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Abstract

This paper describes a sequential importance sampling (SIS) procedure for simulating two-
way zero-one or contingency tables with fixed marginal sums. An essential feature of the new
method is that it samples the columns of the table progressively according to certain special
distributions. For the zero-one tables, the new method produces Monte Carlo samples that
are remarkably close to the uniform distribution, enabling one to obtain an accurate estimate
of the total number of zero-one tables with fixed margins and to approximate closely the null
distributions of a number of test statistics involved in testing hypotheses about such tables. Our
method compares favorably with other existing Monte Carlo-based algorithms, sometimes our

approach can be a few orders of magnitude more efficient than others.






1 Introduction

1.1 Darwin’s finch data

In ecology, researchers are often interested in testing theories about evolution and the competition
among species. The zero-one table shown in Table 1 is called an occurrence matriz in ecological
studies. The rows of the matrix correspond to species, the columns to geological locations. A
“1” or “0” in cell (1,7) represents the presence or absence, respectively, of species i at location
J- The occurrence matrix in Table 1 represents 13 species of finches inhabiting 17 islands of the
Galapagos Islands (an archipelago in the East Pacific). The data is known as “Darwin’s finches”
because Charles Darwin collected some of these species when he visited the Galdpagos. Darwin
suggests in The Voyage of the Beagle that his observation of the striking diversity in these species
of finches started a train of thought which culminated in his theory of evolution (however, Sullaway
(1982) shows that Darwin did not realize the significance of the finches until years after he visited
the Galépagos). Cook and Quinn (1995) catalog many other occurrence matrices that have been
collected. The ecological importance of the distribution of species over islands was described in
Sanderson (2000) as follows: “Birds with differing beaks may live side by side because they can
eat different things, whereas similarly endowed animals may not occupy the same territory because
they compete with one another for the same kinds of food. Ecologists have long debated whether
such competition between similar species controls their distribution on island groups or whether
the patterns found simply reflect chance events in the distant past.”

From a statistical point of view, the null hypothesis that the pattern of finches on islands is
the result of chance rather than competitive pressures can be translated to the statement that the
observed zero-one table is a “typical” sample drawn uniformly from the set of all tables with the
observed row and column marginal sums. The number of islands each species inhabits (the row
sums) and the number of species on each island (the column sums) are kept fixed under the null
hypothesis to reflect the fact that some species are naturally more widespread than others and some
islands are naturally more accommodating to a wide variety of species than others (Manly, 1995;
Connor and Simberloff, 1979). For testing whether there is competition between species, Roberts

and Stone (1990) suggested the test statistic
= 1
§2= ——=3"s2, (1)
m(m — 1) vy
where m is the number of species, S = (s;;) = AAT and A = (a;;) is the occurrence matrix. The

null hypothesis is rejected if 52 is too large. Sanderson (2000) used the number of instances of two






specific species living on the same island as the test statistic, which corresponds to focusing on two
rows and counting the number of columns in which both of these rows contain a one. More test
statistics are discussed in Connor and Simberloff (1979), Wilson (1987), Manly (1995), Sanderson,
, Moulton and Selfridge (1998), Sanderson (2000), and Cobb (2003). Our methods apply to all of

these.

A/BIC|ID|IE|F{G|H}|T|J|K|LIM|N|O|P|Q
large ground ﬁnch o(of1|trj1f1rf1f{1frjr1jo0of1jrjrjr|1y1
medium ground finch 1ft1y1f(1|1y1|1f{1j131(0j1rjo0j1{1]0;0
small ground finch 1(1|14y1}1|1y14y1j1j1f1j1ry0|1j1}j0]0
sharp-beaked ground finch { O (O |1 |1 |1 |O0O|O |2 }]O0|1|0O 1|1 0 |1|1}1
cactus ground finch iyt1y1(0j1¢{1j1f{1rjrj1(0|1j0|1}1]0]0
large cactus ground finch [0 {0 |0}0}0|0|0|0O|0{0]1}j0]|1{0(0}0]0
large tree finch o|jojrj1|1|1rj1rjry1f{0fofrjoq(1f(1r(0yo0
medium tree finch o(fofofojojoy0;0f(0;0{0|1{0})0j0}j07}0O0
small tree finch o|j6;t1f1jy1f{rjrf1jrj140j1y0|10f{110]0
vegetarian finch ojl{oj1¢y1|trf{1ry1y31j1rj1fo0|1j0t1j1(01}0
woodpecker finch 0;0(|1(1{110y1{1y0(f1{01070]0]0¢t0]0
mangrove finch 0{0|1{140(0)]0|0J0}0|J0O)J0O|O}J0]0O0]J0O}O0
warbler finch 1/1y1j1|1fty1|1jy1fryrj{riy1|1¢i1|1]1

Table 1: The occurrence matrix for the Darwin finch data. Island name code: A=Seymour,
B=Baltra, C=Isabella, D=Fernandina, E=Santiago, F=Rébida, G=Pinzén, H=Santa Cruz,
I=Santa Fe, J=San Cristébal, K=Espafiola, L=Floreana, M=Genovesa, N=Marchena, O=Pinta,
P=Darwin, Q=Wolf.

A difficult challenge in carrying out these tests is that there are no good analytic approximations
to the null distributions of the corresponding test statistics. We show below how to simulate the
zero-one tables nearly uniformly and then adjust the samples using importance weights. We can
thus obtain a good approximation to the null distribution of any test statistic. Although several
methods for generating tables from the uniform distribution conditional on marginal sums have
been proposed in the literature, most of them are inefficient and some of them are incorrect (see

Section 6.2).



1.2 Problem formulation

From magic squares to Darwin’s theory of evolution, problems of counting the number of and test-
ing hypotheses about zero-one or contingency tables arise in many fields including mathematics,
statistics, ecology, education and sociology. Although fixing the marginal sums makes these prob-
lems much more difficult, it is important to do so for many problems. For statistical applications
in which the subjects are not obtained by a sampling scheme but are the only ones available to the
researcher, conditioning on the marginal sums of the table creates a probabilistic basis for a test
(see Chapter 4.7 of Lehmann (1986)). In some other applications such as those related to the Rasch
(1960) model, the marginal sums are sufficient statistics under the null hypothesis. Conditioning
on the marginal sums is a way to remove the effect of nuisance parameters on tests (see Chapter 4
of Lehmann (1986) and Snijders (1991)).

Because the interactions between the requirements on the row sums and the column sums are
complicated, no truly satisfactory combinatorial methods or analytical approximations are available
for deriving the distributions of the test statistics (Snijders, 1991). The table-counting problem is
slightly more approachable. Several asymptotic methods have been developed for approximating the
count of zero-one or contingency tables with fixed marginal sums (Békéssy, Békéssy, and Komlos,
1972; Gail and Mantel, 1977; Good and Crook, 1977). However, these formulas are usually not very
accurate for tables of moderate size. Wang (1988) provided an exact formula for counting zero-one
tables, which is further improved in Wang and Zhang (1998). However, their exact formula is very
complicated and both authors of the papers (by personal communication) think that the formula
would take too long to compute fof Table 1, which is only of moderate size among our examples.

From a practical point of view, if we can simulate tables from the uniform distribution, or some
distribution close to it, we can both estimate the total count of the tables and approximate the
distribution of any test statistic that is a fﬁnction of the table. Several algorithms for generating
uniform zero-one tables have been proposed (Connor and Simberloff, 1979; Wilson, 1987; Besag
and Clifford, 1989; Rao, Jana and Bandyopadhyay, 1996; Sanderson, Moulton and Selfridge, 1998;
Sanderson, 2000). Snijders (1991) used the importance sampling idea to construct tables. Algo-
rithms for generating contingency tables from the uniform distribution have also been proposed
(Balmer, 1988; Boyett, 1979; Patefield, 1981). Diaconis and Gangolli (1995) developed a Markov
chain Monte Carlo (MCMC) algorithm. Holmes and Jones (1996) used the rejection method both
to sample contingency tables from the uniform distribution and to approximately count the number
of such tables with fixed margins. In our experience, all of these methods encounter difficulties for

large, sparse tables.



nice 3‘3/

In this paper we describe a sequential importance sampling (SIS) approach for approximating

statistics related to the uniform distribution on zero-one and contingency tables with fixed margins.

The distinctive feature of the SIS approach is that the generation of each table proceeds sequen-

tially column by column and the partial importance weight is monitored along the way. Section

2 introduces the basic SIS methodology and the rules for evaluating the accuracy and efficiency
of our estimates. Section 3 describes how we apply conditional-Poisson sampling together with
the SIS for generating zero-one tables. Section 4 proposes a more delicate SIS method that is
guaranteed to always generate proper tables. Section 5 generalizes the SIS method from zero-one
tables to contingency tables. Section 6 shows some applications and numerical examples,; including
statistical evaluation of Table 1 and a count of the number of tables with the same row and column

sums as Table 1, and Section 7 concludes with a brief discussion on the method.

2 Sequential Importance Sampling

Given the row sums r = (ry,72, - ,T) and the column sums ¢ = (c1,¢2, - ,¢cn), wWe let Tpe
denote the set of all m x n (zero-one or contingency) tables with row sums = and column sums ¢
(assuming that Ly is nonempty). Let p(T') = 1/|Zp¢| be the uniform distribution over Epe. If
we can simulate a table T' € Xpe from a “trial distribution” ¢(-), where ¢(T') > 0 for all T' € Xp¢,

then we have

1 1
E, [m] = Z EQ(T) = |[Zrel-

TeZpe

lzrcl NZ j = N ce .

from N i.i.d. samples T1,...,Tn drawn from ¢(7T). Furthermore, if we are interested in evaluating

Hence, we can estimate |Zp¢| by

p = E,f(T), we can use the weighted average

DL MR S Ty

p= N o(T: N 1
2in1 Z(Tg 2i=1 T

as an estimate of . For example, if we let f(T) =1 {x2-statistic of T>s}’ formula (2) estimates the

(2)

p-value of the observed x2-statistics s.

The standard error of fi can be simply estimated by further repeated sampling. A more ana-

lytical method is to approximate the denominator of i by the §-method so that

L [varg{ F(DVERY + pvarg {ET} — 2pcov, {£(T) B, 0}
std(p) ~ & : (3)




However, since this standard deviation is dependent on the particular function of interest, it is also
useful to consider a “function-free” criterion, the effective sample size (Kong, Liu and Wong 1994)

to measure the overall efficiency of an importance sampling algorithm:

,. ‘s
BSS =, vy wuddrs
where the coefficient of variation is defined as ; b 1( N
/'// \ o ”\
ol = varg{p(Ti)/ Q(Ti)}. & Co i ber
B {p(T)/a(T)) s 7

The ESS is simply the L2-distance between the two distributions p and g; the smaller it is, the closer

the two distributions are. Heuristically the ESS measures how many i.i.d. samples are equivalent

to the N weighted samples. Throughout the paper, we use cv? as a measure of efficiency for an

importance sampling scheme. 2
A central problem in importance sampling is the con@

Because the target spam is not immediately clear what proposal

distribution ¢(7T") can be employed. Note that

Lo Hhis

oquation — 5 9T = (t1,...,tn)) = q(t1)q(taltr)q(tslts, t1) - - - q(tnltn_1,- . ., t1), (4)
-‘L,//Q ‘(0/'

o “'Wj where 1, ...,t, denote the configurations of the columns of T. This factorization suggests that it

+uledas 77 is perhaps a fruitful strategy to generate the table sequentially, column by column, and use the
‘ partially sampled table to guide the sampling of the next column. More precisely, the first column

\_, of the table is sampled conditional on its marginal sum ¢;. Conditional on the realization of the

ke first column, the row sums are updated and the second column is sampled in a similar manner.

This procedure is repeated until all the columns are sampled. The recursive nature of (4) gives rise

to the name sequential importance sampling. A general theoretical framework for SIS is given in

Liu and Chen (1998).

3 Sampling Zero-One Tables: Theory and Implementation

To avoid triviality, we assume throughout the paper that none of the column or row sums is zero.
For the first column, we need to choose c; of the m possible positions to put ones in. Suppose the
c1 rows we choose are i1, - ,i.,. Then we only need to consider the new m x (n—1) subtable. The
row sums of the new table are updated by subtracting the respective numbers in the first column

from the original row sums. Then the same procedure can be applied to sample the second column.



For convenience, we let rﬁl), j = 1,...,m denote the updated row sums after the first { — 1

columns have been sampled. For example, rj(.l) = r; and, after sampling the positions iy, - - ,ic,

for the first column, we have

@) r§1)—1, if j =1 forsome 1<k <y,
Ty = 1) - (5)
T otherwise.
Let cgl), j=1,...,n—=(-1),l=1,...,n, denote the updated column sums after we have sampled

the first | — 1 columns. That is, after sampling the first [ — 1 columns the I-th column in the original
table is updated to the first “current column” so that (cgl), e ,cff)_(l_l)) =(cly. .. Cn).

A naive way to sample the ¢; nonzero positions for the first column (and subsequently the other
columns) is from the uniform distribution, which can be rapidly executed. However, this method
turns out to be very inefficient: the cv? routinely exceeds 10,000, making the effective sample size
very small. Although it is perhaps helpful to apply the resampling idea (Liu and Chen, 1998), a
more direct way to improve efficiency is to design a better sampling distribution. Intuitively, we
want to put a “one” in position 7 if the ith row sum is very large, and vice versa. To achieve
this goal, we adopt here the “conditional-Poisson (CP)” sampling method described in Brewer and

Hanif (1983) and Chen, Dempster and Liu (1994).

3.1 Conditional Poisson sampling

Suppose we want to sample ¢ units from a population Q = {uq,...,un} of size m without replace-

ment (0 < ¢ < m). Let p=(p1,...,pm) be a vector of probabilities, and let
Z=(Z1,...,2m) (6)
be independent Bernoulli trials with probability of successes p1,...,Pm, respectively. Then,
Sz=21+-+"2Zpm

has the Poisson-Binomial distribution. Here Z; = 1 corresponds to unit u; being selected in the

sample. The conditional distribution of Z given Sy is called the conditional-Poisson distribution.
If we let
_ b
1-p;’
it is easy to see that the probability of obtaining a sample S = {u;,,...,ui } is

wy

P(S) x H W, .
k=1
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Chen et al. (1994) and Chen and Liu (1997) provide five schemes to sample from the CP
distribution, and we adopt their drafting sampling method here. Let Ay (k=0,...,c) denote the
set of selected units after k draws. Thus, Ag = 0 and A, is the final sample we obtain. At the

kth step of the drafting sampling (k = 1,...,c¢), a unit u; € Aj,_, is selected into the sample with

probability
wiR(c—k, A;_;\j)

(c—k+DR(c-k+ LA; )

P(], »2—1) =

where

R(s,A)= Y (Hwi).

BCA,|B|=s u;€B
Most of the computing time required by this sampling procedure is spent on the calculation of
R(s, A) through the recursive formula R(s, A) = R(s, A\ {u,}) + wsR(s — 1, A\ {u,}), and the
whole process is of order O(s|A[). See Chen et al. (1994) and Chen and Liu (1997) for more details
regarding the CP sampling and its applications.

3.2 Justification of the CP sampling

The following lemma (personal communication with Charles Stein) sheds some insight on why the

CP distribution is desirable in the sequential sampling of zero-one tables.

THEOREM 1 For an m x n zero-one table, the distribution of the first column conditional on its
sum c; and the row sums r1,...,Tm, 18 the same as the conditional distribution of Z (defined by

(6)) given Sz = ci with p; = r;/n.

Thus, it is natural to define the sampling distribution gq(t;) for the first column to be the
CP distribution with p; = r;/n, ie., with weights w; = r;/(n — r;). Suppose we have sampled
the first [ — 1 columns during the process; then we update the current number of columns left,
n — (I = 1), and the current row sums rfl) and then generate column ! with the CP sampling
method using the weights ;—(—li%;? Since the CP distribution ¢(¢;) is not exactly the same as
the target distribution p(¢;) (the marginal distribution of the first column), we may want to adjust
the weights in order to make g(t1) closer to p(t;). One easy adjustment is to use the set of weights

n—(l-1)—r{Y
to the best performances (see the examples in Section 6).

) u
(———T’——> , where u can be chosen by the user. In our experience, however, u = 1 gave close

Asymptotic analysis of Good and Crook (1977) provides another intuition for the use of CP

sampling. In particular, they give the following approximation to the number of zero-one matrices



with fixed row sums 7 = (r1,79,..., 7y, ) and column sums ¢ = (c1, ¢z, - - - ,Cn)"

1 () [T ()

) 7
(mn) ( )

M

|Zrc| ~ Ape =

‘where M = 7y = > i=16- Let v(dn,. .., ic,) be the zero-one vector of length m which has ix-th
component equal to 1 for 1 < k < ¢y and all other components equal to 0. For a particular config-
uration of the first column, t; = v(i, ..., i), we let 7 = (riz), e ,7'7(3)) and ¢ = (ca,...,¢n)
be the updated row and column sums as defined in (5), respectively. Then, by approximation (7),

we have .

1
Ap@e@ . H Tix

p(ty = v(iy,. .., %)) = Arc o
ik

k=1
Thus this approximation also suggests that we should sample the first column according to the CP
distribution with weights proportional to r;/(n — ;).
Békéssy, Békéssy, and Komlos (1972) gave another asymptotic result for [Zpcl:
M!
[[Z mi! H?:l ¢!

[Sre| ~ Ape = e MO, (8)

where

D (DI ()] 1 & =
a(r,c) =2 (Zé(ﬂ)(z:?:ll Ej)) =5 ;(7‘? — 1) ;(Cf - ¢j).

i=171

This approximation is proved to work well for large and sparse zero-one matrices. By (8), we have

A o1
; ; ~ T2 —a(P@ c®
p(tlzv(zl,...,zcl))NTo( I I’rike o )
rc k=1

We note that

Srea(eh = ) & (7
i=1

e
and Y v, ( Y ) = Z:’;l(r? —713)/2+¢c1 — Y g, Ti,- Hence,

C1

Ay (2)
7r(2) e dr;
A* x H(T’ike "),
re k=1

where d = Z;‘:Q(c? —¢;)/(M - ¢1)%. Thus, another CP sampling distribution can be conducted
with the weights proportional to rier.

Although it is not clear if the approximations (7) or (8) are accurate for a given table, we
observed that these two CP-based SIS methods performed well in all the settings we have tested

and were extremely accurate when the marginal sums do not vary much.



3.3 Successive sampling

Another possible strategy for filling in the first column is successive sampling (Héjek, 1981), which
draws the first unit without replacement with probability proportional to wj,ws,- -+ ,wy,, then
draws the second unit with probability proportional to the remaining weights, etc. The procedure

continues until c units have been drawn. It is easy to see that the probability of obtaining a sample

S = {usy, " ,ui,}, without regaf‘d of ordering, is the following:
P(S) = { H wk} Z W(W - wjl)(W - Wy — wj2) (W= Wiy =+ — ch—l)]_I’ \
k=1 (1, ,ge)
where W = Y "" | wy and E(jl,"',jc) denotes the summation over all permutations of {iy,--- ,4.}.

When applied to the examples in Section 6, the successive sampling method (combined with the
analytic SIS method described in Section 4) resulted in small cv?’s for all the cases. For example,
the cv? was around 0.7 for the finch data; and cv? = 0.02 for the “magic square” (the 12 by 12 table
with row and column sums equal to 2). However, the computation of the normalizing constant W
is very time-consuming because we have to sum over all the permutations of the elements in the
sample. For the finch data, the SIS with successive sampling was nearly 2,000 times slower than
that with CP sampling. See Chen (2001) for a fast method approximating the successive sampling,
which performs well for sampling zero-one tables, and more details on other sampling strategies for

zero-one tables.

4 A More Delicate SIS Method

Although the SIS procedure described in the previous section is already very effective, we found
that sometimes the sampling cannot proceed after a few columns have been generated because
no valid zero-one table can be produced. For example, suppose we want to sample tables with
row sums 4, 4, 2, 1 and column sums 3, 3, 3, 1, 1. If we happen to draw the first column as
(1,0,1,1)T and the second column as (1,1,1,0)7, then we would have no way to sample the third
column. In the following, we show that there exists an easy-to-check condition that guarantees the
existence of subtables with the updated row and column sums. This condition helps us develop
a more delicate SIS procedure for sampling more efficiently from Ype. Before we describe the
procedure, we first provide some background. See Marshall and Olkin (1979) for more details and

any unproven assertions.
DEFINITION 1 For any x = (z1,...,z,) € R", we let T[y) = -+ 2 Ty denote the components of x

9



in decreasing order. For x,;y € R"™, we define

x'<y Zf Z?:lm{i]SZley[ih k‘:l,...,n—-—l,
2im1 T = Qi Y-

When x <y, X is said to be majorized by y (y majorizes X).

LEMMA 1 Suppose (j1,...,Jn) is a permutation of (1,...,n). Then x <y implies that

{ Ef:l Zj; < Zf:ly[i]’ k= 1,...,71- 1

i i (9)
D1 Ti = i Yl

DEFINITION 2 Let ay,a9,...,a, be nonnegative integers, and define

a;:#{ai:aiZj}, ]=1,2,

The sequence a},a},a}, ... is said to be conjugate to a1, ag, ..., a,. Note that the conjugate sequence

a*} is always non-increasing and is independent of the order of the a;.
1

LEMMA 2 (Gale, 1957; Ryser, 1957) Let rq,...,Tm be nonnegative integers not exceeding n, and
c1,...,cn be nonnegative integers not exceeding m. A necessary and sufficient condition for the
eristence of an m X n zero-one table with row sums r1,...,rm and column sums ci,...,Cn 15 that

c=(c1y..,00) < (r],...,Th) =15,
or, equivalently, r = (r1,...,rm) < (c},...,ch) = C*.

™m

Since the size of ¥p¢ does not depend on the order of the row sums, we can arrange that

ry > -+ > 1y, without loss of any generality. Let the conjugate of (c(1 ), B (1)) = (c,...,¢n) be
(D", D). The conjugate of (c{”,..., ), denoted by (c?*,..., () is

J

on_ [ &V -1 1<i<a,
cgl)*, j>a.

From Lemma 2, we know that a necessary and sufficient condition for the existence of an 72 x (n—1)

zero-one table with row sums r(z) .. rg) and column sums cg2), RN ,(12)1 is that
r@ = (r§2), 3y < (cg‘q)*7 ) = )

i.e.,

{Zfl [’l,] —Z’L 1 ’L s :1,...,m—1,
m 2 m 2)%
}:z 1 [(1])—21':1 Cg),



where recall that r; denotes the components of = in decreasing order. From Lemma 1, we know

that 72 < ¢@* implies that

kp@ ok @ Py _
Z;—L_:I Tz(2) — Z:T—,,__l CZ(Q)*, IR 444 ]-a (10)
iy T = =16 -

Thus, (10) is clearly a necessary condition for the existence of the subtable with new row sums and

column sums. We prove in the following theorem that it is also a sufficient condition.

THEOREM 2 Let @’ = (ai,...,a},), b= (b1,...,b,). Suppose ay >--->al andby > .- > b, are
all nonnegative integers and there are d > 1 nonzero components in b. Pick any d', 1 < d' < d,
nonzero components from b, say by,,...,b,. Define b’ = (b},...,b,) as

rn

=

B = bj—1, ifj=k; forsomel<i<d,
b; otherwise

and suppose b’ satisfies

n /o
=10 = 2 i al

{ YELBSSE al k=1,...,n—1,
Then b’ is majorized by a'.

The proof of Theorem 2 is given in the Appendix. The reason this result is not entirely trivial
is that b’ is not necessarily ordered. For example, if a’ = (4,4,2,1), b = (4,4,3,1) and d' = 1,
then b’ might be (3,4,3,1). To see that the theorem implies that condition (10) is necessary and
sufficient, we let @’ = ¢@* b =71 (=), and b’ = r®, and let condition (10) hold. Theorem 2
implies that ' < a/, or equivalently, 72 < ¢@* which, according to Lemma 2, guarantees that
there exists some zero-one subtable having the new row sums »® and column sums c(¥.

Although we do not know 72 before we sample the first column, we can restate condition (10)

from the current »®) and ¢®*. For each 1 < k < m, we compare Zle r; and Zf=1 652)*2

o If Zle r; > Zle ‘31(2)*’ then we require that we must put at least Zle Ty — Zi-;l cz@)* ones
at or before the k-th row in the first column. For convenience, we may call k a knot;

o If Zle r; < Zle cgg)*, then there is no restriction at the k-th row.

These two conditions can be summarized by two vectors: one vector records the positions of the
knots, denoted by (k[1], k[2],...); the other vector records how many ones we must put before those
knots, denoted by (v[1},v[2],...). In order to make the conditions easier to implement, we eliminate

some redundant knots:

11



(i) If v[5] < v[i] for some j > i, we ignore knot k[j].

(i) If v[j] — v[i] > k[j] — k[¢] for some j > i , then we ignore knot k[i]. If the restrictior: on knot

k[j] is satisfied, it will guarantee that the restriction on knot k[z] is also satisfied.
Using the above conditions, we design the following sampling strategy.

e We are required to place at least v[1] but no more than min(k([1],c;) ones before rovs k[1]. So

we assign equal probability to these choices, i.e.

1

g1{(number of ones before row k(1)) = i} = min(k[l],c1) —v[1} +1

for v[1] < 7 < min(k[1],¢1).

e After the number of ones o; before row k{1] is chosen according to the above dis:ribution,
we pick the o; positions between row 1 and row k[1] using the CP sampling wita weights
(ri/(n —r;))*, where u is usually chosen to be 1 (see Section 7). Sampling uniformly instead
of using the CP distribution for this step can reduce the algorithm’s efficiency by several

orders of magnitude.

e After 0y positions have been chosen for knot 1, we consider knot 2 conditional on the ones
we have already placed before knot 1. Since we are required to place at least v[2] ones
before row k{2], the number of ones 0y we could put between knot 1 and knot 2 ranges from
max(v[2] — 01,0) to min(k[2] — k[1],c; — 01). We assign equal probability to all these choices

for 05. Then we pick the os positions between row k[1] and k[2] using the CP sampling again.
e The procedure is continued until all the knots in column 1 have been considered.

o After we have completed the first column, we record the probability g(t;) of gefting such
a sample for the first column, update the row sums, rearrange the updated rovs sums in

decreasing order, and repeat the procedure with the second column.

The reader may want to look ahead to Section 6 for examples.

5 Sampling from Contingency Tables

Sampling from contingency tables is much easier to implement than sampling from zero-one tables

because there are fewer “restrictions.” For a contingency table, given positive row sums 71,...,7n,
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and column sums c1, ..., ¢y, the necessary and sufficient condition for the existence of a contingency

table with such row and column sums is

Mm+re+--+rm=ci+co+---+c, =M.

This is much simpler than the Gale-Ryser condition which makes the whole procedure much simpler
to implement.
We still sample column by column as we did for zero-one tables. Suppose the element at the

i-th row and the j-th column is a;;. We start from the first column. We have that a11 must satisfy:

L

0<an<n, ~

m
cl—Zn:cl-}-rl —~M <ay £q.
=2 —
So combining the two equations we have

max(0,¢; + 71 — M) < aj3 < min(ry,¢p). 7

It is also easy to see that this is the only condition aj; needs to satisfy. Recursively, suppose we

have chosen a;; = aj; for 1 <7< k — 1. Then the only restriction on ag; is

k-1 m k-1
max <0, (cl ~ Zagl) - Z 7'12) < ak1 < min (Tk,cl - Zagl)'

i=1 i=k+1 i=1
Thus, we need consider only the strategy for sampling a;; and the same strategy can be applied
recursively to sample other cells.

If we collapse columns 2 to m and rows 2 to n to form a 2 x 2 table with a1; as the only
variable, the uniform distribution on all tables implies that a;; is uniform in its range [max(0,c; +
r1 — M), min(ry,c1)]. However, if we consider both a1; and as simultaneously (the original table
is collapsed into a 3 x 2 table), then for each aj; = z, the choices of ag ranges from max(0,c; +
71+ 72— M —z) to min(r2, c; — z). Thus, if our goal is to sample a 3 x 2 table uniformly, we should
have

P(an = ) oc min(re,¢; — ) —max(0,¢c; +r; + 70 — M —2) + 1.

An analog of conditional Poisson sampling could be developed. Our examples in Section 6 show,

however, that the simple uniform sampling of a;; seems to have already worked very well.
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6 Applications and Simulations

6.1 Counting zero-one tables

Here we apply the SIS procedure described in Section 4 to estimate the number of zero-one tables
with given row sums 71,73, ..., Ty, and column sums ci, €2, . . ., Cp. Since the ordering of the column
or row sums does not affect the total number of tables, in the following examples we attempt to
arrange the rows and columns in such a way that the cv? is made small. Some heuristic rules for
arranging the rows and columns to achieve a low cv? will be discussed in Section 7. All examples
were coded in C language and run on a Sun Ultra 60 workstation with a 359 MHz UltraSPARC-II
processor.

We first tested our method on counting the number of 12 x 12 zero-one tables with all marginal

sums equal to 2, which is a subset of the 12 x 12 “magic squares.” For CP sampling wita weights
(0

n—(=1)-r"

obtain 100 tables and their weights using the delicate SIS procedure in Section 4. The everage of

0.88
proportional to ) , the cv? of the weights was 0.005. It took about one second to

the weights gives rise to an estimate of (2.195+0.005) x 10'¢, where the number after the “+" sign
is the standard error. For this table, the exact answer of 21,959,547,410, 077,200 is giver. in Wang
and Zhang (1998). Although Wang and Zhang’s formula provides a fast answer to this problem, it
is often difficult to quickly compute their formula for larger zero-one tables.

Counting the number of tables with the same marginal sums as the finch data (Table 1) is a

more challenging exercise. The last row of the original table is removed since it consists of all 1’s

and will not affect the counting. We ordered the 17 column sums from the largest to th= smallest
111
Q]

n—(li.l)—'rgl)
around 0.7. Tt took about 7.2 seconds to generate 1000 tables. With 100,000 samples, which took

about 12 minutes, we estimated the total number of zero-one tables to be (6.72+0.02) x .0, As a

and applied the CP sampling with weights proportional to , which gives a cv? of

verification, we obtained a more accurate estimate of 6.715061 x 1016 based on 102 samples. Here the
exact answer was computed for us by David desJardins using a clever divide-and-conquer algorithm.
His program (confirmed by an independent check) gives exactly 67,149,106, 137,567,626 tables.
We see that the SIS algorithm gives a very accurate approximation. Figure 1 is the histogram of
1,000 importance weights. It is seen that the weights are tightly distributed in a relatively small

range. The ratio of the maximum weight over the median weight is about 10. If we use CP’ sampling
r®

n—(-1)—r

To further challenge our method, we randomly generated a 50x 50 table for which the probability

with weights proportional to ays i-e., u =1, the cv? is around 1.2, which is still very small.
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Figure 1: Histogram of 1,000 importance weights

for each cell to be 1 is 0.2. The row sums of the table are

10,8,11,11,13,11,10,9,7,9,10,16,11,9,12, 14,12,7,9,10,10,6,11,8,9, 8, 14, 12,5, 10, 10
8,7,8,10,10,14,6,10,7,13,4,6,8,9, 15,11,12, 10,6

)

and the column sums are

9,6,12,11,9,8,8,11,9,11,13,7,10,8,9,7,8,3,10,11,13,7,5, 11, 10,9, 10, 13,9,9,7,7, 6, 8,
10,12,8,12,16,12,15,12,13,13,10,7,12, 13,6, 11.

We ordered the column sums from largest to smallest and used CP sampling with weights propor-

0]
tional to TT’T)—(—,T which gives a cv? of around 0.03. Based on 100 samples, which took a few
n—(l-1)-r;

minutes to generate, we estimate that the total number of zero-one tables with these marginal sums
is (7.7 +£0.1) x 1032,

Since our method generally works well when the marginal sums do not vary much, we tried
another example for which the marginal sums were forced to vary considerably. We generated a
50 x 50 table with cell (7, j) being 1 with probability e=¢-3(+5=2)/(m+7-2) 'yhich gave rise to the

TOW sums:

14,14,19,18,11,12,12,10,13,16,8,12,6,15,6,7,12,1,12,3,8,5,9,4,2,4,1,4,4, 5,
2,331,1,1,2,1,1,2,1,3,3,1,3,2,1,1,1,2

and the column sums

14,13,14,13,13,12,14,8,11,9,10,8,9,8,4,7,10,9,6,7,6,5,6,8,1,6,6, 3,2, 3,
5,4,5,2,2,2,3,2,4,3,1,1,1,3,2,2,3,5,2, 5.
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With the same SIS method as in the previous case, we had a cv? of 0.2. Based on 1,000 samples,
we estimate the total number of zero-one tables with these margins as (8.940.1) x 10242, Based on
10,000 samples, the estimate is improved to (8.78 & 0.05) x 10242, Lastly, we estimated the total
number of 100 x 100 zero-one tables with all marginal sums equal to two to be (2.96 +0.03) x 1034
based on 100 Monte Carlo samples. The cv? in this case was 0.008, showing again that the SIS

approach is extremely efficient.

6.2 Testing zero-one tables in ecology

We applied the SIS method to carry out the test suggested by Roberts and Stone (1990) for the finch
@ 111
data (see (1) in Section 1.1). The CP sampling used the weights proportional to (—TL————U

1
The observed test statistic for the original finch data is 53.1. Based on 10,000 sampile_d(l{alt))l_(:si, which
took less than 2 minutes, we estimated that the p-value is 0.0004 with a standard error of 0.0002.
Thus, we can reject the null hypothesis of a uniform distribution (conditional on the marginal sums)
at a high level of significance. A histogram of the test statistic under the null distribution is given

in Figure 2.

(13
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Figure 2: Histogram of the test statistic under null distribution. Vertical line is S2(Tp).

Sanderson (2000) describes a method to generate zero-one tables with fixed margins, which he
applies to the finch data, with an implied belief that the tables obtained are uniformly distributed.
We note, however, that his method does not produce uniformly distributed tables. For example,
for the set of 3 x 3 tables with marginal sums (2,2,1) for both the columns and the rows, we found
that the probability for Sanderson’s method to generate one of the five possible configurations is
332/1512, but is 295/1512 to generate each of the remaining configurations. Because his sampling

A
method does not generate tables uniformly, the conclusion of his statistical hypothesis testing is

questionable.
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6.3 Testing the Rasch model

Rasch (1960) proposed a simple linear logistic model to measure people’s ability based on their
answers to a dichotomous response test. Suppose n persons are asked to answer m questions
(items). We can construct a zero-one matrix based on all the answers. A 1 in cell (,7) means
that the ith person answered the jth question correctly, and a 0 means otherwise. The Rasch
model assumes that each person’s ability is characterized by a parameter 6;, each item’s difficulty
is characterized by a parameter §;, and

%5

Plea =1 = ras

(12)

where z;; is the sth person’s answer to the jth question. The number of items answered correctly
by each person (the column sums) are minimal sufficient statistics for the ability parameters and
the number of people answering each item correctly (the row sums) are minimal sufficient statistics
for the item difficulty parameters.

The Rasch model has numerous attractive features and is widely used for constructing and
scoring educational and psychological tests (Fischer and Molenaar, 1995). There has been a con-
siderable literature on testing the goodness of fit of the Rasch model (see Glas and Verhelst, 1995,
for an overview). Most of the proposed tests rely on asymptotic theory for their validity, with
which Rasch did not feel very comfortable (Andersen, 1995). In his seminal book, Rasch (1960)
proposed a parameter-free “exact” test based on the conditional distribution of the zero-one matrix
of responses with the observed marginal sums fixed. It is easy to see that under model (12), all the
zero-one tables are uniformly distributed conditional on the row and column sums. Because of the
difficulty of accurately approximating the distribution of test statistics under this uniform distribu-
tion, Rasch never implemented his approach. Besag and Clifford (1989) and Ponocny (2001) have
studied the use of Monte Carlo methods to test the Rasch model. The conceptually simpler and
more efficient SIS strategy developed in this article is also ideally suited for implementing Rasch’s
ideas. For example, Chen and Small (2003) show that in testing for item bias (Kelderman, 1989),
the uniformly most powerful (UMP) unbiased test resulting from Rasch’s idea (Ponocny 2001) is
both “exact” and highly powerful. In a simulation study with 100 samples, it was shown that
the SIS-based UMP unbiased test had a power of 0.90 at the 0.05 significance level, whereas the
popular Mantel-Haenszel test proposed by Holland and Thayer (1988) only had power 0.40. Chen
and Small (2003) also reported that the SIS approach is more efficient and accurate than the Monte
Carlo method developed in Ponocny (2001).
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6.4 Contingency tables

To illustrate the SIS method described in Section 5 for counting the number of contingency tables,

we consider the two examples discussed in Diaconis and Gangolli (1995). The first example is a

"5 x 3 table with row sums 10, 62, 13, 11, 39, and column sums 65, 25, 45, respectively. We observed

that the smallest cv? (1.07) was achieved when the column sums are arranged from the largest to
the smallest and row sums from the smallest to the largest. We obtained 100,000 Monte Carlo
samples, which took less than a second and provided us with the estimate of 2.393 x 108 and its
standard error 0.007 x 108. The true value of 239, 382, 173 is given in Diaconis and Gangolli (1995).

Besides counting the number of tables, the SIS method is also useful for carrying out certain
hypothesis tests for contingency tables. The conditional volume test proposed by Diaconis and
Efron (1985) addresses the question of whether the Pearson x2-statistic of a contingency table is
“atypical” when the observed table is regarded as a draw from the uniform distribution over tables
with the given marginal sums. The observed chi-square statistic for the 5 x 3 table described above
is 72.1821. With one million Monte Carlo samples produced by our SIS method, which took about
20 seconds, we estimated the p-value for the conditional volume test to be 0.7606 £+ 0.0005. Using a
random-walk based Markov chain Monte Carlo algorithm, Diaconis and Gangolli (1995) estimated
the p-value to be 0.7638 based on five independent chains, each with more than 2,000,000 steps.
Their procedure took 23.5 minutes. They also gave the true value as 0.76086 based on a 12-hour
exhaustive enumeration.

The second example is a 4 x 4 table with row sums 220, 215, 93, 64 and column sums 108, 286, 71,
127, respectively. Ordering the row sums from largest to smallest and the column sums from smallest
to largest works best which gave us a cv? around 3.7. The mean estimate based on 1 million samples,
which took 10 seconds, was (1.225 + 0.002) x 10'5. The true value of 1,225,914,276, 768,514 was
given in Diaconis and Gangolli (1995). Diaconis and Efron (1985) gave a formula to approximately
count the number of tables with given row and column sums that estimates 1.235 x 106 tables for
this example. Holmes and Jones (1996) estimated 1.226 x 1016 tables by the rejection method. We
also performed the conditional volume test for this example. With one million Monte Carlo samples,
we estimated the p-value to be 0.1521 & 0.0009. In contrast, it took 28 days to run Markov chain
Monte Carlo to obtain a 95% confidence interval of (0.14,0.16) (Gangolli, 1991). Even after we
take into consideration the fact that the machine we used is about 35 times faster than the machine
Gangolli used (personal communication with Anil Gangolli), the SIS approach is still much faster
than the MCMC method for this problem.

Holmes and Jones (1996) gave another example, with five row sums 9, 49, 182, 478, and 551,
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and five column sums 9, 309, 355, 596 and 1269, respectively, and showed that the approximation
formula in Diaconis and Efron (1985) does not work well. A distinctive feature of their example is
that both the row and column sums have a very small value. We tried SIS on this example, using
the original order of the rows and ordering the column sums in decreasing order. The cv? was
around 7 so that the effective sample size was about N/(1 + 7) = 12.5% x N. Holmes and Jones’
first algorithm has an acceptance rate of 9.7% and the revised one, 12.5%. In terms of effective
sample size, our algorithm is as efficient as their revised algorithm. However the SIS approach is
simpler to implement and easier to understand than the revised algorithm of Holmes and Jones,
which requires calculating the coefficients of a product of some very large polynomials.

For Holmes and Jones’ example, we estimated the total number of tables to be (3.40+0.03) x 1016
based on 100,000 SIS samples. This took just a second to produce. With one million samples,
which took 10 seconds, our estimate was improved to (3.384 =+ 0.009) x 10%6. Several estimates
based on 10® samples were all around 3.383 x 106. In contrast, the estimates given in Holmes and
Jones (1996) are 3.346 x 10%® and 3.365 x 10'®, which we believe underestimate the true number
of tables.

7 Discussion

In this paper, we have developed a set of sequential importance sampling strategies for computing
with zero-one or contingency tables. Our results showed that these approaches are both very
efficient and simple to implement. Two distinctive features of our approach to sampling zero-one
tables are (i) it guarantees each sample produces a valid table, thus avoid wasting computational
resources, and (ii) it uses the CP sampling as the trial distributlion to %reatly increase its efficiency.

For CP sampling, we used weights proportional to (;Tf(l;-—_rfﬁ> where u > 0 can be chosen
by the user. For all the zero-one tables we have tested, the choice of u = 1 has worked very well.
Although some small variation of u (e.g., ranging from 0.8 to 1.2) may improve the efficiency of
the SIS a bit, we do not expect to see any dramatic effect. We suggest that the user starts with
u =1, and then tries out values 0.8, 0.9, 1.1, and 1.2, of which one will usually give close to the
optimal performance. One may also use a small sample size to estimate the cv? and choose the u
that gives the the lowest cv?. This should not take more than a few seconds.

We used several different orderings of row sums and column sums. Owur experience is that

for zero-one tables, it is best to order the column sums from largest to smallest. This makes

intuitive sense because when we start with columns with many 1’s, we do not have many choices
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and q(titi—1,...,t1) must be close to p(ti|ti—1,...,t1). After such columns have been sampled,
the updated row sums will be reduced greatly which will cause g(t|t;-1,...,%1) to be closer to
p(tilti-1,...,t1). Because of the way we do the sampling, we need to order the row sums from
largest to smallest. Another option is to sample rows instead of columns. Our experience is that if
the number of rows is greater than the number of columns, sampling rows gives better results.

For contingency tables, we found that listing the column sums in decreasing order and listing
the row sums in increasing order works the best. The intuition is similar to that for zero-one tables.
A surprising fact for contingency tables is that given a certain ordering of the row and column sums,
sampling the columns is the same as sampling the rows. It is not difficult to check this fact by
carrying out our sampling method. Thus, we do not need to worry about whether exchanging the
roles of rows and columns provides better performance. WL“A{-]

Since the tables produced by the SIS approach described here have a distribution very close to
the target one (as evidenced by the low cv? values), the SIS method is markedly better than the
available MCMC approach, which typically has a very long autocorrelation time especially for large
tables. This advantage of the SIS is reflected not only by a more accurate Monte Carlo approxima-
tion, but also by a more reliable estimate of the standard error of this approximation. Furthermore,
estimating the normalizing constant of the target distribution is a rather straightforward step for

the SIS method, but is much more difficult for MCMC strategies.
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APPENDIX: PROOF OF THEOREM 2

Suppose there are [ distinct values among {b1,...,b,} and we assume that i; < --- < 1; are the

jump points, i.e.,

bik—l'f‘l:'“:bik >bik+1) k’_‘la---,l_la

bil_l-{—l == b’i”

where ig = 0, iy = n. Because b, = b; or b, = b; — 1 and b is ordered from largest to smallest, it is

clear that if we have ix_; < i < i and i < j < ig41 for any 1,75, k, then b, > b;-. But within each
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block from b; to b§k+1, some of the b’s are equal to b;, and the others are equal to bi, — 1. In other
words, the b;’s may not be ordered from largest to smallest in each block. If there is a 7 such that
k1 < J <1 and

b = b;y, — 1, lv1 = by,
we will show that we can switch b} and ¥ ;+1 and still maintain property (11). There are two

different cases to consider:

Case (i): Y1, b < X7, .

In this case, of course property (11) still holds after we switch b’ and b ’+1 and obtain

/1. / —_h. _
b = by, by =by —1
Case (il): 37, b, = 3 7_, a}, which we will show can never happen.
Since Y77 +1 b, < foll al, we have a2 b+1 = b, But since the a} are monotone non-increasing,

we have

/ !
Tip_y1 270 2 85 > Qg 2 by

Since b, < b;, for ix_;+1<4i< j, and b; = b;, — 1, we must have
J

i < Y oal (A1)

=t _1+1 i=tp_1+1

Combining (A.1) with the fact that Z:’;‘ll b, < Z::k:‘ll a}, we finally have

J J
/ !
D b<)
i=1 i=1

b =37_ al.

i=1"1 i=1 Q4+

which contradicts the assumption that 57

The preceding arguments imply that we can always switch b’; and Y41 and maintain (11) if

After a finite number of such switches, all the &, in this block must be ordered from largest to

smallest: b ., > -+ > b} , which leads easily to the conclusion that b’ < a’.
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