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Abstract

A general framework for using Monte Carlo methods in dynamic systems is provided and
its wide applications indicated. Under this framework, several currently available techniques
are studied and generalized to accommodate more complex features. All of these methods
are partial combinations of three ingredients: importance sampling and resampling, rejection
sampling, and Markov chain iterations. We deliver a guideline on how they should be used
and under what circumstance each method is most suitable. Through the analysis of differ-
ences and connections, we consolidate these methods into a generic algorithm by combining
desirable features. In addition, we propose a general use of Rao-Blackwellization to improve
performances. Examples from econometrics and engineering are presented to demonstrate

the importance of Rao-Blackwellization and to compare different Monte Carlo procedures.
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1 INTRODUCTION

Dynamic modeling is an important statistical analysis tool and has attracted much at-
tention from researchers in different fields. One most widely used dynamic model, the linear
state space model, has long been an active subject in studying time series data and control
systems (Harvey., 1989; West and Harrison, 1989). Despite their computational complexities,
nonlinear /non-Gaussian state space models are also important in various applications. A partial
list of references is given in Example 2 below.

Models of dynamic nature have also been used in various occasions, such as updating and
learning in graphical models or the probabilistic expert systems (Spiegelhalter and Lauritzen 1990,
Kong. Liu and Wong 1994), simulating protein structures (Leach 1996; Vasquez and Scherago
1985), genetics (Irwing, Cox and Kong 1994), and combinatorial optimizations (Wong and Liang
1997). An example of expert system updating can be found in Bérzuini et al. (1997).

In this article, we study Monte Carlo computation methods for real time analysis of dynamic

syvstems. Such a system can be abstractly defined as follows:

Definition 1 A sequence of evolving probability distributions my(xy), indexed by discrete time
t=0.1,2..... 15 called o probabilistic dynamic system. The state variable ®; can evolve in
the following three ways: (i) Increasing dimension: xyy1 has one more component than xy, i.e.
Ty = (x4, 7441), where x44) can be a multidimensional component; (ii) Discharging: ;4 has

one fewer component than xy, i.e. & = (T¢41,ds), and (15i) No change: 111 = xy.

Most of this article will be devoted to situation (i), whereas situations (ii) and (iii) can be
handled similarly. Throughout the article, 7( ) always refers to the target distribution of the

dynamic system, and p( ) is a generic symbol for probability distributions.



In most applications, the difference between ;1 and 7, is caused by the incorporation of new
information in the analysis. Of interests in these systems are usually (a) prediction: m¢(z¢y1 | @4)
(i.e., when m; can be extended to a new component z,1, the best prediction of x4+ before new
information arrives is via m); (b)updating (smoothing): my.1(x¢) (i.e., the revision of previous
state given new information); and (c) new estimation: mi1(z¢4+1) (ie., what we can say about
x4+ in light of new information). The following two examples are typical dynamical systems

and they will be referred to repeatedly throughout this article.

Example 1: Bayesian missing data problem. Suppose 21, ..., 2, are iid from model p(z | 8),
but some z are only partially observed. Let z; = (y;, ;) where y; is the observed part and z;
the missing part. Let y, = (y1,...,y:) and &y = (zg, Z1,...,2:), where £o = §. The dynamic
systemn in this case is m(x¢) = p(x: | y,). Of interest is usually the posterior distribution
mnlzy) = [ mp(@n)dey - - - dzy. When 0 (i.e., zo) can be explicitly integrated out from p(x,y,) =
pyre. .oy xy, ...,z | 8)p(B), such as in the case of multivariate normal data with missing
components (Kong et al. 1994), a good approach is to draw zi,...,z, from m,(z1,...,z,) and

then use Rao-Blackwellization to approximate m,(6).

Example 2: The State Space Model. Such a model consists of two parts: (1) observation
equation, which can be formulated as y; ~ fi(- | z1, #); and (2) state equation, which can be
represented by a Markov process as z; ~ (- | z;-1,8). The y; are observations and the z; are
referred to as the (unobserved) states. Of interest at any time ¢ is the posterior distribution of

x; = (¢, 0,.ry,...,.x¢). Hence the target distribution at time ¢ is

t
Wl(wt) = 7”((1)7951’;1’ s ’*'Et) = p(¢,0,$1, <o Tt | yt) & p(g’ ¢) H fs(ys l Zs, d))qS(‘TS l xswlag)v

s=1

where the initial distribution ¢;(z; | zg,6) is assumed known. When the parameters 6 and ¢



are given (such as in many engineering problems), & represents (zy, ..., ;). In practice, the z’s
can be the unobserved true signals in signal processing (Liu and Chen 1995); the actual words
in speech recognition (Rabiner 1989); the target characteristics (e.g., location, velocity etc.) in
a multitarget tracking problem (Gordon et al. 1993, 1995; Avitzour 1995); the image character-
istics in computer vision (Isard and Blake 1996); the gene indicator in a DNA sequence analysis
(Churchill 1989); the underlying volatility in an economical time series (Pitt and Shephard 1997).
The applications of dynamic state space model in DNA and protein sequence analysis are often

referred to as the hidden Markov models (Krogh et al. 1994; Liu, Neuwald and Lawrence 1997).

Except for a few special cases, closed-form analysis of dynamical systems is usually formidable.
Recently. there is a surge of interest in designing Monte Carlo methods for the analysis of these
models. In fact, most of the references given in Example 2 use Monte Carlo or iterative meth-
ods. To implement Monte Carlo for a dynamic system, we need, at any time ¢, random samples
either drawn from (@) directly, or drawn from another distribution, say g;(x;), and weighted
properly (importance sampling). Static methods, e.g., most of the popular MCMC schemes
(Carlin et al. 1992, Carter and Kohn 1994), achieve this end by treating each m; separately and
repeating same kind of iterative processes. In other words, all of the results (i.e., random draws)
obtained at time ¢ are discarded when the system evolves from 7m; to my4q.

However, when the system is slowly varying, (i.e. the L? distance between m;(x;) and
mry (@) is small), random samples obtained at time ¢ can be ‘re-used’ to help construct random
samples at time £ 4+ 1 so as to improve efficiency. Imagine that we have a sample S; = {:I:EJ ), j=
| m}, drawn from 7. When the system evolves to w4, it is desirable to keep those

a:ﬁ*’ " and attach to each of them one or several a:gi)l drawn from some appropriate distribution



gr+1 (- | :vgj)). Let H;y1 denote the sample space of z¢41. Then the foregoing idea is equivalent

) _

to drawing sample from the product space S; @ Hi 1. Very often the evolved sample z;\; =

(:cgj" ! ;I:Si)l) needs to be reweighted or resampled to accommodate 7¢41. This is the basic principle
behind almost all available sequential MC methods, e.g., Berzuini et al. (1997), Gordon et al.
(1993), Hendry and Richard(1990), Kitagawa (1996), Kong et al. (1994), Liu and Chen (1995),
MacEachern, Clyde and Liu (1998), Pitt and Shephard (1997), West (1992) etc.

To further elaborate on these ideas, in this article we describe a general framework for using
sequential Monte Carlo methods in dynamic systems. Under this framework, we extend and
unify previously more restrictive methods, study various reweighting and resampling techniques
proposed, and discuss connections and comparisons of these approaches. A main message we
want to communicate in this article is that the sequential importance sampling (SIS) setting pro-
vides us a good framework for understanding many existing methods and for further improving
them (via Rao-Blackwellization, collapsing etc.).

Section 2 describes the general idea of the sequential importance sampling (SIS) method and
several key iinplementation issues, such as the choice of sampling distribution, resampling, and
Monte Carlo inference. Section 3 discusses several local Monte Carlo methods that are needed
when SIS encounters certain difficulties. Section 4 proposes three methods for resampling from
S; and provides a generic algorithm that combines SIS and resampling. Section 5 brings in
Rao-Blackwellization for improving estimation. Section 6 gives three examples to demonstrate

the use of Rao-Blackwellization and to compare different procedures. Section 7 concludes with

a brief summary.



2 SEQUENTIAL UPDATING IN DYNAMIC SYSTEM

Oue of the most successful methods for analyzing a complicated probabilistic system (such
as a nonlinear state space model) is the Gibbs sampler (Carlin et al. 1992, Carter and Kohn,
1994, Gelfand and Smith 1990, Tanner and Wong 1987). However, the Gibbs sampler is less
attractive when one’s interest is in real time prediction and updating in a dynamic system.
Another situation for the Gibbs sampler to be ineffective is when the states of the resulting
samples are very “sticky”, rendering the sampler very difficult to move (MacEachern et al. 1998).
In this case it appears that intelligently choosing a dynamic system for sequential updating can
be more efficient (Wong and Liang 1997). We first describe one of such sequential updating

strategies, then discuss its several key implementation issues.
2.1 The Sequential Importance Sampling (SIS)

A useful way to represent a complicated high dimensional distribution, such as m(xy), is by
multiple Monte Carlo samples drawn from it. Multiple imputation (Rubin 1987) is a successful
example of such a practice for survey data. In this article, we advocate a similar methodology

to that of Rubin’s for analyzing dynamic systems.

Definition 2 A random variable X drawn from a distribution g is said to be properly weighted

by a weighting function w(X) with respect to the distribution  if for any integrable function h,
By{h(X)w(X)} = Ex{h(X)}.

A set of random draws and weights ($(j),w(j)), j = 1,2,..., is said properly weighted with

respect to woif

‘ Z;":lh(x(j))w(j)_
i S = () M

Ut



for any integrable function h. In a practical sense we can think of m as being approzimated by

the discrete distribution supported on the 1) with probabilities proportional to the weights w'9).

Let S, = {a:g] ), j = 1,...,m} denote a set of random draws that are properly Weightéd
by the set of weights W, = {ng),j = 1,...,m} with respect to m;. Let H;y1 be the sample
space of X,4), and let g, be a trial distribution. Then the SIS procedure consists of recursive

applications of the following SIS steps:
SIS Step: for j =1,...,m:

(A) Draw Xtﬂzmgi)l from gtﬂ(xt“]:cgj)); attach it to :z:gj) to form :cgi)lz(ng),mg)l).

(B) Compute
G) mi (@)
*)

u) = : ‘ () (7, (@D
‘ my(a )9t+1($§i)1 | mgj))

;and let  wpy) = ugwy (2)

Here w,; is called an “incremental weight.” It is easy to show that (mgi)l,wt(i) ) is a properly
weighted sample of 741, Thus, the SIS can be applied recursively for t = 1,2,. .., to accommo-
date an ever-changing dynamical system.

The SIS method is also useful in non-Bayesian computation such as evaluating likelihood
functions. Applications in this direction can be found in Hendry and Richard (1990) and Irwing
et al. (1994). Briefly, suppose we are interested in evaluating the likelihood function L(6) =
p(yis-- ..y 0) in the missing data problem (Example 1). Then for each fixed 6 value, we apply

the SIS procedure to impute (z1, ..., ;) sequentially with ¢g1(z1) = p(z, | y1;6) and
gs(:cs ' Tly--- ’xS*]) = p(:L‘S | x$—17y5;9)7 s = 273a e

Kong et al. (1994) show that >0, ng)/m is an unbiased estimate of L(6). In Section 5 we

show that Rao-Blackwellization (Casella and Robert 1996, Liu, Wong and Kong 1994) can be



applied to obtain a better estimate.

2.2  Choice of the Sampling Distribution g,,; in SIS

The choice of the sampling distribution g4+ is directly related to the efficiency of the proposed

SIS method. For Bayesian missing data problems (example 1), Kong et al. (1994) suggest using

Gt (@ | @) = w1 (T | ) = p(@r | Yogr, 1),

with the incremental weight w41 o p(ye+1 | Yy, @¢). Note that although the exact value is not
easily known, usy| can sometimes be computed up to a normalizing constant, which is sufficient
for estimation using formula (1). This choice of g;11 is also used in Liu and Chen (1995). For

the state space model (Example 2) with known z¢=(6, ¢), a similar trial distribution is

etz [ ®) o< fir1(Wir | Toea1, @) @es1 (wigr | 24, 0)
Uy = /ft+1(yt+1 | Zt11, @)qe1(zes1 | 7, 0)dTisr.

[n the general dynamic system setting, we suggest g to be chosen as

9t_+1($t+1 | T¢) = mpp1 (@1 | @), t=1,2,..., (3)

with the incremental weight

Tr1(y)

U1 =
* 7Tt(-’l3t)

(4)
Note that w4 in (4) does not depend on the value of z;4; and this feature is important to several
issues discussed later. The reason that drawing 2441 from w1 (2441 | 24) 1s more desirable than

from a more or less arbitrary function gy+1(z+1 | @) is clear from rewriting the incremental

weight (2) as

Tr1(®e) mer1(Tepr | @)
Wt(wt) gt+1($t+1 |fb‘t)

Uyl =




Intuitively, the second ratio is needed to correct the discrepancy between gy11(z¢+1 | @¢) and
Ter1(2e41 | ©¢) when they are different.

Other choices of g;, are also possible. For instance, if m;(x;) can be “extended” for x4,

one may use
9?+1($t+1 \ fct) = 7rt((i3t4r1|33t)- (5)

For Example 1, this corresponds to g/, (zi11 | ®¢) = p(@i4+1|x¢, y,). The corresponding incre-

mental weight is ug41 < p(yi+1 | Yy, @e41). For Example 2, choice (5) corresponds to

gie1 (T | @) = quer(@egr | 14, 0)

and wgry o f(yre1 | ©441). This is used in Avitzour (1995), Gordon et al. (1993, 1995), and
Kitagawa (1996). Note that this trial distribution generates x4, using only the state equation.

Compared with (3), distribution (5) is usually easier to use but tends to result in greater
Monte Carlo variation (Berzuini et al. 1997). In the state space model case, it is obvious
that the choice (3) is more desirable than (5) because the former incorporates the most recent
information in g4, whereas the latter does not. Using (3) has another advantage in estimation,
which will be discussed in section 2.4. In many applications, however, it may not be easy to use

(3). Section 3 provides methods for coping with this difficulty.

2.3 Resampling in SIS (SISR)

Suppose S; = {ng),j =1,...,m} is properly weighted by W; = {ng),j = 1,...m} with respect

to m;. Let us call each :cgj ) a “stream.” Instead of carrying the weight W; as the system evolves,
it is also legitimate, and sometimes beneficial (Liu and Chen, 1995), to insert a resampling step

described as follows between SIS recursions, and such a procedure is referred to as the SIS with



resampling (SISR).

Resampling step: (i) sample a new set of streams (denoted as Sj) from S; according to the

weights wt(j ); and then (ii) assign equal weights to the streams in Sj.

[t is not immediately clear why one needs resampling at certain stage t. As much detailed
theoretical discussion is given by Liu and Chen (1995), we only mention a few heuristics on the
issue. Firstly, if the weights 11)§j ) are constant (or near constant) for all £ (such a case occurs when
one can draw from m; directly), resampling only reduces the number of distinctive streams and
introduces extra Mounte Carlo variation. This suggests that one should not perform resampling
when the coefficient of variation, cv?, for the ng) is small. As argued in Kong et al (1994), the
‘effective sample size’ is inversely proportional to 1+cv?. Secondly, Kong et al. (1994) show that
as the system cvolves cv? increases stochastically. When the weights get very skewed at time t,
carrying many streams with very small weights is apparently a waste. Resampling can provide
chances for the good (i.e., “important”) streams to amplify themselves and hence “rejuvenate”
the sampler to produce a better result for future states as system evolves, though it does not
improve inferences on current state xy. Examples in Section 6 illustrate these heuristics.

The resampling schedule (i.e., when to resample) can be either deterministic or dynamic, and
the sampling scheme can be either simple random sampling (with weights), residual sampling,
or local Mounte Carlo resampling (Section 4). The methods of Gordon et al. (1993), Hiirzeler

and Kiinsch(1995), Kitagawa (1996), Berzuini et al. (1997), and Pitt and Shephard (1997) can

all be seen as SIS with special choices of g;1; and with resampling at every stage.



2.4 Inference with Monte Carlo Samples

In dynamic systems, it is often of interest to obtain on line inference on the state variables, i.e.
estimating Er, h(x;) at time t. This is straightforward by using (1) when available is a sample
()

{wg'j)} properly weighted by w;"’. However, several issues concerning statistical efficiency of the

estimates are worth mentioning. Casella (1997) provides a general treatment on this issue.

e Estimation should be done before a resampling step, since resampling introduces extra

random variation in the current sample.

e Rao-Blackwellization can improve the accuracy of the estimation. For example, when
weight (2) does not depend on 41, such as in the case of using the optimal g, in (3),

the current state x;,; should be estimated before it is drawn from g¢;., by using

E h(zpo1) = Z;’Ll wgi)1Em+l(h(xt+1) | ng)) o
e sm wW) 5
Jj=1 Yt+4

provided that Er,,  (h(zi41) | :cgj )) can be calculated easily. In mixture normal state space

models(Example 2 and Section 6.3) and other examples, this is indeed achievable.

e Delayed estimation (i.e. estimate of E; h(z;_x) at time t) usually is more accurate than
concurrent estimation (estimate Er, , h(z;_) at time ¢t — k), since the estimation is based
on more information. However, precaution needs to be taken with frequent resampling

because resampling reduces distinct past samples.

10



2.5 Some Related Methods

The state space model as described in Example 2 has a special Markovian feature that the more

general dynamic models do not possess. With given zg = (¢, 8), Example 2 satisfies that

et [T, Y yir1) = p(@es1 | 26,Yi01) X fri1 (Yot | Teg)p(ze | yy)-

That is, with given z;, previous @;_; and y, can be “forgotten.” As in a Kalman filter, the
posterior distribution p(x; | y;) can be obtained recursively, at least in principle. The main
difficulty is that analytical formulas for this recursive updating only exist for certain exponential
family models (West and Harrison 1989) or finite discrete-state space model (Rabiner 1989).

Because of the popularity and simplicity of the state space model, several sequential Monte
Carlo methods have been proposed to deal with nonlinear/non-Gaussian cases. In particular,
Hendry and Richard (1990) note the potential use of the SIS in such models. West (1992)
suggests to use a mixture distribution to approximate p(z; | y,) at each time ¢, and then
proceed with an adaptive importance sampling strategy to produce a mixture approximation
of plwis1 | y;) at time ¢ + 1. Difficulties with this approach are that finding good mixture
approxumnations for every ¢ can be time-consuming and it can be difficult to implement when the
dimensionality of x; is high.

Gordon et al. (1993) and Kitagawa (1996) propose to use importance resampling to obtain
a discrete approximation of p(zi1]y,, ), with a given set of samples drawn from p(z|y,).
They call such a procedure bootstrap filter or particle filter. The method has been successfully
applied to multiple target tracking (Gordon et al. 1995, Avitzour 1995) and time series analysis
(Kitagawa, 1996). Their method is essentially an SIS with g;;; chosen as (5) and resampling

at every f. Estimations were performed after resampling, which is less efficient. Hiirzeler and

11



Kiinsch (1995) and Pitt and Shephard (1997) have proposed improved algorithms for the state

space model. We discuss their approaches in detail in Section 3.

3 LOCAL MONTE CARLO METHODS FOR SIS

As we have discussed in Section 2.3, a favorable choice of the recursive sampling distribution
18 g1 (2es1 | 1) = M1 (w41 | @¢). However, drawing z;41 from mpy (2444 | ;) may not be
directly achievable and the incremental weight 1) may not be easy to compute. Under such
a premise, a collection of methods have been developed to overcome the difficulty for the state
space model. See, for example, Berzuini et al. (1997), Hiirzeler and Kiinsch(1995), and Pitt
and Shephard (1997). We propose here to extend their methods to our general SIS setting for
simultaneously estimating the new weight w1, and drawing z;,;. We refer to these methods

as “local Monte Carlo methods” for SIS.
3.1 The Basic Idea

As usual, we let S; = {:L'gj),j =1,...,m} and W; = {wt(j),j = 1,...,m}. The central idea
of this section is to regard m; as being represented by the Monté Carlo sample S; with weights
Wi. Thus, at stage t + 1, z; can be treated as a random variable with this discrete a priori
distribution. To simplify notations, we introduce a random variable J, who takes values in
the set {1,...,m}, to indicate the streams in S;. Pitt and Shephard (1997) also use such a
formulation, and call J the auxiliary variable.

Let the joint distribution of J and z;,; be

me (@) z40) 1)
P(J, Tep1) o ) Wy - (7)
m(x”’)

12



Then the marginal distribution of z;y; from (7) is

(4)
. s Tt41, T
1 (Tey1) o Z Gl H(l]) L )wt(])a (8)
j=1 m(xy”)

which would be a good approximation to the true marginal distribution my11(z4y1) provided
that the Monte Carlo sample size m is large and the distribution of the w; is not too skewed.

The marginal distribution of J is

()
Tt (! T N1 (x N (G ;
P(J =j) ]) / 281 t t+1)d27t+1 = ng)itﬂ((jt) ) = ng)ugi)l = wﬂ)l,
¢ :nt ()
()

which is exactly the new weight at time ¢ + 1 for &,/ according to (2) and (4).
Hence, if we have a method to draw a sample, (71, atgill)), ooy (Jos x&{f%), of (J,z¢y1) from (7),

then the SIS step can be achieved by
(B) Estimate zugi)l by fj = frequency of {J = j} in the sample.

(A) Form mgi)] = (wij),xfﬂ) if fj # 0, where z},, is any value of z;;1 that is paired with

J = 7 in the sample.

Several methods for generating samples from (7) are described in the following subsections, and
a few remarks are as follows.

Remark 1: As long as the estimates of the weights are unbiased, the new sample is properly
weighted by fj with respect to m;y;. An accurate estimation of the weights is not necessary.
Those :1:5 with f] =0 can be replaced by a random draw from those with f] # 0. If of interest
is the estimation of the incremental weight UEQ], one can set w(y) = 1 for y € S; in the above
calculations.

Remark 2: Since the local MC methods provide samples of (J, z;4,) with distribution (7),

they achieve resampling effect automatically. See details in Section 4.

13



Remark 3: None of the methods described in this section are necessary when direct sampling

from the optimal g,y of (3) is achievable.

3.2 Rejection Methods

Suppose we can draw x; from a trial distribution g}, (x4 | ;) which is not equal to (3).
There are two rejection methods to sample (J,z4+1) from (7): one is based on the joint distri-
bution of (J,2¢41) and the other based on the marginal of z;y;. Let the “covering constant”

be

)
T (@ Tey1)
Ct41 = ‘Sup (]) N Lo (]) .
der T2y )98 (Teg1 [ 2p)

Rejection method 1:

e Draw J = j with probability proportional to ng );

o Given J = j, draw 241 from g7y (ze41 | -’ng));

e Accept (j,z;41) with probability

Tt+1 (wﬁ” ’ $t+1)

Ct+1 Wt(ng))gfﬂ(xtﬂ ‘ fcgj))

p:

Rejection method 2: The first two steps are identical to Method 1. In Step 3:

e Accept x4, with probability

_ L= w w2, we0) fm(@)

Cti1 Dy w§])97+1(i?t+1 | z)

P

Then the sample z,4; accepted from using either of the methods follows (8). In method 2, we

need to redraw J with probability

(7)
. T Ty ,T 1
P(J =7 | 2e1) x t+1 (% 5 t+1)w§3). (9)
m(@y”)

14



Methods 1 and 2 are identical in the state space model case and are an essential part
of Hurzeler and Kiinsch (1995). Generally, method 2 is a Rao-Blackwellization of method 1

(Casella and Robert, 1996) and can be more efficient.

3.3 Importance Resampling

Importance resampling method can also be used to generate approximate samples from (7).

e Draw J = j with probability proportional to ng);

e Given J = j, draw zyy1 from some gf, (2441 | mgj));

e Assign to the sample (4, z;.1) the weight

Ti+1 (mgj), $t+1)
mi(ef)gt 1w | 20))

w(j, Tiq1) =

The obtained sample (j, 244, ) is properly weighted by the w(j, z441) with respect to (7). At this
point, one has three choices: (a) do resampling to achieve (7) approximately, as implemented

in Gordon et al. (1993) and Kitagawa (1996); (b) estimate P(J = j) o wgi)l directly using

the weighted sample of (j,z41); or (¢) proceed with the newly sampled (mgj),xtﬂ) (with new
weights w(j.w441)), as proposed by Pitt and Shephard (1997).
In addition, Pitt and Shephard (1997) suggest using an adjustment multiplier to improve

efficiency. Briefly, one can instead draw J = j with probability proportional to ng )agi)l and

then adjust the weight accordingly. It is conceivable that by carefully choosing agi)l (a function

of :zzgj )) and g7, | one can achieve good efficiency. This idea can also be applied to rejection

sampling and the following MCMC approach.



3.4 Hastings Independence Chain Approach

Alternatively, one can also use Hastings independence chain approach (Hastings 1970), as sug-
gested by Berzuini et al. (1997) for the state space model. Here we prescribe a generalization
of their method for dynamic systems. Detailed description of the general independence chain
method is given in the appendix.

Suppose we can draw X, from a trial distribution g, (%441 | ;). Then starting with an
arbitrary J° = jy, we iterate the following steps:

e Draw J = j/ with probability proportional to ng D,
o Draw X;11 = z;,; from gf, (z441 | :cgj/)) or from a reversible MCMC step with g7, (- |
(")

x;”’) as its invariant distribution (see the proof of its correctness in Appendix).

e Set (Jk“,.’nfjll) equal to (jl7$:f+1) with probability p,, and equal to (Jk,a:fﬂ) with prob-
ability 1 — p,, where
R ’ Jk N Jk
p(],a"EH—l)wwg )9t+1($f+1 ‘ x% ))

P(Jkaxfﬂ)’ng )9?+1($It+1 | :cg

pe = min ¢ 1, ,

j'))
where p(.J, 2y, 1) is defined in (7).

The resulting equilibrium distribution of (J, z441) is exactly (7). Theoretical properties of the
Hastings' chain are studied in Liu (1996) who shows that this method is comparable to rejection
method in terms of statistical efficiency. The second rejection method described in the previous
subsection can also take this MCMC twist. Its detail is omitted here.

The advantages of rejection methods are that no iterations are needed and the resulting
sample is “exact,” whereas the disadvantage is that ¢;+1 needs to be computed and the resulting

scheme can be very inefficient. Liu (1996) provides more detailed comparisons of the three

16



methods. An interesting variation is to combine rejection and importance samplings as suggested
by Liu, Chen and Wong (1997). When the difference between w1 (zi41 | @¢) and g (€e41 | @)
is large, none of the methods is ideal. To alleviate the problem for state space model, Hiirzeler
and Kinsch (1995) propose some smoothing techniques and Pitt and Shephard (1997) suggest

using mode approximation to find a good adjustment multiplier.

3.5 Illustration with the State Space Model

Suppose one is interested in estimating the state space signal z; on line (Example 2) with the
parameters ¢ and ¢ given. For simplicity, we suppress ¢ and 8 in all relevant formulas. Thus,

the dynamic system for the state space model is 7y (x;) o< [T, fs(ys | 25)qs(zs | s—1), and

Ti+1 (-’Et+1 ) -’Bt)

T (T | @) o
+’ ) 7Tt(wt)

= firt(Wes1 | L) @1 (@41 | 21).

Although sampling from 711 (2441 | @¢) can be difficult, one can usually draw from the state
equation g7, | (211 | ©¢) = gi+1(@441 | z¢) easily. Rejection methods 1 and 2 are identical in this

sitnation. Let ¢jo1 = sup,, | fi+1(yes1|@es1). The procedure is

e Draw J = j with probability proportional to w(j), then draw x;4q from qu11(x41 | a:gj)).

o Accept (J, zy1) with probability p = fii1{ye1 | ©441)/ctan
All the samples of (J, z;41) drawn from this scheme follows the distribution
).

p(J = Grxeer) o wl fopy (g | Tea1) g (w41 | @

Similarly, with gf, |, = q11(@441]|z;), the importance resampling procedure becomes: (i)

draw J = j with probability proportional to wéj), (ii) draw zyq1 from gp1(zesq | x%j)), and
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(iii) assign weight to the sample (j,z¢11) as fiy1(yer1 | Ze+1). The procedure of Gordon et al.
(1995) and Kitagawa (1996) is exactly the above, with an additional step of resampling from the

obtained sample using the assigned weight. In addition to the use of gf,| = gi41(z¢41|2¢), Pitt

(

and Shephard (1997) incorporate an adjustment multiplier ati)l = fi+1(Yes1 | ugi)l), where u(j )

t+1

can be mode, mean, or other likely value of cg)l Thus, the resulting weight for the obtained

sample is w(j, zi11) = fre1 (Y | 37£1)1)/ft+1(yt+1 \ Hgi)ﬂ-
In the independence chain approach with the same g}, as above, the rejection probability

can be computed as

! (Jk,)
= t HA w
Pe = Min {1’ fer1(Yis1 | t+1) t_ } 7

fer1(Wear | $f+1)w§

and the rest can be carried out routinely.

4 RESAMPLING AND A GENERIC ALGORITHM

In many early work on Monte Carlo methods for the state space model, resampling has played
a major role in evolving the system from time ¢ to t+1 (e.g. Gordon et al. 1993; Kitagawa 1996).
In this section we describe two resampling methods, discuss possible resampling schedules, and

then prescribe a generic Monte Carlo algorithm for dynamic systems.
4.1 Resampling methods

4.1.1 Simple Random Sampling. In this procedure, one samples from S; with replacement
with probability proportional to the weights in W;. Liu and Chen (1995) use this approach to
modify the skewed importance weights resulting from the SIS.

In general, a resampling step is inserted between two SIS steps. But when the weight (2)

does not depend on x4 (i.e., when sampling distribution (3) is used), the resampling step
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should be inserted inside a SIS step. Specifically, an optimal SISR consists of: SIS step (B)—
resampling step - - SIS step (A). This generates more distinct samples of z;1; than performing

resampling after SIS steps (A) and (B).
4.1.2 Residual Sampling. The following scheme can replace the simple random sampling.

(*7) (

e Retain k; = [mw,; '] copies of :ntj ) for each Jj, where wg*j )

is the renormalized weight of

fw,(‘j). Let m, =m—ki — -+ — k.

e Obtain m, iid draws from S; with probabilities proportional to mwg*j ) _ kij,j=1,...,m.

e Reset the weights to 1.

It is easily shown that the residual sampling dominates the SRS in having smaller Monte Carlo
variance and favorable computation time, and it does not seem to have disadvantages in other

aspects. A comparison of the two procedures is given in Section 6.2.

4.1.3 Local Monte Carlo Resampling.  Since the local Monte Carlo methods described
in Section 3 provide samples of (J,z;y1) with distribution (7), it appears that these methods
achieve resampling effect automatically. More precisely, let (J* ,:v{fﬂ), k=1,...,m" be a set of
draws obtained from using either a rejection method or the Hastings method (after burning) in
Section 3. Then the set of streams Sy | = {(:c%‘]k), z¥.1),k =1,...,m*} is a desirable resample.
The weights associated with the new streams are equal to 1. Note that m* is not necessarily

equal to m. This procedure avoids weight estimation.
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4.2 Resampling schedule

As shown by our earlier arguments and later examples, resampling at every stage is neither
necessary nor efficient. It is thus desirable to prescribe a schedule for the resampling step to
take place. Two such schedules are available: deterministic versus dynamic. In a deterministic
schedule one conducts resampling at time g, 24, . . ., where ¢y depends on difficulty of a particular
problem and may require some experimentation. In a dynamic schedule, one gives a sequence of
thresholds ¢y, ¢o, ..., and monitors the coefficient of variation of the weights cv?. When cv? > ¢

occurs, one invokes resampling. A typical sequence of ¢; can be ¢; = a + bt®.

4.3 A Generic Monte Carlo Algorithm

We recommend the following algorithm for Monte Carlo computation in dynamic systems.

Main Algorithm

1. Check the weight distribution: perform one of the following two choices at time ¢:
Dynamac: If the weight (or estimated weight) distribution is not too skewed, i.e., cv?(w) <

i, go to step 2. Otherwise go to step 3.

Deterministic: If t # kty for some integer k, go to step 2. Otherwise go to step 3.

2. Set t =t + 1. Invoke an SIS step (section 2.1). Sometimes one may need a local MC

procedure (Section 3) to accomplish recursive sampling and weighting. Goto step 1.

3. Set t =t + 1. Invoke an SISR step (Section 2.3). Use residual sampling whenever possible.

To avoid weight calculation, use local Monte Carlo resampling methods. Go to step 1.

A noticeable difference between our use of local Monte Carlo procedures and that of others
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(Hiirzeler and Kiinsch 1995; Berzuini et al. 1997; Pitt and Shephard 1997) is that we decouple
the local MC outputs into two parts: estimating the new weights for the x; and obtaining the
draws of ;1. There are two advantages of doing such a decoupling: (i) obtaining an explicit
weighting can tell us how different 7, and 7y are and how well the SIS works; and (i) it
provides a means to improve efficiency via the use of residual sampling and delayed resampling.
Since the local MC procedures are merely used to achieve a good g;1;, any other means that

leads to this end should be considered whenever possible.

5 RAO-BLACKWELLIZATION

In all SISR procedures, the discrete representation of myy4(x;), by a sample of :cgj ) with the

weight uygfs, degenerates very rapidly as the number of resamplings increases between t and

t + 5. As a consequence, estimating a quantity of interest, such as E,, (h(z;)), can be very

t+s
inaccurate.

Take Example 1 for instance. As SISR proceeds with ¢, the number of distinctive g (i.e.,
#) values decreases monotonically. This rapidly leads to a degenerate posterior distribution of
f. 'To alleviate this problem, we can apply a variant of the Rao-Blackwellization (Casella and
Robert 1996; Kong et al. 1994; Liu et al. 1994).

Suppose, with the Bayesian missing data setting of Example 1, we have at time ¢ the observed

information y, and multiple draws (81, :I:Ej)), g =1,...,m, properly weighted by wt(j). If the

number of distinctive values of the 8Y) is too small, we can fragment each stream (§() ,w,(:j ))

by drawing UV, ... U from the complete-data posterior distribution (0 | :I:Ej), y;). When

the posterior distribution of 6 is continuous, we will have km distinctive 8 values after Rao-
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Blackwellization. The weight associated with each (909, :cﬁj )) is ng ). (This is the consequence
of the fact that after a few steps of MCMC transition with respect to which the target distribution
7y 1s invariant. the sample is still properly weighted with respect to 7;. See MacEachern et al.
(1998). To retain constant total number of streams m, one can either set k = 1, or resample m
streams from the km streams according to their corresponding weight. Rao-Blackwellization as
described above results in a sampling distribution that is closer to the target distribution since
it uses more information.

If at time £ we want p(6 | y,), we can use the Rao-Blackwellized estimate,

7 wdp6 ] 2 y,)

m (4) ?
j=1%

POy, =

instead of using the weighted histogram of the sampled 60,

To compute the likelihood function L(8y,), we can first draw @ uniformly (if the parameter
space is bounded, otherwise one need to combine the flat prior with some data) and apply the
SIS to draw multiple copies (H(j),cc(j ) ) with weight w(). Then the Rao-Blackwellized estimate

of the likelihood function is:

™ wpd | 2, y,)
Z;nzl wd) ’

j,(g lyy) ~

where p(6 | mEJ ), Y,) is the complete-data posterior distribution of 8 with flat prior.

Berzuini et al. (1997) notice that when some form of conditional independence is present
(¢.g., in a missing data problem when a parameter 8 is involved conditional on which the missing
data are independent of each other), one may sometimes “disengage” those early observation
y's and early imputations. For instance, in Example 1 p(z441, y14110, @1, y;) = p(xs, 34|6). Hence

all of the @y and y, can be “disengaged.” Similarly in Example 2, the x;_; and Y;_1 can be
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“disengaged.” The advantage of doing this is obvious: it saves memory and may speed up

computation.

However, when disengagement is implemented, Rao-Blackwellization is no longer directly
applicable. A remedy is to represent the information contained in the disengaged components
as a mixture distribution of the 6 (via Rao-Blackwellization) and then proceed in combination

with resampling. Numerical experiment on this method is under investigation.

6 EXAMPLES

6.1 Econometric Disequilibrium Model

Initially proposed by Fair and Jaffee (1972), this class of models has attracted much attention
from econometrics researchers in past few decades. It provides a theoretical foundation for the
philosophical arguments (generally called Keynesian theory, which is named after the economist
J.M. Keynes who attacked the dominant paradigm of economics in 1930s) against the postwar
mainstream approach to economics, the equilibrium methods. See Quandt (1982, 1988) for
reviews and discussions. Here we only look at a special dynamic disequilibrium model in Hendry
and Richards (1990). Almost all components other than the relevant lagged variables, such as
prices and other environmental exogenous variables, are excluded for the sake of simplicity. We
illustrate an improvement in estimation by using Rao-Blackwellization.

Let gi=(qut, g2¢) be bivariate normal random variables with

Eqi) | @) = ciqies Var(qen | q) =1,

for t = 0,....T — 1, where I is the identity matrix. The observed datum for this model are

yr = min{qs,qor }, for t = 1,...,T. For simplicity in presentation, the initial states q;p and
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gz were taken to be 0 and assumed known. Of interest is the likelihood function or posterior
distribution of («y, ay).

Let Ay = max{qis, g2}, let d; be i if y, = g;, and let 8 = (a1, a0). If we write 2, = (N, &),
the distribution involved in sequential sampling is gi41(zey1 | @) = p(ze41 | 0, 4, Yy, ye+1); and
that involved in weight updating is w41 & p(yey1 | 0,21, y,). Detailed computations are given
in the Appendix.

For each fixed 6, Hendry and Richard (1990) use the SIS to evaluate the likelihood L(0 | y1)
based on equation (8) of Kong et al. (1994). Putting a flat prior on @, we can treat the likelihood
computation as a Bayesian computation and use the SIS method to simulate weighted samples

of (. x) jointly. Rao-Blackwellization can be applied to improve the efficiency.

Density

1.0

0.0

Figure 1: The posterior distribution of a; after the 50 observations with uniform

prior. Line — result from Rao-Blackwellization; dots — result from the standard SIS.

We simulated 50 data observations yy,...,ys50 from the model with a; = ay = 0.6, and
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initial value q;; = g9 = 0. Assuming that we know a7 = a9 = o, we used the SIS method with
m = 10,000 to obtain the likelihood function for «, as shown in Figure 1. It took 8.16 seconds
on a Silicon Graphics workstation with R10000 microprocessor, and the cv? at the end of the

SIS is 5.13. The smooth curve is the result from the Rao-Blackwellization.

6.2 Blind Deconvolution

The moving average system, y; = Y1, ¢iTs—; + &, is often seen in digital communication. The
input signal x; takes value from a known set of discrete states and e; ~ N(0,0?). By observing
the blurred signals yi1,...,yn, it is of interest to reconstruct the z; and to estimate the system
coefficients ¢;. More references can be found in Liu and Chen (1995).

We took a simulated example from Chen and Li (1995) in which the system equation is

Yy = Ty + 0.8.’L’t_1 - 0.4153_2 + &¢.

The input signals x; were iid uniform on {0,1,3}. The signal-to-noise ratio was controlled at
15 dB, which gives a standard deviation 0.3 for the noise. The ¢; in this case can be easily
itegrated out with Normal prior and all the sampling and weighting calculations can be found
in Lin and Chen (1995). A direct SIS without using a local MC procedure applies.

A total of 200 signal sequences were simulated, each with 200 sequential observations from
the system. Our interest was in testing the simple SIS with different resampling schedules and
with the two resampling methods (i.e., simple random sampling (s) versus residual sampling (r)).
One thousand streams (m = 1000) were carried in the SIS procedure. We estimated the input
signal z; by MAD using the weight at time ¢+3. Table 1 shows the number of misclassification of

signals in 200 simulations, each with 200 sequential signals. Here, resampling frequency #; means
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procedures (s) or (r) were applied at tg,2tg, 3t, . ..
dynamic scheduling, resampling procedure is applied whenever the effective sample size (defined

as m/(1 4 cv*(w)) is less than 3. In our example, this dynamic schedule leads to 5 to 15 times

of resamplings in processing 200 signals.

Table 1 shows that resampling either too often (¢, small) or too rare (¢; big) tends to
produce a large number of misclassifications. When resampling too often, eg. tg =1 or b,
there are marked frequency that the Monte Carlo method is never on the right track, resulting
in disastrous estimations. In the reasonable range of ty (between 20 aﬁd 50), residual sampling

method seems to be slightly better than the simple random sampling.

(so tp = 200 implies no resampling). For

Deterministic Resampling Schedule ¢ dynamic

5 20 50 100 200 schedule

error s r| 8 r| s 1| s r| s 1| s r s r
02711 5| 7 13|13 13| 7 10| 1 O 0O oOf11 12
351149 49|46 53|61 65|53 49|28 28| 7 7/69 58
6-8 | 41 43|50 52|72 70|57 58|59 58|12 12| 66 67
9-11 1123 20 |27 30 |38 38|52 48 |43 44 |47 47| 29 41
1215 110 9|13 7| 8 6|17 20|33 32|44 44 | 16 8
1625 |11 10|14 11| 8 8|14 15|35 35|84 84| 6 11
1650 ) 4 10 8 9,0 0] 0 0] 1 3| 6 6 1 1
>50 1151 54135 251 0 0| 0O O] 0O 0| O O] 2 2
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Table 1: The numbers of misclassified signals (the first column) in a total of 200 sim-
ulations, each with 200 sequential signals, are demonstrated. All the columns except
column 1 are results from different combinations of SIS strategies. Symbols “s” and

“r”7 on row 3 represent simple random sampling and residual sampling respectively.

6.3 Target Tracking in Clutter

Tracking multiple targets in clutter is of interest to engineers and computer scientists. The
problem has received much attention recently and many solutions have been proposed, among
which the method of Gordon et al. (1995) and Avitzour (1995) is most closely related to the
method described in this article. As has been mentioned earlier, their algorithm employ the
sampling distribution (5). Here we use the example in Avitzour (1995) to show that using
sampling distribution (3) can produce better tracking results.

The tracking problem in Avitzour (1995) can be formulated as a state space model with the

(1 (2 (1

state variable x,=(x,”’, z;,”’), where z;’/ is the location of the target on a straight line and w§2)

is the target velocity. The z; are location observations. They evolve in the following way:

1
Y = x§1)+x§2)+§w(t+1),
xﬁ)l = $£2)+w(t+1),
2 = o ot +1),

where w(t) ~ N(0,¢%) and v(t) ~ N(0,7?) are independent. We further assume that we only
have probability py to make the location observation z;. The rate of false signal clutter is
aA. with A being the width of 4r detection region. Therefore, the actual observation y; is a
vector of length m; among which at most one is the true observation. The distribution of my is

Bernoulli(py)+Poisson(AA). The false signals are uniformly distributed in the detection region.
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In this case, the sampling distribution m¢y1(@¢y1 | Ye41, @) in (3) can be easily shown to be
a ixture of my) normal distributions, with means and variances being functions of y;,; and
zy. More details are given in the appendix. Resampling is conducted before each z;, is drawn,
and concurrent estimation of Fr,, (z;11) is done using Rao-Blackwellization (6).

Another trick that we can play with this example is to integrate out the state variable z;
and use Monte Carlo to impute an indicator variable that tells which component of y; is the true
signal. With the true signal identified, it is trivial to estimate the true location of the target.
This collapsing procedure produces an even better result.

Figure 2 shows the plots of tracking errors (estimated location — true location) of 50 simu-
lated runs, with r* = 1.0, ¢ = 0.1, pg = 0.9 and A = 0.1. Five hundred streams (m==500) were
used. with resampling done at every step. The top figure resulted from using the optimal sam-
pling distribution (3) and the middle figure from using the collapsing procedure. The bottom
figure shows the result from using a less optimal sampling distribution g;1) = g(z;41 | 7) as in
Avitzour (1995). The top figure has 13 runs with absolute value of tracking errors exceeding 10
at least once, the middle figure has 16, and the bottom has 20. Similarly, the top figure has 4
runs exceeding the 20 limit, the middle figure has 4, the bottom has 8.

The above parameter combination is slightly different from that of Avitzour (1995), with
smaller clutter density but larger state equation variance. With their configuration, the results

arc similar but the differences between different procedures are smaller.

7 SUMMARY

In this paper we propose a general framework for on-line Monte Carlo computations for
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Figure 2: The tracking results from using three different sequential Monte Carlo
methods. We used m=>500 and resampled at every step. The y-axis is the distance
between the estimated and true positions of the target. Top: results from using
gi+1 prescribed by (3); middle: results from using the collapsing procedure; bottom:

results from using (5).
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dynamic systems. It is clear that almost all the available sequential Monte Carlo procedures
can be unified under this framework. This general setting provides a common ground for under-
standing and improving various similar methods developed for specific models. It also provides
a general guidance on how such procedures should be used in practice and how different ‘tricks’
developed for specific problems can be combined to achieve maximum efficiency. In particu-
lar, we discussed several key issues in implementing sequential Monte Carlo methods, namely,
choices of the recursive sampling distribution g;1,, advantages and disadvantages of resampling
and their scheduling, efficient use of Monte Carlo samples, and Rao-Blackwellization.

Besides the obvious application of the sequential MC in the state space models, there are
many other problems that can be formulated as a dynamic system and solved using techniques
described in this article. For example, the SIS procedure can be built into a MCMC scheme to
produce a more cfficient transition proposal chain. The Hastings’ rejection procedure described
in Section 8.1 can be used in combination. This type of Monte Carlo methods (sometimes
called “configuration-biased Monte Carlo”) have been tested effective for simulating biopolymers
(Leach, 1996). Sce Irwing et al. (1994), Kong et al. (1994), Wong and Liang (1997) and others
for more examples. We hope that the results reported here can stimulate more interest and

effort from other researchers on this type of problems.

8 APPENDIX

8.1 The Invariant Distributions of the Hastings Independence Chain

This scheme is first discussed by Hastings (1970, Section 2.5) as one way to do importance

sampling. Ticrney (1991) generalizes the discussion under the heading “independence chains,”
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and is called “Metropolized independence sampling” by Liu (1996). The general scheme can be
stated as follows.

Suppose that 7(z) is known up to a normalizing constant, and we are able to draw indepen-
dent samples from g(z). A Markov chain {X;, X2,...} can be constructed with the transition

function

g(y) min{1, 24}, if y# a,
K(z,y) =
1= [, 4, 9(2) min{l, Ej—g%}dz, if y=z,

where w(x) = w(x)/g(x) is called the importance ratio (or importance weight). Intuitively, the
transition from X,, = z to X,,11 = y is accomplished by generating an independent sample from
g(-). and then “thinning” it down based on a comparison of the corresponding importance ratios
w(y) and w(x). It can be shown that 7 is an invariant distribution of the constructed Markov
chain. Note that the above scheme is only a special example, that more serious Metropolis-
Hastings algorithms most commonly make dependent local moves instead of independent global
jumps. An eigen-analysis of this chain is provided in Liu (1996).

Suppose we can not directly sample from g(z) but have a reversible MCMC procedure (most
single-step MCMC scheme satisfies this condition), with transition function A(z,y), that has
g(x) as its invariant distribution. Then we have g(z)A(z,v) = g(y)A(y, z). Hence, if we conduct

a Metropolis step with A(z,y) as the proposal chain and w(x) as the target distribution, the

rejection probability can be computed as

Hence, the procedure described in Section 3.4 is still valid, but can no longer be called “inde-

pendence chain” approach.
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8.2 Computations Involved in the Example (section 6.1)

For computing the weights, we have to compute

Pl 1021,y 1) = Blye—onqi(-1)) 1= P (ye—cagoi—1)) |+ Py —cagog—1)) 1= 2 (e — 1 g1 i 1))l

and for imputing missing data, we need

P(yr — onqrp—1))[1 — Pyt — a2go—1))]
plyt | 0, 21,9, 1)
d(Ar — a2qa(1-1))
1 -y — Oé2£12(t—1))
Ay — alql(t—l))
1= ®(y; — a1q1e-1))

plor =110, 21,9, 1,y1) =

PN 0 =1y, 0,1, y, 1)

p()\t | 6t - 27yf/797mt~layt~l)

Suppose that the prior distribution for @ is pg(a, ), then given complete observations, the

posterior

L (qu — alQl(t—l))2 + (g2t — 042f12(t—1))2}
=2

])(91q:,---,QT)OCPO(e)eXp{— 2

—
Without loss of generality, we take py(6) to be uniform on [0, 1)2. Then the posterior distribution

is simplified as

(a1 —a1)? (a2 — ag)?
P(()CIM---’CIT)OCQXP{— ST T , 0<a, a2 <1,
where
T T
by = (Z qf(t—l))wUQv a; = b Z q1q1(t—1)
t=2 t=2

T T
by = (Z qg(t_u)_l/?, az = b% Z Q2tq2(1—-1)-
t=2 t=2

‘To sample from the truncated normal distribution X ~ ¢(z) with X > ¢, where 7(z) is

standard normal density, we use the following strategy. When ¢ < 0, we simply conduct a
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simple normal random number generation, and do rejection until we have a sample satisfying
X > ¢ For ¢ > 0, especially when ¢ is big, we use exponential random variable with the rejection
method.

Suppose that the exponential distribution Age™2% is to be used as an envelop function, then

we need to find the minimum constant b so that

oz +c)

< bhge 0% >
I —d(e) =P w20

This gives us the best solution for b:

_ exp{(/\% —2X¢)/2}
V2mdo(1 - 9(c)

The acceptance rate for using this exponential distribution is then 1/b. To achieve minimum

rejection rate, we further find that the best choice for Ag is
Ao = (c+ V2 +4)/2.

With this choice of Ay and b, we implement the rejection method of von Neumann (1951). The
rejection rate for this scheme decreases as ¢ increases, and this rate is very small for moderate

to large ¢ (e.g., for ¢ = 0,1, 2, the rejection rates are 0.24, 0.12, and 0.07).

8.3 Computations for Target Tracking (section 6.3)

Let yrv1 = (Yig1(1)s - - > Ye1(meqr)) De the observed signals at time ¢ + 1. Then
fyir [ z) = (1—pa) |:%mt+1 %]
e e
- mtzﬂ Gr(Year(e) | 2e1) + (1 —pd))\] %;t\:t!—ﬁq_1
i=1
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for £ =0,1,2,..., where ¢, refers to the normal density with variance r2. Furthermore

(1) \2 (1) (1) (2)y2
/ / 1 (Yes10) — T51) (Tyg1 — 2 —zp)
(Y1) | ms)g(megy | @) = g P {‘_ o2 B 2(q/2)?

1
c exp { — (5E§+)1 - Mt+1)2
V2mogyy 207,

where

Y | oy + o)

242
Hi+1 = [ 2 (@/2)2

2

2 . T
Tt+1

o - -+
t+1 q2 +4’I‘2,

and

2044 { 1 lyt2+1(i) $§1) +$§2) _ l‘%ﬂ]}
2

c= exp —=
V27ryg r? (q/2)* Ut2+1

Hence, f(yi41 | 2441)q(@41 | @) 18 a mixture of m;,; normal distribution.
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