, ey, ..., en, all ¢; € Z".
Let d be a linear combination,
d= Z ).,~e,~. (1)

I<i<m

We call the expression a K-realization of d if 4; € K, 1 <i < m, and K is either of R,
7 Z..

If 2; = 0 for all i, then d € C, and (1) is an R, -realization of d. If A; is an integer for
all i, then d € L where L is a lattice generated by the integral vectors ¢;, 1 <i < m, and
(1) is a Z-realization of d. Obviously L = Z". If 4, = 0 and is integral for all i, we call
the point d an h-point of C. Hence h-points are the points having a Z -realization. A
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point d & C N L is called a quasi-h-point if it is not an h-point. In other words, d is a
quasi-h-point if it has IR,.- and Z-realizations but no Z, -realization.

We consider cut cones, i.e. those where ¢; are cut vectors. Let ", be the set of all
nonzero cut vectors of a complete graph on n vertices. Then R, (%",) is the cut cone.
I'he members of the cut cone R, (4,) are exactly semimetrics, which are isometrically
cmbedded into some /j-space, ie. into R" with the metric |x — yl,,- Between them, the
members of integer cut cone Z,(.4",) are exactly semimetric subspaces of some hypercube
10, 1}, equipped with the Hamming metric. In particular, the graphic metric d(G) belongs
o Z(A), (1/2)Z (A ) if and only if G is an isometric subgraph of a cube or of a halved
cube, respectively. The above equivalences explain the interest of the cut cones, such as
R.(#,) and Z,(.#,). See [12] for a detailed survey of applications of cut polyhedra. As
examples. we recall applications for binary addressing in telecomunication networks, the
max-cut problem in Combinatorial Optimization, and the feasibility of multicommodity
flows. More specifically, the integer cut cone Z.(4",) provides some tools for Design
Theory (see, for example, [9] and Section 8 below) and for the large subject of embedding
graphs in hypercubes.

In fact. those problems are related to feasibility problems of the integer program

Ai=d iezn), )

where 4 1s the n x m matrix whose columns are the vectors e;.
lu this paper we attack the integer programming aspects of the cut cones, the main
general problem of which is to give a criterion of membership in Z_(#"), # < A ,, for
metrics of given class. Examples of possible approaches to it are as follows.
I Criteria in terms of inequalities and comparisions, as in [3]: 4 = %', (n < 5); [10],
[13]: .# is a simplex, i.e. cuts of .#" are linearly independent, # = Odd.A .
I Criteria in terms of enumeration, as in [1] for (1,2)-valued d, or in [15] for d = d(G),
where G is a distance-regular graph.
3 A polynomial criterion as in [14] for graphic d = d(G) and other of d.
But in this paper we use other concepts (quasi-h-points and scales), which come from
the basic concept of the Hilbert base; see Sections 3 and 4, and 8 and 9 below, respectively.
Finally. we also address adjacent problems on cut lattices (characterization and some
arithmetic properties), and on the number of representations of a metric in Z(4",).

2. Definitions and notation

Set V= {1,.,nj, E, = {{i,j) 1 1 <i<j<n}, then K, = (V,,E,) denotes the complete
graph on n points. Denote by P, ;,. ;) = P: the path in K, going through the vertices
AT
For § €V, 3(S) = E, denote the cur defined by S, with (i, j) € 6(S) if and only if
S 7t jy I= 1. Since 8(S) = 3(V, — S), we take S such that n ¢ S. The incidence vector
of the cut 8(S) is called a cut vector and, by abuse of language, is also denoted by 5(S).
Besides, 0(S) determines a distance function (in fact, a semimetric) dss) on points of V,
as tollows: dss)(i. j) = 1 if (i, j) € (S), otherwise the distance between i and j is equal to
0. For the sake of simplicity, we set d({i, j,k,..}) = 3(i, j,k, ...).
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We use £, to denote the family of all nonzero cuts 4(S), S € V,. For any family
# < 4, define the cone C(#") = R, (A") as the conic hull of cuts in #". So, by
definition, " 1s the set of extreme rays of the cone C(4'). The cone C(") lies in the
space IR(.#") spanned by the set #". We set C,, := C(A",).

So. each point d € C(X') has a representation d = ) ¢, 4 #s6(S). Since s > 0, the
representation is called the R -realization of d. The number }_; s, , /s is called the size
of the R, -realization.

The lattice L(.#") = Z(.#"} is the set of all integral linear combinations of cuts in % .
Let L, = L(#",). The lattice L, is easily characterized: d € L, if and only if d satisfies the
following condition of evenness

dij+dy +dx =0(mod 2), forall 1 <i<j<k<n (3)

So, 27" Vit < [, <« Zrnb/2

The points of L(#") with nonnegative coefficients, i.e., the points of Z,(2¢"), are called
h-points. We denote the set of h-points of the cone C(£") by hC(X"). For d € Z(AX'),
any decomposition of d as a nonnegative integer sum of cuts is called a Z -realization
of d. An h-point of C, is (seen as a semimetric) exactly isometrically embeddable into a
hypercube (or h-embeddable) semimetric. This explains the name of an h-point.

For d € C,, define

s(d) := minimum size of R, -realizations of d,
z(d) := minimum size of Z-realizations of d if any.
Let d(G) be the shortest path metric of a graph G. We set
zy = z(2td(K,)).

For this special case, G = K,,, s(d) = s(2td(K,)) is equal to da’, := Uf;’é]’[:,l/)ﬂ.
A point d € C(.#") is called a quasi-h-point of C{(x") if d belongs to L(2#") but has no

Z . -rcalization. We set

A = C(H)NL(A) — Ly (K.

Recall (see [18]) that a Hilbert basis is a set of vectors ey,...,e; with the property that
each vector lying in both the lattice and the cone generated by ey, ...,¢; is a nonnegative
integral combination of these vectors. A(.#") = @ would mean that 2¢ is a Hilbert basis of
C(.#4"). Actually, #* would be the minimal Hilbert basis of C(#") if it is a Hilbert basis,
since .4 is the set of extreme rays of C(4") (see [4]).

Define

A(A) == {d € C(H)NL(X) : d has exactly i Z -realizations},

A=A ).
So, the above defined set A(#") is A%(#"). Define

n'(d) := min{tr € Z, :td has > i Z-realizations}

=min{t € Z, :td ¢ A*(A)forall 0 <k < i}.
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A cone C =R (X') is said to be simplicial if the set # is linearly independent; a point
d € C is said to be simplicial if d lies on a simplicial face of C, i.e., if d admits a unique
R, -realization.

Let dim % be the dimension of the space spanned by . Call e(#) := || —dim 7,
the excess of #". Set

A, =18S)eH, 1IS|=lor n—|S|=1).
For even n we also set
Event'y = {8(S) € A, 1 |S|,n—|S| =0 (mod 2)},

OddA , = {3(S) € H 'y :|Sl,n—|S| = 1 (mod 2)}.

For a subset T < V,, denote
EvenT A, ={5(S)e A, : 1SN T| =0 (mod 2)},

0ddTH , = {6(S)e A, :[SNT| =1 (mod 2)}.
So Event’, = EvenT X ,, OddA", = OddT A", for T = V,, n even.
Remark that #™, = {6(S)e A, :1¢ S} ={5(S)e 7 1S}
Denote by A5 4"+, Ji/fl(m()d % the families of o(S) € A, with |S| € {i, jn—i,n— j},
S| & {i,n— i}, min{|S|,n — S|} # i(mod a), respectively.
We write Cjj for C(47}), where a and b are indices or sets of indices.

3. Families of cuts .#" with A(') =0

Of course A(A") = @ if e(A#") = 0, ie. if the cone C(X') is simplicial. It is easy to see that
C(#"y is simplicial if and only if either [ = 1, or | =2, or (I,n) = (3,6). Also e(£"3) =0,
what is a special case of the formula

() =2""—1— <;)

Some examples of #" with a positive excess but with A(#) = @ are:

(a) A4, A5 with excess 1 and 5, respectively. The first proof was given in [3]; for details
of the proof see [10], where, for any d € C, N L,, n = 4,5, the explicit Z , -realization
of d is given.

(b) Odd.#"¢ with the excess 1. For the proof see [10].

(c) (See the case n = 5 of Theorem 6.2 below.) The family of cuts (with excess 5) on a
facet of C(#'6) that is a 0O-lifting of a simplicial pentagonal facet of C(X's).

But %'} with excess n has A(%) # @ for n > 6. Below we give some examples of

with A(#") # @, which are, in a way, close to the above examples of & with 4(4") = .

We denote by Q(b) the linear form 3=, ., bibjx; for b € Z". If 1 b; = 1, the
inequality Q(b) < 0 is called a hypermetric inequality. We call d € R""™D/2 g hypermetric
if it satisfies all the hypermetric inequalities. We denote the hypermetric inequality by

Hyp,(b). It is easy to verify that 5(S) satisfies all hypermetric inequalities. Moreover, for
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large classes of parameters b (see [4], [6]) Hypa(b) is a facet of C(#",). The only known

case when a hypermetric face is simplicial is (up to permutation) Hyp,(12,—1"3 n — 4),

n > 3, and (its ‘switching’ in terms of [6]) Hypn(—1,1""%,—(n — 4)). Call the facet

Hypn(12.—1""% n — 4) the main n-facer. Call the facet Hyp,(12,0¢, —1""*=3 n —k — 4) the

k-fold 0-lifting of the main (n-k)-facet. It is a facet of C(J¢,), because every k-fold O-lifting

of a facet of C,_i is a facet of C, (see [4]). We call 1-fold O-lifting simply O-lifting. We

list, up to a permutation, all facets of C(,) for 3 < n < 6:

— The unique type of facets of C(#3) is the main 3-facet (triangle inequality);

— The unique type of facets of C(#'4) is the main 4-facet (which is the O-lifting
Hyvps(—1,12,0) of a main 3-facet);

— All facets of C(4's) are 2-fold O-liftings of a main 3-facet (i.e. O-lifting of a main
4-facet), and the main 5-facet Hyps(1°, —1%), called the pentagonal facet;

— All facets of C(A7g) are: 2-fold 0-liftings of a main 4-facet, 0-lifting of a main 5-facet,
the main 6-facet Hypg(2, 1,1, —13) and its ‘switching’ Hype(—2, —1, 14).

Lemma 3.1. If % is a family of cuts 5(S), IS| < (n/2), lying on a face F of C,, the family
A=A US(n+1)DIU{SU{n+1}):8(S) e A}
is the family of cuts lying on a 0-lifting of the face F. If, for the above A", C(X') is a

simplicial facet of C,, we obtain, for n > 4,

e(A") =n(n—13)/2.

Proof. If C(xX') is a simplicial facet of C,, then dim %" = |#7| = (5) — 1. Obviously,
|#"} = 2|4\ + 1. Since " is a simplicial facet of C,yi, we have, dim X" = (";’1) —1
also. Hence

oA’y = |#'|—dim.x"
= Q¥ +1)—dimx"

= 2((3)—1)“—(("*2”1)—1)

= n(n—3)/2.
O

Recall that A(X) = 0 for A = H's, AL, HL A3, A = 0ddA s, and for the family of
any (except triangle) facet of %, since 2% is simplicial for i = 1,2,3, and A’s, OddA'¢
are examples given at the beginning of this section.

4. Antipodal extension

A fruitful method of obtaining quasi-h-points is the antipodal extension operation at the
point n. For d € R""~1/2 we define ant,d € R""tD/2 by

(antyd);; = dij for 1 <i<j<mn,
(antyd)ppp1 = &,
(antyd)jpy1 = —djfor1 < j<n—1
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For # < .4, define
antA” = {ant|6(S) : 6(S) € A} U (6(n+ 1)}
Note that
ant16(S) = o(S) if n € S, and ant;8(S) =d(SU{n+1})ifngs.
Hence
ant ¥ = (5(S) 1 0(S) € A neSIUSSUn+1}):5(S) e A ngS).
Observe that if d € C(#") and d = Z(its)ef Asd(S), then

ant,d = > Asant,d(S) + (1 =Y~ As)d(n + 1)
MS)ex s
= ) santid(S)+(x— Y As)dln + 1). (4)
s(Syex” S

Also. if
ant,d = Z Asant10(S) + Apd(n + 1),
s(S)en
then x =3 ¢ 45 + 20, and d = 375, - 45(S) is the projection of ant,(d) on R**=1/2,
So ant,d € R(ant.#") if and only if d € R(¥").
Note that the cone R(ant.#") is the intersection of the triangle facets Hyp,1(12,—1,,0"2),
where b, = b, =1, bj=—land b;=0fori#j 1<i<n—1.

Proposition 4.1. (Proposition 2.6 of [8])

(1) antyd € Loy if and only if d € L, and v € Z,

(1) antyd € Cyyy if and only if d € C, and « > s(d),

(1) antyd € hCyyy if and only if d € hC,, and « > z(d),

(V) antyd is a simplicial point of C,yy if and only if d is a simplicial point of C, and
x> s(d). O

Clearly, s(ant,d) = « if ant,d € C,4; and z(ant,d) = « if ant,d € hCpyy. Also, ant,d € Al
fori>0ifand onlyifd € Al, a € Z,, o > z(d).

n®

Proposition 4.1 obviously implies the following important corollary.

Corollary 4.2. Let d € hC,. and o be an integer such that s(d) < o < z(d). Then ant,d €
Alant.x')) = A2+1~ ie. ant,d is a quasi-h-point in C, ).

5. Spherical r-extension and gate extension

Let d € C,yy. We write d = (d°, d'), where

doz{d,-jzlgi<j§n}, dlz{d,',,hq ZlSiSn}.
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A point d € C,yy 1s called the spherical t-extension, or simply t-extension, of the point
e C, ifd=(d"d") and d}, ., =t for all i € V,. We denote the spherical t-extension of
d” by ext,d’.

Let j, be the n-vector whose components are all equal to 1. Then for the r-extension
(d".d"), we have d' = tj,

Proposition 5.1. ext,d is a hypermetric if and only if

(1) dis a hypermetric,
() 1= (3 bibidi)/Z(Z— 1)
for all integers by,...b, with £ =31 b; > 1 and g.cd. b; = 1.

Proof. If ext;d is hypermetric, then Y~ bibj(ext.d);; < O for any by,...b,, by € Z; with

Zb[ = 1, ie.
D bibdi+ Y bibut 0.
I<i<j<n I<i<n
Since b, = 1 — X, the second term is equal to —tZ(X — 1). We obtain (i) if b,y = 0 or
1: otherwise £(X — 1) # 0, and we get (ii). OJ

Corollary 5.2. ext,d is a semimetric if and only if d is a semimetric and ¢t > (1/2) max;,d
In fact, apply (ii) above to the case b; = b; = 1, b,»; = —1 and by = 0 for other b’s.
As with Proposition 5.1, one can check that ant,d is a hypermetric (a semimetric) if and

only if d is a hypermetric (a semimetric, respectively) and

ij-

(20 ) bibjd)/E(E = 1)+ bidin/Z

I<i<j<n |

for any integers by,...b, with £ :=3"1h; > 1 and gcd. b; =1

1 .
(t= Emaxlsi<j§n—l(dij + diy + dj), respectively).

There is another operation, similar to antipodal extension operation. We call it
the gate extension operation at the point n (called the gate). For d € R""1/2 define
gat,d € R"=1/2 by

(ga[xd)ij = dij for 1 <i< J <n,
(gatxd)il,r1+l =,
(gatyd)insy =a+dy forl <i<n-—1.

The following identity shows that gar,d is, in a sense, a complement of ant,d:

ant,d + gaty,_,d = 2ext,d. (5)
Recall that we take S in 4(S) such that n ¢ S. Hence, for # < ., we have

gat A = A U {d(n+ 1)}

Actually, ant ¥, = OddT A 11, gat Ay = {6(n+ 1)} U EvenT A iy, for T = {n,n+ 1}.
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Note that the cone R, (gar #") is the intersection of the triangle facets Hyp,ii
(1;.0"2, =1, 1,41), where by = b, =1, by=—1, b;=0for j#i, 1<j<n—1.

It is clear that any R,-realization of gat,d (if it belongs to C,y1) has the form
ST AsO(S) + ad(n + 1) where n+ 1 ¢ S, and where the above realization is any R -
realization of d. So, gat,d € Ln+1(Cn+1shCn+lsA£1+17 respectively) if and only if d €
LA Cy, hCyy, A, respectively) and o € Z(R,Z ., Z, respectively).

Also, gat,d 1s a hypermetric (a metric) if and only if « € R, and d is a hypermetric (a
metric, respectively).

Hence if « € Z,, we have

gat,d € A, <= dc A, (6)

In particular, gat,d is a quasi-h-point if and only if d is.
The following facts are obvious.
1 If d; is the t;-extension of d°, i = 1,2, then d; +d, is the (t; + t2)-extension of df + .
2 If d° lies in a facet of the cut cone, the t-extension of d° lies in the O-lifting of the
facet.
We call a point d € C, even if all distances d;; are even.
Let d = > ¢ As6(S) be a Z, -realization of an h-point d. We call the realization (0,1 )-

realization (24 -realization) if all g are equal to 0 or 1 (are even, respectively). We
have

Fact. Ler d be an h-point. Then d = dy + d,, where di has a (0,1 )-realization, and d; has a
27, -realization.

Obviously, if d has a 2Z, -realization, d is even. But if d is even, it can have no
27Z . -realizations.

The following Proposition is an analog of Proposition 4.1.

Proposition 5.3.

(i) ext,d € Lyy, if and only if d € 22"V gnd t € Z,

(i) extd € Cyuyy if d € C, and 2t = s(d),

(iit) suppose that d has 2Z  -realizations, and let z...,(d) denote their minimal size; then
ext,d € hC,yy if d € hC,, and 2t > zpen(d).

Proof. (i) is implied by the trivial equality d; 1 +djpp1 +diyy =2t +dyj, 1 <i< j<n
From (5) we have ext,d = (1/2)(ant,d + gaty _,d). Taking o = s(d) and applying (ii) of
Proposition 4.1 we get (ii).
Taking o = z..,(d), applying (iii) of Proposition 4.1 and using ant, . _ . gaty .z, . @d €
27 (A ), we get (li1). U

Define ext!d = ext,(ext! 'd), where ext!d = ext,d.
Proposition 5.4. If 2t > s(d), then ext]'d € Cyyw for any m € Z, and

max(s(ext”'d), 2t — < s(ext™d) < 2t — 27"(2t — s(d)).

LI
[m/2]
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Proof. From Proposition 5.3(ii) we get

1 1
s(ext,d) < Es(ants(d)d + gaty—sad) =1t + Es(d) <2t

By induction on m, we obtain ext!"d € C,,,, for all m € Z,, and the upper bound for
s(exty'd).

The lower bound is implied by the fact that the restriction of ext™d on m extension
points is td(K,,). Since s(td(K,,)) = (1/2)d’, (see Section 2), we have
1 tm(m—1)

) ) I
S(ext?) 2 s(d(K)) = 3 1 T ey = 2 =

Remark. So, if s(d) < 2t, then lim,,_,o, s(ext™d) = 2t.

Probably, there exist mg = my(t, d) such that s(ext™d) = 2t for m > my,.

We conjecture that ext"d ¢ Cpy, for m > my if s(d) > 2t. For example, if t = 1 and
d = d(G) (d(G) is the shortest path metric of the graph G), then it can be proved that
my = 2.

If the conjecture is true,

s(d) = 2min{t : ext]'d € Cpypy for allme Z..}.
Recall, that Proposition 4.1(ii) implies
s(d) = min{o : ant,d € Cy11}.

In terms of ext)'d we also have analogs of (i) and (iii) of Proposition 4.1.

Proposition 5.5.

(1) ext]'d € Ly for all m € Z,. if and only if d € 2Z""=1/2 gnd t is even.
(1) ext]'d € hCyyp, for all m € Z. if and only if t is an even positive integer, and extt]/zd €
hCn+1-

Proof. The evenness of ¢ follows from ext’d € L,.3. So, (i) is implied by Proposition
5.3(i).

Recall the result of [S] that ¢ | (i) is the unique Z,-realization of td(K,) for even
t and m > (12/4) + (t/2) + 3. Using this fact, we get that any Z, -realization of ext}'d
contains t/2 cuts 8(i) for some i if m is large enough. ]

6. Quasi-h-points of 0-lifting of the main facet
Consider the main facet
Fo(n) = Hyp,(1>,—1"",n — 4) = Hyp,(b°),

where by = b3 = 1, b? = —1, 3 <i < n—1, b = n—4. The cut vectors 5(S) lying in the facet
are defined by equations b(S) = }_,.¢ b; = 0 or 1. We take S not containing n. Then S € &,
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C2L L 20120 B<i<sn—1),{12ij} B3<i<j<n—1).
We set
nn—1)
2
Every n-facet contains at least m cut vectors. Since the main n-facet contains exactly m
cuts, it 1s simplicial.
The 0-lifting of the main facet is the facet

m=|9| = — 1

F(n) = Hyp,41(17,—1"7,n — 4,0).

Besides the above cuts §(S), S € ¢, it contains, according to Lemma 3.1, only the cuts
HSUn+1}4),S €, and d(n+ 1).

Note that A(#") = @ for the main n-facet (as for any simplicial C(%")).

Now we consider even points having no 2Z_ -realization. The simplest such points are
points having a (0,1)-realization. We call these points even (0,1 )-points.

Let d" € Fo(n) be an even h-point, and let ZSE_% /s0(S) be one of its Z , -realizations.
Consider a minimal set of comparisions mod 2 that As’s have to satisfy. The comparisions
are implied by the conditions d;; = 0 for all pairs (ij). Since d° € L,, we have dij = dy+dji
(mod 2) for all ordered triples (ijk). Hence independent comparisions are implied by the
comparisions d;, = 0 (mod 2), 1 < i < n— 1. The comparisions are as follows. (For the
sake of simplicity, we set A;;; » = 4; and omit the indication (mod 2)).

1

Ali + Ax + 2 + Z /112,-]- =0,3<i<n-—1,

3<j<n—1,j#i
A+ E (A + A1) + E A12ij =0, (7
3<i<n—] I<i<jen—1
A2+ E (A2 + A2 + E A12ij = 0.
3<i<n—1t 3<i<j<n—1

The system of comparisions (7) has n — 1 equations with m = n(n — 1)/2 — 1 unknowns.
Hence the number of (0,1)-solutions distinct from the trivial zero solution is equal to

n—1

2;11»(}1*1} — 1= 2( 2 )‘1 — 1.

This shows that all points of Fy(3) have 2Z. -realizations. The only even (0,1)-points of
Fo(4) are 2 points 2d(K3) with dj3 = 0 or dp; = 0, and the point 2d(K4 — Py 7). There are
31 even (0,1)-points in Fy(5).

Since there are exponentially many even (0,1)-points in Fo(n), we consider points of the
following type and call them special.

For these points the coefficients /g are

A=ay, lh=ay Ay =by, ly=by, lpy=c,3<i<n—1,

Apij=c, 3<i<j<n—1

Here a;.b;,¢;, i = 1,2, are equal to O or 1.
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If we set
nn—1)

=n-—3,1= ,
k=n R >

then for the special points, (7) takes the form

by +bhy+ci+(k—1ec2 =0,

k
ar +k(by +c1) +

k(k—1)
2
Since we have 3 equations for 6 variables, we can express 3 variables ay, as, ¢, through the

other 3 variables by, by, ¢5.
There are 4 families of the solutions of the system depending on the value of k (mod
4). The solutions are as follows (undefined equivalences are taken by (mod 2)).

ar +k(bs + 1)+

CzEO.

kEO(m0d4),a1=a2=0, ClEb1+b2+6‘2,

k=1 (mod 4), a; = by, a» = b1,¢; = by + by, ¢, arbitrary,
k=2{(mod 2),a1=a)=¢p, ¢ =b;+by+ 03,

k=3(mod4), a1 =by+cr, ax=bi 4¢3, ¢c; =b; +bs.
In each case we obtain 7 nontrivial special even (0,1)-points.

Turning our attention to the definition of &, for a = 0,4, we denote by A4, A¢ the
k-vectors with the components /",f‘j, 3<j<n—1,i=1,2, i‘l‘zj, 3 < j < n—1, respectively.
Similarly, 4f is the [-vector with the components )“1‘2,»]-, J<i<j<n—1

In this notation a special point d° has a (0,1)-realization 2° such that 1? = a;, A=
biji, i=1,2, /1? = ¢y Jx and ;? = C2J).

Recall that special points are simplicial. Therefore their size is equal to > ¢ . As. We
show below that the t-extension of 2 special points with (a,, az, b1, b3, ¢1,¢2) = (1,1,0,0,0, 1)
and (0,1,0,1,1, 1) are quasi-h-points for n = 2 (mod 4).

For n = 6 the points d° are d(K¢ — P3) and antg(ext4d(K4)). Another example of d € A
is antg(extsd(Ks)) = d>* in terms of Corollary 6.6 below.

Proposition 6.1. Let d° be one of the 7 special points of the main facet Fo(n). Let t be a
positive integer such that t > (1/2)> ¢ . 43. Then the t-extension of d° is an h-point if
n#2 (mod 4), and if n =72 (mod 4), then there is a point d° such that its t-extension is a
quasi-h-point, namely the point with (ay,az, by, ba, c(,¢2) = (1,1,0,0,0, 1).

Proof. Recall that we can take & such that n ¢ S for all S € .
We apply equation (2) to the t-extension d. In this case the matrix A takes the form

B B 0
A_(D D jn)

Here the first m columns correspond to sets S € &, the next m columns correspond to
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sets SU {n+ 1}, S € ¥, and the last (2m + 1)th column corresponds to {n + 1}. The size
of the matrix B is (}) x m, and D,D are n x m matrices such that D + D = J, where J is
the matrix all of whose elements are equal to 1. Each column of the matrix J is the vector
Jn consisting of n I’s. In this notation, we can write J as the direct product J = j, x j,Z:.
Hence for any m-vector a we have Ja = (j,, a)j,.

The rows of D and D are indexed by pairs (i,n + 1), 1 < i < n. The S-column of the
matrix D is the (0, 1)-indicator vector of the set S. Since n ¢ S for all § € &, the last row
of D consists of 0’s only.

We look for solutions of the system (2) for this matrix A such that 4 is a nonnegative
integral (2m+1)-vector. We set

Us = ;“SU{n+1}’ Se, Y= i{n+1}'
Then the system (2) takes the form

B4+ p) =d°,

D(i—p)+ (3 + (o t))jn = d".

Now, if we set A* = A4+, A~ =41 —p, y1 =79 + (jm #), and recall that d' = tj,, we
obtain the equations

Bt =d°,

D™+ V]jn = tjn- (8)

Recall that the last row of D is the O-row. Hence the last equation of the system (8) gives
v = t, and the equation (8) takes the form

DA™ =0.

A solution (A%, A7, 7y) is feasible if the vector (4, u,7) is nonnegative. Since
S+ - T ;
(A7 + A7), u=§(/1 — A7), and y =t — (jm, 4
a solution (A%, A7, y;) is feasible if
20, 1471 <At and £ > (i, ). )
Since the main facet Fy(n) is simplicial, the system BA* = d° has the full rank m such
that 27 = 2% is the unique solution.
We try to find an integral solution for A~. By (9), we have that |A~| < 4% This implies

that 45 # 0 only for sets S where 4§ # 0. Since A° is a (0,1)-vector, an integral 15 takes
the value 0 and +1 only.
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We write the matrix (D, j,) = D, explicitly:

Lo jr oo g
p | o1 o gl
"1 00 I I Iy G i

00 0 0 0 0 1

The first, the second and the last rows of the matrix D, are indexed by the pairs
(Ln+1),2,n+1) and (n,n + 1), respectively. The third row consists of matrices with k
rows corresponding to the pairs (i,n+1) with 3 < i < n—1. The columns of D, are indexed
by sets S € SoU{n+1} in the sequence {1}, {2}, {1i},{2i},{12i}, 3<i<n—1, {12ij}, 3 <
i<j<n—1, {n+1}. I is the k x k unit matrix, and G, is the k x [ incidence matrix of
the complete graph Ky. G contains exactly two s in each column, i.e. jT G, = 2jT. The
matrix D, i1s an obvious submatrix of D,, for n' < n.
In the above notation, the equation D/~ = 0 takes the form

ARG+ + A =0,i=1.2,

A+ A + A7 + Gdr =0,
Since j Gy = 2j[. the last equality implies that
W On+ A+ ) + 254 =o0.
Hence the above system implies
A+ A3+l =0

Recall that we look for a (0,+1)-solution. Note that if )LS+ =1 and A5 = 0, then
4s = us = 1/2 is nonintegral. Hence we shall look for a solution such that Ay = ilg. So,
such a solution is nonzero where A} is nonzero.

The main part of the above equations is contained in the term GyA;. We can treat
the (£1)-variables (A7) = A1y; as labels of edges of the complete graph K,. Now the
problem is reduced to finding such a labelling of edges of K, that the sum of labels
of edges incident to a given vertex is equal to a prescribed value, usually equal to 0 or
+1. The existence of such a solution depends on a possibility of factorization of K, into
circuits and 1-factors.

Corresponding facts can be found in [16, Theorems 9.6 and 9.7].

A tedious inspection shows that a feasible labelling exists for each of the 7 special
points if n # 2 (mod 4) (i.e. if k % 3 (mod 4)), and for 5 special points if n = 2 (mod 4).
For the other point with (ay,az, by, b3, ¢1,¢2) = (1,1,0,0,0, 1) there is no feasible solution,
i.e. there are S such that A7 = 0 # 42,

Now the assertion of the proposition follows. J

In the table below, t-extensions of some special points are given explicitly. The last
column of the table gives a point of 43, _, for any m > 2.
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nimod 4) = 3 0 1 2
diz n—3 0 n—1 2

diGsisn=l (+1 (7 (h+2 ()
i 3<i<n—1) (";3) (n;4) (";3) +1 (,154) 41

dii#j))3<ij<n—1) 2n—4) 2n-75) 2(n—4) 2(n—5)
i () () )+ () +1
da () ) () ()1

di, (3<i<n—1) n—73 n—4 n—73 n—4
Ay (i # 1+ 1) "N72 0 ()2 () 432 () +3)2
Remarks.

(a) For the smallest possible n = 2(mod 4), and n > 6, (i.e, for n = 6) distance d is the
3-extension of d¢ = 2d(Ks — P(162)), corresponding to the special point (1,1,0,0,0,1). On
the other hand, the 3-extension of 2d(Ks — P »5)) by the point 6 is an h-point.

For n = 0 and n = 3 (mod 4) this d is an antipodal extension at the point 2, i.e.,
diy + dy = dy, for all i.

(b) If we consider /) such that ).(1’2ij =0 or 1, the problem is reduced to a factorization of
the graph whose edges are pairs (ij) such that ;“(1)2ij £ 0.

{c} In fact, we can take ¢ slightly smaller. By (9), we must have t > (j,, u). Let r be the
number of S € ¥ such that is = 1. Then (ju, 1) < (1/2)(X sy, 43 — 1)-

Proposition 6.2. Let " be the family of cuts lying on the 0-lifting F(n) of the main facet
Fo(n). Then A(A") =0 if and only if n < 5.

Proof. By Lemma 6.1, F(6) has quasi-h-points, and (6) implies that quasi-h-points exist
in all F(n} for n > 6. We prove that there is no quasi-h-point on F(n) for n < 5.

We use the above notation and the equations B(A + ) = d°, D,(A — p) + y1j, = d.
The first equation has the unique solution A + u = A°. Hence 2D,A — D, A° + y,j, = d',
where 71 =7 + (jimg» £°) — (jime» 4)- The last row gives y; = d,,..;. Hence the ith row of the
equation with D, takes the form

1 ,
(Dnh); = 5((Dnﬂo)i +dipsr1 — dppy)-

It can be shown that the condition of evenness (3) implies that the right-hand side is an
integer for n < 5. Moreover, for n < 5, the matrix D, is unimodular, i.e., |detD’| < 1 for
each n x n submatrix D’ of D,. Therefore any solution 4 is an integer. This implies that u
and 7 = dy i1 — (Jim» 4) are integers, too.

So, all points d € L, N F(n) have a Z_ -realization (4, u,7) for n < 5. O

We now give some other examples of Z, -realizations of t-extensions of even h-points.



Lattice Points of Cut Cones 207

Using the fact that ZieVn 6(i) 1s the unique Z, -realization of 2d(K,) for n # 4, (see {5]),
we obtain the following lemma.

Lemma 6.3. The only Z,-realizations of ext,(2d(K,)), n > 5, t e Z,., are

(1) D D)+ =1)d(n+1) for t > 1,
eV,
(1 > S nt1)+H(t—n+1)d(n+1) for ¢ > n—1.
ieV,

Proof. Note that d° = 2d(K,) is an even (0,1)-point of C,. The coefficients of its (0,1)-
realization A° are as follows: A3 = 1if S ={i}, I <i<n—1,0rS =V, 4, and 2} = 0 for
other S. (Recall that we use S such that n ¢ S.) Since it is a unique Z, -realization of d°,
the equation BA™ = d" has the unique integral solution At = A°,

The submatrix of D consisting of columns corresponding to S with A # 0, and without
the last zero row, has the form D = (I,_, j,—1). Hence the unique (+1)-solutions of the
equation D/~ = 0 are as follows:

M =L1<i<n-1 4y =-1 and
) ==L 1<ig<n—1, A"I’,H =1.
Since (. ) = 1 in the first case, and (j,, ) = n— 1, in the second, we have y =t — 1,
and ; =t —n+ 1, respectively. These solutions give the above Z | -realizations (1) and (1').
U

If we define d™ = antyext,(2d(K,_1)), we obtain

d;;'=2, I<i<j<n—Ldy=dp=t 1<i<n, dyp =28

If we apply (4) to (1) and (1) of Lemma 6.3 (where n is interchanged with n — 1), we
obtain (2), and (2) with n and n + 1 interchanged, of Lemma 6.4 below. Summing these
two expressions, we obtain the symmetric expression (3) of that lemma.

Lemma 6.4. For d™ the following holds

(2) d* =" 3 n+ D)+t —1)8(n) +(t—n+2)d(n+1),
i€V,
(3) 20 = (30 m)+0(i, n+ 1)+ (2 —n+ 1)(S(n)+8(n+1).
ieVy_q

Lemma 6.5. For n > 6, d*" is h-embeddable if and only if t = n—2. Moreover, for t > n—2,
the only Z,-realizations are (2) and its image under the transposition (n,n+1 ).

Proof. In fact, if we use Lemma 6.4, the restrictions of an h-embedding of d* onto
Vis1 — {n} and V, has to be of the form (1) and (1) or (1) and (1). ]

The realizations (2) and (3) of Lemma 6.4 imply
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1,2

Corollary 6.6. d™ is a quasi-h-point of C, and (antC,) N C.h

[(n—1)/2] <t<n—3, n>3. .
In fact, for n = 7 we only have to prove that 2d(K¢ — Ps¢)) is a quasi-h-point of scale
2, and this will be done in Section 7. For n > 8 we use (2), (3) and Lemma 6.4,

having the scale 2 if

Remark. d"~!? = 2d(K, — P,) and it is a quasi-h-point for n > 6. Its scale lies in the
segment [[n/4], n/2). &2 € Z(antA",_ N A7) (see Remark (c) following Lemma 7.1
below) for n > 6, but d"~12 € Ry (antA ,_ N A" 1?) only for n = 6.

The cone (antC,—1) N CH? has excess 1. It has 2n—2 cuts 6(i,n— 1), 8(i, n), 8(n — 1), 5(n),
for i € V,_», its dimension is 2n — 3, and there is the following unique linear dependency:
D sln—1)+(n+43(m) =Y 8(i,n)+(n—43n—1).

i€V,_z i€Vn
The two sides of this equation differ only by the transposition (n—1, n).
The number of quasi-h-points in (antC,_1) N C}? is 0 for n = 5 (since it is so for the
larger cone Cs) and > n— 2 — [n/2] = {n/2] — 2, which is implied by Corollary 6.6.
Perhaps, it is exactly 1 for n = 6,7.

7. Cones on 6 points
Consider the following cones generated by cut vectors on 6 points:
Cs, C¢, C2 = EvenCq, C}, C;?, C* = 0ddCs, C¢°, antCs.

Recall (see Section 3) that the facets of Cg are, up to permutations of Vg, as follows:
(a) 3-fold O-lifting of the main 3-facet, 3-gonal facet Hypy(12, —1,03),
(b) O-lifting of the main 5-facet, 5-gonal facet Hypg(13, —12,0),
(c) the main 6-facet and its ‘switching’ (7-gonal simplicial facets) Hypg(2,1%2,—13) and
Hyps(—2,—1,1%).
Let
de = 2d(Ks — Ps6))-

Recall that (up to permutations) d is the only known quasi-h-point of Cg.
The following lemma is useful for what follows. It can be checked by inspection. Recall
that V, = {1,2, ... n}.

Lemma 7.1.
(1) All Z . -realizations of 2dg are

(1a) 2ds = Y (8(i,5)+5(i,6)) € Zy(H'2) = Z(Even's),
i€Vy
(1b) 2ds = (5(5)+8(6)+ > _(5(i,4,5)+0(i,4,6)) €
i€lVs

Zi(H§) = Z(0dd A ),
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(L) 26 = 5(5)43(j,5)+ Y (8(i,),6)+(i,6)) for j € Va,
i€V4—{j}
(2) Some representations of de¢ = 2d(K¢ — P(s¢)) in Lg are

(2a) ds = 3(5)+Y_ 8(i,6)—3(6) € Lg”,
icVy
(2b) ds = 25(5)+25(6)+ > _ 6(i)—58(5,6) € Lg?,
i€Vy
(2¢) de =" 8(Va—{i})) —5(5,6)— > (8(i,i+1,6)—d(i,i+ 1)) € L.
i€V, icVy

Here i+ 1 is taken by mod 4.

Remarks.

(a) The projection of 2(a) onto Vg — {1} gives the Z,-realization 2d(Ks — Pse) =
3(5) + 2534 0(i,6); it and its permutation by the transposition (5,6) are the only
Z, -realizations of the above h-point.

(b) “Small’ pertubations of d¢ do not produce other quasi-h-points. For example, one can
check that

ds +0(1,2) = 6(1) + 6(2) + 6(6) + 6(1,2,5) + 6(3,5) + 6(4,5);

it and its permutation by the transposition (5,6) are the only Z,-realizations of this
h-point.

(c) Actually, 2(a) is the case n = 5,0 = 4 of
ant,(2d(K,)) = )+ > S(in+1)—(n—w)d(n+1)

i€V,

(i) + (5 — D(S({n}) + 8({n + 1)) — 8({n,n + 1})).
2

i€ Vn+l

I

(d) One can check that LY! ¢ L, strictly, and 2Z'5 = LZH strictly. Note that Lé’3 = Lzﬂ.
On the other hand, LY = L, if and only if (i, j) = (1,2).
(e) By I(a) and 1(b) of Lemma 7.1 we have

2ds € hC? and 2ds € hC)?,

but 2ds ¢ L2 U Ly = L(EvenAs) U L(Odd.A's).

We call a subcone of C, a cut subcone if its extreme rays are cuts.

Lemma 7.2. Let d € A(X") and let % (d) be the set of cuts of a minimal cut subcone of C,
containing d. Then

(i) de€ A7) for any A" such that A (d) = A" = A,

(i) e(A") =1 implies A" = A"(d).
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Proof. In fact, d ¢ Z.(#'(d)) implies d ¢ Z(A#"), and d € Z(H(d)) N C(AH(d)) implies
d e Z(#"yNn C(A"), and (i) follows. If e(#”) = 1, any proper cut subcone of C(X4") is
simplicial and has no quasi-h-points. Ol

Now we remark that the cone Cé’z Nant Cs has excess 1, since it has dimension 9 and
contains 10 cuts 6(5),0(6),3(i,5),0(i,6), 1 < i < 4, with the unique linear dependency

Z(é(i, 5) — 6(i, 6)) = 2(5(5) — 6(6)).

i€V,

Proposition 7.3. dg = 2d(K¢— P>) € A(A ') and it is a quasi-h-point of the following proper
subcones of Cg: Cé‘z, C§‘3, ant Cs, the triangle facet Hyp(12,—1,0%) and Cé’z Nant Cs
(which is a minimal cut subcone of Cg containing d ).

Proof. The point dg, is the antipodal extension ants(ds) of the point ds = 2d(K5).
The minimum size of Z,-realizations of ds is equal to z(ds) = z! = 5, since its only
Z  -realization is the following decomposition 2d(Ks) = Z,-Szl o(i).

The minimum size of R -realizations of ds is s(ds) = al = 10/3, which is given by the
R -realization ds = (1/3)/ leiqss o(ij).

Since 10/3 < 4 < 5, we deduce that dg = 2d(K¢ — Pise) & Z1(Ce).

But d¢ € Ce N Lg, from (1) and (2) of Lemma 7.1. So, ds € Ag. Now, from 1(a) and (2)
of the same lemma, we have dg € C(,}{/é’2 Nant A '5)N L(Jifé’2 Nant A’s), and so, using (ii)
of Lemma 7.2, we get that fé’z Nant A 5 is a minimal subcone % '(d).

Using (i) of Lemma 7.2, and the fact that ant Cs is the intersection of some triangular
facets, we get the assertion of Proposition 7.3 for Cé’z, ant Cs and the triangle facet.

Finaly, 1(a) and 2(c) of Lemma 7.1 imply that dg € A(,)i”é’3). O

Remarks.

(a) On the other hand, the following subcones C(24") of Cs have A(#) = @: 5 simplicial
cones Cé, i =1,2,3, both 7-gonal facets, and nonsimplicial cones: Cs, Cé’3 = 0ddCs,

and 5-gonal facet.

(b) Nonsimplicial cones Ce, Cg?.C¢”, Ci”, Cs,ant Cs, Hype(12,—1,0%), Hype(13,—12,0)
have excess 16, 6, 10, 1, 5, 5, 9, 5, respectively. The cones C6,C61‘2,C62’3,C1~3,C5 have,
respectively, 210, 495, 780, 60, 40 facets and the facets are partitioned, respectively,
into 4, 5, 8, 1, 2 classes of equivalent facets up to permutations.

8. Scales

In this section we consider the scale 1%(ant,2d(K,)), which is, by Proposition 4.1(iii), equal
to minit € Z. : at > z}}, especially for two extreme cases « = 4 and « = n — 1. The
number ¢ below is always a positive integer.

Denote by H(4t) a Hadamard matrix of order 4t, and by PG(2,1) a projective plane of
order t.

Itis proved in [5] that ¢ "] 6({i}) is the unique Z, -realization of 2td(K,) if n > t*+t+3,
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and that for n = > + ¢ + 2, 2td(K,) has other Z_ -realizations if and only if there exists a
PG(2.1). Below, in (iv1) — (iv3) of Theorem 8.1, we reformulate this result in terms of AL,
nH2d(K ), =i, using the following trivial relations

A QdK,) =t + 1< 2d(K,) € A ezl = nt =

< tZ(i({i}) is the unique Z, -realization of 2td(K,).

(iii») of Theorem 8.1 follows from a result of Ryser (reformulated in terms of z; in [9,
Theorem 4.6(1)]) that z! > n— 1 with equality if and only if n = 4t and there exists an
H(41).

Theorem 8.1.

(i) antp2td(K,) € Cyyy if and only if B> [7:72]1[111/)2] ;

(i2) antp2td(K,) € A% if and only if —ni/'ié"——[n—l/,L <f<z, Bel,;
(i3) ant2td(K,) € hCyyy if and only if f >z, B e Z,,;

(ig) ant,2d(K,) € Cpy1 N Lyyy if and only if lr; /,1 <o, a€Z,.

Moreover, if d = ant,2d(K,) € Cpyy N Lyty, then
(i) either n = 3,d € A}, is simplicial, d = ant32d(K4) (s0 n'(d) = 1 for i > 0),
or d e A, d is not simplicial, « > n > 4 (so n%(d) = 1),0r d € A% (s0 n°(d) > 2),
(i) nd) = min{t : 2! < at}.
(iiir) n°(ants2d(K,)) = n°(2d(K g1 — Pi12)) = n°(2d(K,x2));
(i) [n/4] < no(ant42d(K,,)) < min{t € Z; : n < 4t and there exists a H(4t)} <n/2;
(iiiy) For n = 4t,4t — 1, we have n°(ants2d(K,)) = [n/4] =t if and only if there exists
an H(4t);

(ivy) #°ant, 1 2d(K,)) = n' (2d(K,)) < min{n — 3,7 2d(Ky1))};
(it2) [(1/2)(\/4n . 1)] —min{t€Zy n<+t+2)
< no(antn—IZd(KH))
<min{t € Z, :n<t*+t+2 and there exists a PG(2,1)};

(ivs) For n =2 +t+2, we have n°(ant,_2d(K,)) = [(1/2)(,/4n —7— 1)-| =t if and only
if there exists a PG(2,1).

Remarks.

(a) For i > 0, we have 47! (2d(K4)) = i + 1, but ni(ant3(2d(K4))) = 1, since ant3(2d(K4))
is a simplicial point. For i > 0 and n > 5, we have n""'(2d(K,)) < n'(ant,—1(2d(K,)))
with equality for i = 0 and for some pair (i,n) with i > 1. Propositions 5.9-5.11 of [9]
imply that

n'"1(2d(K's)) = n'(ant4(2d(K5s))) = 2 for i = 0, 1;
7*(2d(Ks)) = n*(ants2d(K5))) = n*(2d(Ks)) = 3;

n*(2d(Ks)) = n*(ants(2d(Ks))) = n’(anta(2d(K5s))) = 4.
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(b) Using the well-known fact that H(4t) exists for t < 106, we obtain
n°(anta(2d(K,))) = n°(2d(Kpy1 — P2)) = n°2d(K,1x2)) = [n/4] for n € [4, 424];

(c) Using the well-known fact that PG(2,1), t < 11, exists if and only if t < 6, 10, we get for
ay = n%ant,_1(2d(K,))) = n'(2d(K,)), that 6 < a, <7 for33<n< 43,10 <q, < 11

for 93 < n < 111, and a, = [(1/2)(1/4;1 —7 - 1)] for all other n € [4, 134].
(d) (iii), (iv) of Theorem 8.1 imply that

n°(d(Kax2)) > 2t with equality if and only if there exists H(4t),

nl(d(K,zHH)) > 2t with equality if and only if there exists P G(2, ¢).
Note also that a, < n— 3 with equality if and only if n = 4, 5.

Proof of (iv|). For n > 4 we have

B(V“n —7- 1)] < n'(2d(K,)) = n%(ant, 1 (2d(K,))) < n— 3.

In fact, we have
n'(2d(K,)) = min{t € Z, : zy, < nt},

n°(anty(2d(K,))) = min{t € Z, : 2, < Nt},
since 2td(K,) has the following Z_ -realization t>.13({i}) of maximal size nt, and since
t(anty(2d(K,))) € hC,yy if and only if 2td(K,) admits a Z, -realization of size at most Nt.
Denote
p=n'(2td(K,)), q = n"(ant,_1(2d(K,))).

Then p < g, because z4 < (n— 1)g implies z} < ngq. Also, ¢ < n—3, because 2(n— 3)d(K,)
has the Z, -realization 377" ((n — 4)o({i}) + 6({i,n})) of size (n — 3)(n — 1). On the other
hand, p > g, because z! < np implies z? < np — (n — 3), which is proved in [9, Proposition
53]. So z] < np—q < np—p. We have p > {(1/2)(\/4n—7— 1)-’, because otherwise

n = p?+p+3,and using [9], 2td(K,) has exactly one Z, -realization, in contradiction
with the definition of p. ]

Theorem 8.2. Let ! = y#'(2d(K,)). Then

(i) n¥<oofordeL,NC,,

(i) my g, for i = 1, and ni_\ni for n > 5,

(i) n'(ad) = [n'(d)/a| ford € C,UL,, i>0, acZ,.

Proof. (i) Define
Y =L,NnCin{> 4sd(S):0<is < 1}.
Clearly, Y is finite, and one can find A € Z, such that Ad is an h-point for everyd € Y.
Let d € L, N C, have an IR, -realization d = > usd(S). Clearly the coefficients ug are
rational numbers. We have d = d; + d,, where d, = > luslo(S), and dy = Y (us —
L1s)o(S). By the construction, d; is an h-point. Since d; =d—d, andd € L, N C,, d; €
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L, N C,, we obtain d» € Y. Hence there is 4 such that Ad, € hC,, and we obtain that
id = Ady + 7d; is an h-point, too.
(i1) Obvious.
(iii) Take A = ni(ad), that is A(ad) has at least i + 1 Z,-realizations. Hence ia > n'(d)
implies 4 > [n'(d)/a|, that is, #'(ad) > [n'(d)/a].

Now, take 4 = [5'(d)/al. So, i—1 < np(d)/a < A= (A—1a < 1'(d) < Aa. Hence Aad
has at least i + 1 Z,-realizations, implying that 4 > 5'(ad), and so [n'(d)/a] > #'(ad). [

Remarks.

(a) 1} = n'(2d(Kq)) =i for i > 1; % = 1 if and only if n = 4,5.
(b) Ford ¢ L, and 4 € Z,, we have Ad € L, implies that 1 is even (because (id;; + Ady +
Adx)/2 = Adij +dy +dj)/2). Hence, for d € z®) — A%, we have either d ¢ L, (so n°(d)
is even), or n%(d) =1 (i.e. d € hC,). Since d(G) ¢ A? for any connected graph G on n
vertices (see [14]), we have either 4%(d(G)) = 1 or n%(d(G)) is even. But, for example,
n°(2d(K g — P2)) = n°(2d(Kgx2)) = 3.
It will be interesting to see whether #0 and max{n°(d) : d € 43} are bounded from
above by const x n.
The best-known lower bound for the last number is #°(d(K, — P,)), which belongs to
the interval [2 [(n — 1)/4],n—2].
It is proved in [19] that for a graphic metric d = d(G), we have
(i) n%d) < n—2if d(G) € Cy,
(ii) n°(d) € (1,2}, that is, G is an isometric subgraph of a hypercube or a halved cube if
d(G) is simplicial.

9. h-points

Recall that any point of Z, (A4 ,) = hC, is called an h-point.
A point d is called k-gonal, if it satisfies all hypermetric inequalities Hyp,(b) with
11bil =k
The following cases are examples of when the conditions d € L, and hypermetricity of
d imply that d is an h-point.

(a) [14], [17]: If d = d(G) and G is bipartite, then 5-gonality of d implies that d € hC,;

(b) [1]: If {d;;} € {1,2}, 1 <i < j < n, thend € L, and 5-gonality of d imply that d € hC,
(actually, d = d{K,—), d(K22) or 2d(K,) in this case);

() [2): If n>9 and {d;} € {1,2,3}, 1 <i<j<n, thend € L, and < 11-gonality of d
imply that d € hC,.

So, the cases (a), (b), (c) are among known cases when the problem“of testing membership
of d in hC, can be solved by a polynomial time algorithm. The polynomial testing holds
for any d = d(G) (see [19]) and for ‘generalized bipartite’ metrics (see [7] which generalizes
the cases (b) and (c) above).

Cases (a). (b) and (c) imply (1), (ii) and (iii), respectively, of
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Corollary 9.1. If d € A, then none of the Jollowing hold
() d =d(G) for a bipartite graph G,
(i) |dy) e (1,2}, 1<i<j<n,
(i) {di; € 11,23}, 1<i<j<nifn>09.

A pointd € Z, (A",) = hC, is called rigid if d admits a unique Z, -realization. In other
words, d is rigid if and only if d € Al. Clearly, if d € hC, is simplicial, d is rigid. Rigid
nonsimplicial points are more interesting. Hence we define the set

A, ={d € A} : d is not simplicial},

and call its points h-rigid.

Theorem 9.2,

(i) A)=0forn<S5, 2d(Ks— P>) € A2, |49 = oo for n > 7,
(i) A, =0forn<d, AL = (2d(Ks)}, |A!| = o0 for n > 6,
(iii) fori>2, Al =0ifn<3, |A|=0cifn>4

Proof. (i) and (ii) The first equalities in (1) and (ii) are implied by results in [3]. The
inclusion in (i) is implied by [1]. The second equality in (ii) is proved in [13]. We have
|4 = o for n > 7, because A # 0 and 4! ,| = o0 whenever Al # 0 from (6).

We prove the third equality of (ii): |4} = o for n > 6. The equality is implied by the
fact that ant,(2d(K,)) € Zl}1+1 forany n > 5, o« € Z,, « > n. We prove the inclusion.

Recall that 2td(K,) has the unique Z -realization of size tn if n > 2 +t + 3. (See [5]
or the beginning of Section 8). For t = | we obtain the equality z(2d(K,)) =nforn > 5
Using the fact that 2d(K,) is not simplicial for n > 4, and (iv) of Proposition 4.1 we obtain
the required inclusion.
(i) Since C3 is simplicial, 4, = @ for i > 2. Consider now n = 4. We show that
Ay =12(i— 1)d(K4) +d : d is a simplicial h-point of C4}. This follows from the fact that
the only linear dependency on cuts of Cy is, up to a multiple, (1) + 5(2) + 6(3) + 5(4) =
0(1.4) +6(2,4) + (3, 4).

So, |[A]] = o, because there are an infinity of simplicial points, eg., id(Kjy) for i€ Z,.
Finally we use (6). [

Some questions.

(a) Is it true that all 10 permutations of dg = 2d(K¢ — P3) are only quasi-h-points of Cg?
If yes, these 10 points and 31 nonzero cuts from A'¢ form a Hilbert basis of Cg.

(b) Does there exist a ray {id : . € R,} = C, containing an infinite set of quasi-h-points?
Recall that we got in Section 6 examples of rays {d* +td! ¢ > 0} containing infinitely
many quasi-h-points.

Lemma 9.3. Let d € A}, and let d = ant,d' where d' ¢ AS_,. Then d' is an h-point and
2{d') = [s(d)] + 1.

Proof. Infact,d € C,NL,,sod € C,_.;NL,_,. Butd ¢ A%_,, so d' is an h-point of C,_;.
Hence by Proposition 4.1(ii), « € Z,, s(d') < a < z(d').
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Note that for n > 5 we have 2d(K,x2) € A3, 2d(K,x2) = antsd', where d' € A9,_, and
d" = aniyd” for d”e AY,_,, and so on.

So, d' is neither a simplicial point nor an antipodal extension (i.e. d' ¢ R (antA ,_)),
nord € Z (A" ), m= [(n—1)/2], because in each of these 3 cases we have for an h-
point d', z(d') = s(d’); this also implies that by Proposition 4.1(iv), d itself is not simplicial.

0

The following proposition makes plausible the fact that the metric dg = 2d(K¢ — P») is
the unique (up to permutations) quasi-h-point of Ce.

Proposition 94. Let d € AY, d = ant,d' and d # dg. Then

(a) both d and d' are not simplicial ;

(b) d &R, (antHy), d ¢ L (H3);

(c) d" # 2d(G) for any A € Z, and any graph G on 5 vertices;
(d) d has at least two Z-realizations.

Proof. Since AY = @ by [3], we can apply Proposition 9.3, and (a) and (b) follow. One
can see by inspection, that among all 21 connected graphs on 5 vertices, the only graphs
G with nonsimplicial d(G) € Cg are the following 3 graphs: K5, Ks — P2, and K4.K> = K4
with an additional vertex adjacent to a vertex of K4. For these graphs, 4d(G) is an h-point
ifand only if 2 € 2Z .

Since 2d(Ks — P») = ant4(2d(K4)), then, according to (b), d' # Ad(Ks — P»).

Since for any 4 € Z, we have z(24d(K4.K»)) = 5). = s(22d(K4.K>)), and (by Proposition
9.3) s(d") < z(d'), then d’ # Ad(K4.K3).

There remains the case d = id(Ks). We have s(d') = i5/3, z(d') = 5 for A = 2 and
=(d') = s{d') for 7 € 2Z,, /7 > 2. (See [9, Proposition 5.11]). So s{(d’) < a < z(d') implies
=2 =4, ie., exactly the case d = ant4(2d(Ks)). This proves (c).

Finally, (d) follows from the fact (see [13]) that 2d(Ks) is the unique nonsimplicial
h-point of (s with unique Z -realization. [
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