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Counting the Number

oi rxc Confingency idnies
with Fixed Margins

et and approximate methods are given for counting the number of
- » vontingency tables with fixed margins. The approximate
methods are extended to estimate the number of r X ¢ X s con-
[negency tables with given first-order margins.
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1. INTRODUCTION

Consider an » X e contingeney table with entries X))

row totals (marginsi\ m; = Y ; X, and column totals
[margins) =%¥.,X,, where =1, 2 ..., r and
i=1,2....,c. Wegive exact and approximate methods

xox munmng the number of tables consistent with the
given margins. We became interested in this problem
when trying to determine the exact conditional distribu-
sion of a funetion of the X';;, which under independence,
and conditional on the margins, follow the generalized
hypergeometric distribution (Lehmann 1975, pp. 380-
383). To determine whether an exact calculation was
feasible, we needed to know how many tables were con-
sistent with the given margins. Abramson and Moser
{1973) and Good (1976) treat special cases.

2. EXACT ENUMERATION

The number of » X 2 tables can be generated exactly
‘rom the recursive argument which follows. Simply
stated. the number of possible tables with ¢ 4+ 1 rows
can be built up from consideration of the number of
tables with only 7 rows, so the entire r X 2 problem can
he solved by adding layer after layer until ¢ + 1 =

Let N (¢ my, ma, . ;) be the number of i X 2 tables
with margins ¢ and o, ma, . m;. Then

y M) = 2 Nilbh— im0,

7

-\'4_1(21; mi, .- m-i) s (21)
where j = 0, 1, Cmin(m .y, &). Equation (2.1) gives
the number of (¢ + 1) X 2 tables with column total ¢
and raargins my, ..., M. Equation (2.1) follows from
the fact that the number of (¢ + 1) X 2 tables with
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X( 41, 1) = is equal to the number of i X 2 tables
with column total ¢, — J.

To illustrate (2.1), consider the 4 X 2 table with
my =2, ma =3, my = 2, and my = 1. Without altering
the problem, we relabel the margins m, = 3, ms = 2,
mz = 2, my = 1 in descending order. Table 1, based on

1. Computations for a 4 x 2 Table with
Row Totals 3,2,2, and 1

T, N(t;;3) Ny(t:;3.2) Ny(t,;3,.2,2) Ny(t;3.2.2,1)
8 0 0 0 1
7 0 0 1 4
6 0 0 3 9
5 0 1 6 14
4 0 2 8 16
3 1 3 8 14
2 1 3 6 9
1 1 2 3 4
0 1 1 1 1

(2.1), generates N4(t1; 3, 2, 2, 1). The second column con-
tains zeros for t, > 3, since no 1 X 2 tables with m; = 3
and ¢, > 3 are possible. The third column is obtained
from the second by adding m2 + 1 = 3 elements accord-
ing to (2.1). The fifth column contains the numbers of
possible + X 2 tables for £ = 0 1,2, ..., S. Note that
the distribution of N4(¢;3,2,2,1) is symmctrlc In par-
ticular, the number of 4 X 2 tables with column total

= 6 and row margins 3, 2, 2, 1 is 9. The sum of the
elements in column 5 is 72, the total number of possible
4 X 2 tables with unrestricted column totals, in agree-
ment with the general result (3.6).

For ¢ = 3, the same reasoning used to obtam 2.1
leads to

N1, to; my, <oy Miga)
=T T Ni(ts — ki, t2 — kaymy, -

Kk ke

.,‘mi) »

where

0 S ]C( S min(?‘l’lg+1, t() Z k( S miyy ,

and { = lor2 . (2.2)
/
The computational layout corresponding to Table 1 be-

comes a sequence of square arrays (ti, t2). The first such
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2. Computations for a 3 x 3 Table with Row Margins 3,2,1

t2 t2 ts

PN\ 123856 (N 01234856 0123456
o] 1 1 174[0 0 o o[ 12332710 o[ 1 356 5 3 1
1114 0o oo 1{2454200 11 381212 8 30
2|14 00000 2| 3553000 2| 5121512 5 0 0
311000000 303430000 3] 61212 6 0 0 0
4/ 0000000 4l 2200000 4/ 58 50000
50000000 5/1 000000 5/ 3300000
6/ 0000000 6{000000GCO 6/ 1000000

array has zeros whenever {; + {; > m; and ones else-
where. The (u, v)th element of the (z + 1)st array is ob-
tained by summing over the triangular subset of the|sth
array with vertices (u, v), (u — My, v), and (u, v — M1).
Table 2 illustrates this method for a 3 X 3 table with
row margins 3, 2, and 1. (Elements corresponding to
lattice points outside the arrays shown have value zero.)
For example, the circled element of the second array is
the sum of elements within the triangle shown in the first
array. Similarly, the triangular summation mask used to
obtain the third array from the second has vertices
(u,v), (u — 1,v), and (w, v — 1). The third array contains
the exact number of 3 X 3 tables with row margins 3, 2, 1
for all possible fixed column margins. The sum of] all
elements in the array, 180, is thus the total number of
such 3 X 3 tables without restriction on column totals,
as in (3.6). The generalization of (2.2) to r X ¢ tables
is straightforward. Successive ¢ — 1 dimensional arfays

are computed by summing over integer lattice points of
the simplex 3 k; < myy1, where £=1,2, ..., (¢ —1).

3. A NORMAL APPROXIMATION TO THE NUMBER
OF r x ¢ TABLES

First consider the r X 2 case. The recursion (2.1) is
reminiscent of a succession of convolutions of random
variables. Let Y, = X, have independent uniform dis-
crete distributions on 0, 1, ..., m.;. Then the sample
space ¥, ..., Y. has [Ti=1 (m; + 1) equally likely points
which are in one-to-one correspondence with the set of
r X 2 contingency tables having row totals m,, ..., m,.
If T\ =3 7Y, then P(Ty =18 = N.(t; my, ..., M)/
II: (m: + 1), as the numerator is the number of favorable
cases.

This result leads to a simple normal approximation for
NATy; my, ..., m,). A sufficient condition for |the
Liapounov form of the central limit theorem (Hogg and
Craig 1970, p. 362) is lim, ... (X m#) (3 m#)~1 = 0, since
the third absolute moment of ¥, is a polynomial in m; of
order three. Under this condition, (T, — u)/c tends
to a standard normal distribution where p = 3 EY,
=Y m/2 and ¢ = ¥ mi(m; + 2)/12. Thus we have

the approximation
N{E;my, ...,m,)

= II (mi + DPLTy = ¢]
= I (m: + DLE( — u + 3)/0)
— &t —n—-3/0],

where & is the standard normal distribution function. For
most purposes, an approximation in terms of the normal
density,

N(t;my, .

3.1)

e, M)

= [II (m: + DI2me?)texp (—Q/2) , (3.2)
! P
is sufficiently accurate, where @ = (¢t — u)?/o™

To illustrate, consider the 6 X 2 table with row
margins 3, 9, 15, 18, 36, and 42. The recursive method
outlined in Secction 2 required 1.36 seconds of DpEC10
system central processor computer time to calculate the
entire distribution of Ne(T:; 42, 36, 18, 15, 9, 3) for
T, =0,1, ..., 123 In particular, exactly N¢(73; 42, 36,
18, 15, 9, 3) = 339,314 tables have T, =73. To
apply (3.2), we compute u = 123/2, o2 = 328.75, and
Q = (73 — 123/2)2/328.75 = 0.40228. Hence (3.2) yields
43 X 37 X 19 X 16 X 10 X 4 X .01799 = 348,113 ta-
bles in good agreement with the exact calculation. The
calculation based on (3.1) yields 348,044, which is about
the same as that given by (3.2).

Finally, we give a normal approximation for the num-
ber of r X ¢ tables with column totals ¢y, ts, ..., t.. This
approximation is based on the fact that (3.1) and its
generalizations can be interpreted as successive convolu-
tions of independent multivariate discrete distributions.
We regard the row vectors (X, Xa, ..., Xic-1) as in-
dependent multivariate vectors. The m, indistinguishable
elements in the 7th row may be allocated into ¢ categories
in (™11 ways, each equally likely (Feller 1957, p. 39).
For ¢ = 3, these outcomes can be represented by the
lattice points of the triangular array (Xau, X.2), with
X + X2 < mi.. More generally, the outcomes can be
represented as the lattice points of the simplex defined
by £5 ' X.; < m,. The number of such outcomes with




ounting Contingency Tables with Fixed Margins

Y, = ris (™~5%7%) and the number with X,y = 2y
and Xz = 22 1s (M m RT3y By symmetry, the prob-
sbility mass function (pmf) of X, is

m, — x;+ ¢ — 2><mi +c¢— 1)‘1

c— 2

P»\v:l:I;’):( c— 1

for w;=0,1,...,m;, (3.3)
snd the joint pmitf of X and Xy is
PXG = 2h Xie = Zx)
m, — r;— Ty +¢— 3\/m;+c— 1\t
B < c—3 )( c—1 )
for z; +zx <m:; . (3.4)

The moments can be computed from (3.3) or (3.4), but
Diordan (1958, pp. 103-104) used elegant enumerator
senerating funetion methods to show E(X;) = m./c,
var(X.) = mi(m;: + ¢)(c — 1)/(c + 1)c* and

cov(Xiy, Xa) = —me(m; + ¢)/(c + 1) .

The random vector (T, Ts, ..., T.-1) 1s regarded as the
sum of independent row vectors. Thus

E(T;) = ¥ mijc ,
s = var(T;) = Z var(X ;)

= [Zmmi+ o) Jc — D/ + De*,

and
cov(T, Ty) = 2 cov(X .y, X)) =—a¥/(c—1) .

Therefore, the multivariate normal approximation to the
distribution of (T4, .... T.-;) 1s known. Indeed, becausc
T T, ..., T._: are equicorrelated and have a common
variance, the appropriate multivariate normal density is

((c — 1)/2wa2c) Dt exp (—Q/2) , (3.5)

where Q@ = ((¢ — 1)}/o%) (51t — S?/¢) with S the
grand total of the r X ¢ table.

Ty illustrate, we approximate the number of 4 X 3
tables with row margins 20, 10, 5, 5, and (¢, {2) = (11, 10).
We note £(T,) = E(T:) = 13.3333, ¢ = var T, = var
Ty = 37.2222, and cov(T, T: = —18.6111. From
(3.6), the total number of tables with unrestricted column
totals is 3 EH G ) = 6,723,486. From (3.5), the multi-
variate normal density evaluated at (4, = 11, {; = 10) is
0.0031930. Thus the number of tables with row margins
20, 10, 5, 5 and column totals 11, 10, 19 is approximately
§,723,486 X 0.0031930 = 21,469 in good agreement with
the exact result, 22,245, obtained from (2.2). The approxi-
mation performs best when there are many rows and
when many of the row margins are large, which is pre-

tisely the situation in which exact enumeration becomes
E costly. For completeness, we note that the approximation
for arbitrary ¢ is obtained by multiplying (3.5) times

(3.6)

T fmi+c—1
1 ( ),

c—1

ieml

the total number of tables with given row margins. This
approximation has the great advantage of computational
ease, even for the case of large ¢, which requires an
enormous number of calculations for exact solution. As a
final practical point, if ¢ > r, one should usually relabel
rows as columns before using the normal approximation,
since convergence to normality is improved by convolut-
ing as many rows as possible.

These approximations afford a ready estimate of the
number of r X ¢ tables with fixed row totals and with an
arbitrary subset of column totals fixed. Suppose, for
example, that two column totals, which we take without
loss of generality to be #; and s, are fixed. Then the
number of » X ¢ tables with given row totals and with ¢,
and i, fixed is approximated by the product (3.6) times
the marginal density of (T, T5), evaluated at (i1, £,).
The exact number of such tables can also be worked out
from the (¢ — 1) dimensional array of exact solutions to
the original problem with all column totals fixed. For
example, with ¢ = 3, the number of tabies with m, = 3,
me = 2, and m; = 1 and with ¢, = 2 is exactly 49, which
is obtained by summing over the row {; = 2 in the third
array in Table 2. Generally, the exact number of r X ¢
tables with fixed row totals and a subset of fixed column
totals may be computed by summing appropriate terms
in the (¢ — 1) dimensional array of exact solutions to the
original problem with all row and column totals fixed.

We have extended the normal approximation to esti-
mate the number of r X ¢ X s tables with given first
order margins x;.., 2.;., and x.... Without loss of generality
reorient the tables so that r < max(s, ¢). The three-way
table can be viewed as a two-way table with r rows and
¢s columns. As before, if only the row totals ;.. are fixed,
there are i, (™" possible tables, and each of
these random “column’’ totals, X.;, has expectation
x.../cs, variance

62 = [{cs — 1)/(es)?(es + DL v (i +¢8)] ,
and common correlation coefficient —1/(¢cs — 1). To de-
termine what fraction of these tables with r;.. fixed has
margins «.;. and x..x, we regard X.;. as the random sum
of s “column’ totals in the r X (cs) table and X ..; as the
random sum of ¢ such “column” totals. It can be shown
that

fi

Q
H\?
i

var(X.;) = o2%%(c — 1)/(es — 1) ,

cov(X.., X.;J) = —a?/(c — 1) ,
a2ct(s — 1)/(es — 1) ,

cov(X.p, X)) = —o2/ (s — 1)
and cov(X.;., X..;) = 0. Thus the approximate number
of tables with fixed x;.. and with X ;. = 2.;,and X.x = 2.
is the previous product giving the number of tables with
Z;.. fixed times.

((c — 1)/ 27ay®) D2k exp (—Q1/2)
X ((s — 1)/2me:2) =12 shexp (—Q2/2)

where @y = ((¢c — 1)/o2e)(X 2,2 — x..2/¢) and (.
= ((s - 1)/a28) (¥ 2.2 — 1..2/s). By similar devices

i
It

o2 = var(X...)
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