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Abstract. We present anO(n4)-time andO(n2)-space algorithm that computes a sub-
graph of theminimum weight triangulation(MWT) of a general point set. The algorithm
works by finding a collection of edges guaranteed to be in anylocally minimaltriangulation.
We call this subgraph theLMT-skeleton. We also give a variant called themodified LMT-
skeleton that is both a more complete subgraph of theMWTand is faster to compute requiring
only O(n2) time andO(n) space in the expected case for uniform distributions. Several
experimental implementations of both approaches have shown that for moderate-sized point
sets (up to 350 points1) the skeletons are connected, enabling an efficient completion of the
exactMWT. We are thus able to compute theMWT of substantially larger random point
sets than have previously been computed.

1. Introduction

Given a planar point setSand a triangulationT(S), the weight ofT(S) is the sum over
all edgese in T(S) of the weight ofe (denotedwt(e)). The weight of an edge is defined
here as its Euclidean length.2 A minimum weight triangulation(MWT) of a point set

∗ First presented at the Workshop on Computational Geometry (WOCG) in Stonybrook, NY in October
1995, with a preliminary version also appearing in [10]. The research of the first and third authors was supported
in part by the funds of the National Science Foundation, NSF CCR-9301714. The second author’s study was
supported by NSERC under Grant OGP0000259. M. H. Montague is now at Dartmouth College, Hanover,
NH, USA.

1 Though in this paper we summarize some empirical findings for input sets of up to 350 points, a variant
of the algorithm has been implemented and tested on up to 40,000 points producing connected subgraphs [2].

2 There are alternate possible definitions of weight. We note that our underlyingalgorithmis not dependent
on any particular definition, but our experimental results clearly follow from defining weight as Euclidean
length.
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S is a triangulation that minimizes weight over all possible triangulations. TheMWT
problem is to find theMWT of a given input setS.

Though it has been shown how to computeMWT(P) in time O(n3) when P is a
simple polygon [14], [16], the complexity status of theMWTproblem for a general point
set is unknown [13]. It has been a longstanding open problem to give an efficientMWT
algorithm or to prove the problem NP-hard.

1.1. Overview

In this paper, we present anO(n4)-time andO(n2)-space algorithm that computes a
subgraph of theMWTof a general point set. The algorithm works by finding a collection
of edges guaranteed to be in anylocally minimal triangulation. We call this subgraph
theLMT-skeleton. We also give a faster variant of our algorithm that produces a more
complete subgraph of theMWT in O(n2) time andO(n) space in the expected case for
uniform distributions. We call this second approach themodified LMT-skeleton. Several
experimental implementations of both approaches have shown that for moderate-sized
point sets (up to 350 points) the skeletons are connected, enabling an efficient completion
of the exactMWT. We are thus able to compute theMWTof substantially larger random
point sets than have previously been computed.

The theory behind these skeletons is not complex. What is perhaps surprising is how
well they have worked in practice. Our main purpose in this paper is to present the
LMT-skeleton, the variant of the skeleton called themodified LMT-skeleton, and the
algorithms to produce them. We also report on some highly promising experimental data
from our implementations. Empirical results indicate that ourLMT-skeleton contains
many more edges than any previously known efficiently computable subgraphs such as
those of [5], [15], and [19]. In fact, in over 2000 trials on uniform random distributions
of up to 350 points, the algorithm has produced a connected subgraph in every case.
From theLMT-skeleton subgraphs, we are therefore able to produce a complete exact
MWT, such as that shown in Fig. 1.

Fig. 1. An exactMWT of 250 points. The figure shows theMWT of a set of 250 points taken in a uniform
random distribution of over a square. No Steiner points were added to make the triangulation easier. The
triangulation was computed from theLMT-skeleton.
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1.2. Previously Known Subgraphs of the MWT

As noted, we can computeMWT(P) of a simple polygonP in O(n3) time. Thus if
we can compute aconnectedsubgraph ofMWT(S), then after adding the convex hull
we can view the remaining untriangulated regions as simple polygons, and can then
completeMWT(S) in polynomial time. Since there is no known efficient algorithm to
solve the exactMWT problem in the general case, recent investigations have generally
concentrated either on finding good approximations of theMWT(S) (see, for example,
[10]) or on finding an extensivesubgraphof MWT(S).

The convex hull, being a subgraph of any triangulation, is (trivially) a subgraph of
MWT(S). Gilbert [14] showed that the shortest possible edge inS is also inMWT(S).
More recently and less trivially, Yanget al. [19] showed that all mutual nearest-neighbor
edges are inMWT(S). Keil [15] showed that the so-called “β-skeleton” ofSis a subgraph
of MWT(S) whenβ = √2, and Cheng and Xu [5] have recently tightened Keil’s result,
showing that theβ-skeleton is a subgraph ofMWT(S) whenβ = 1.17682.

It is also known that theβ-skeleton is not always a subgraph of theMWT for
β < 1/sin(π/3) (or approximatelyβ < 1.1547). In fact, there exists a four-point
counterexample [15]. So there is little room for improvement on the value ofβ given by
Cheng and Xu.

In a related work, Aichholzeret al. [1] discuss the concept of alight edgeand alight
triangulation. An edge is calledlight if there is no shorter edge crossing it. The set of all
light edges forms a graph, which is shown to be a subgraph of the greedy triangulation.
If the collection of all light edges forms a complete triangulation, then we call this alight
triangulation. In [1] it is shown that if a planar point set admits a light triangulation,
then the light triangulation is both the greedy triangulation and theMWT. They use
this information to produce a point set of size 150 for which they give an exactMWT.
Unfortunately, in general the set of light edges is not a subgraph of theMWT, and thus
this method will not work to produce theMWT of an arbitrary point set.

1.3. Locally Minimal Triangulations

Our new result is based on the idea oflocal minimality. In any triangulation, each
edgee that does not lie on the convex hull borders two empty triangles. Together these
two triangles form an empty quadrilateralq, of which e is a diagonal. Ifq is convex,
then it also has another diagonale′. We say thate is locally minimal if either q is not
convex (in which caseq has only one triangulation—the one containinge), or if q is
convex andwt(e) ≤ wt(e′). To replacee with e′ (whenq is convex) is calledflipping
the edgee. A triangulation is called alocally minimal triangulation(LMT) if each of
its edges is locally minimal (no edge can be flipped to produce a triangulation of lower
weight).

The triangulationMWT(S) must be locally minimal; otherwise some nonminimal
edge could be flipped to reduce the weight of theMWT which is a contradiction of the
definition. Unfortunately,S may allow many different locally minimal triangulations
most of which are not globally minimal (notMWT(S)).
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2. A New Subgraph of theMWT

In this paper we present an algorithm to compute a new subgraph of theMWT, which we
call theLMT-skeleton. (We formally define theLMT-skeleton as any skeleton produced
by Algorithm 1 in Fig. 2.) This subgraph contains a set of edges that must be inevery
locally minimal triangulation.3 The algorithm requiresO(n4) time andO(n2) space in
the worst case. When the algorithm terminates, theLMT-skeleton can then be used to
complete theMWT in time O(n3) if the LMT-skeleton is connected, or timeO(nk+2) if
it hask unconnected components [6].

We also present amodified LMT-skeleton. Themodified LMT-skeleton is also a
subgraph of theMWT. In the expected case for uniformly distributed point sets, it can be
computed much faster than the previousLMT-skeleton. We describe how to compute the
modified LMT-skeleton inO(n2) time andO(n) space in the expected case for uniform
distributions. Interestingly enough, not only is themodified LMT-skeleton algorithm
faster, but it produces more edges and is in fact a superset of theLMT-skeleton. However,
though themodified LMT-skeleton is a subgraph of theMWT, all edges in it are not
necessarily ineverylocally minimal triangulation. That is, there existlocally minimal
triangulations not containing the entiremodified LMT-skeleton algorithm, even though
the edges do appear in every (globally)MWT.

Experimental results for uniform random point sets up to 350 points (the largest point
sets we have tried so far) have found theLMT-skeleton to be connected in every case.
Empirical data also suggest that the algorithm’s actual average complexity is much better
than O(n4) in practice. In fact, the algorithm appears to run in time closer toO(n3).
Furthermore, the internal nontriangulated polygonal regions have had a small number
of points (usually fewer than 15 forn up to 350), and so in practice theMWT has been
completed from theLMT-skeleton inO(n) additional time.

2.1. Notation

In the following discussion we refer to empty edges, empty triangles, and empty quadri-
laterals. Anempty edgeis one that intersects no points inSother than its endpoints. An
empty triangleis a triangle formed by three empty edges whose interior is also empty
of points fromS. An empty quadrilateralis any quadrilateral formed by two adjacent
empty triangles (triangles that share a single common edge but do not intersect in their
interiors).

We refer to the set of all possible edges inSasE(S).

2.2. Background and Lemmas

OurLMT-skeleton subgraph of theMWTand ourLMT-skeleton algorithm are based on
the following observations and lemmas.

3 Every edge in theLMT-skeleton is in every locally minimal triangulation, but it is not proven that every
edge in every locally minimal triangulation is in our subgraph.
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Observation 1. For any planar point set S, an edge in every locally minimal triangu-
lation of S is in MWT(S), and an edge in no locally minimal triangulation of S is not in
MWT(S).

The above observation (which follows directly from the local minimality of theMWT)
describes a partition of edges into three disjoint sets: those inall locally minimal trian-
gulations, those inno locally minimal triangulations, and the remaining edges which are
in some(but not all) locally minimal triangulations.

The following two lemmas give properties that are easy to verify, and allow us to
construct an algorithm to find some edges that must be in every locally minimal trian-
gulation.

Lemma 1. Let e∈ E(S) be an edge in at least one locally minimal triangulation. Then
there exist two triangles t1 and t2 whose vertices are in S and which contain no other
points in S, and such that t1 and t2 form a locally minimal quadrilateral with e as the
diagonal.

Proof. Pick any locally minimal triangulationT containinge, and lett1 andt2 be the
triangles bounding edgee in T .

Lemma 2. Let e be an edge in E(S). If there is no other edge in E(S) that inter-
sects e and is itself in a locally minimal triangulation, then e is in all locally minimal
triangulations.

Proof. Assume there is in some locally minimal triangulationT not containing edge
e. ThenT contains some edgee′ crossinge which is a contradiction.

2.3. LMT-Skeleton Algorithm

We can now present our algorithm4 for computing theLMT-skeleton. We keep track
of two lists: a listcandEdgesof candidate edges (edges of unknown status), and a list
edgesInof edges that have been determined to be in any locally minimal triangulation.
Remaining edges are not in any locally minimal triangulation. It is also convenient to
refer to a listcandTrisof candidate triangles, though for worst-case space efficiency
these should not be explicitly stored but will be computed as needed. Initially, all empty
triangles are candidate triangles, and all empty edges are candidate edges. Our algorithm
proceeds in two ways. From the current set of candidate edges and triangles, we use
Lemma 1 to eliminate any edges that we can determine are not in anyLMT(S). We then
use Lemma 2 to find edges that are in everyLMT(S) (and thus inMWT(S)). We add these
later edges toedgesIn. These two steps alternate iteratively. When we are done and no
more edges change status, then the setedgesIngives us theLMT-skeleton.

4 Those familiar with the earlier conference version [11] of this paper will notice a change in our terminol-
ogy; in this paper we call theLMT-skeleton that which we formerly referred to as theextended-LMT-skeleton.
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Fig. 2. Algorithm 1:LMT-skeleton.

The algorithm is given in Fig. 2. Note that in the innerFOR loop at Step 4a, every
time an edge is eliminated from thecandEdgeslist, some triangles are also eliminated
from candTris. This might provide enough information to add later toedgesIn(or delete
from candEdges) an edge which was previously examined and whose status remained
unknown. This leads to the idea of the outerREPEAT-UNTIL loop, which repeats both
FOR loops multiple times to produce extra edges until no more edges can be removed
from candEdgesor added toedgesIn.

2.4. Correctness

When the algorithm terminates, the edges inEdgesInform a subgraph ofMWT(S); we
call this subgraph anLMT-skeleton. Once again, because theLMT-skeleton is actually
definedby Algorithm 1, there is no proof required for the correctness of the algorithm.
What we want to prove instead is simply the following:

Lemma 3. The LMT-skeleton produced by Algorithm1 is a subgraph of the MWT.

We prove that every edge in theLMT-skeleton appears in every locally minimal
triangulation and thus in everyMWT. The proof of this follows almost directly from
Lemmas 1 and 2. Note that our algorithm adds edges to theLMT-skeleton in only two
places: Steps 3 and 4b. In Step 3 we add only the convex hull edges, but these must
be in any triangulation. In Step 4a we remove only those edges for which there do not
exist two adjacent triangles forming a locally minimal quadrilateral. Thus by Lemma 1
we know that Step 4a does not remove fromcandEdgesany edges that might be in the
MWT. In Step 4b we add only edges that are incandEdgesbut which do not intersect
any other edges incandEdges. SincecandEdgesholds all edges that might be in some
MWT—except those which no longer cross any others—by Lemma 2 Step 4b does not
add any edges that might not be in theMWT.
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2.5. Complexity Analysis

In the first step,O(n2 logn) time andO(n2) space are required to generate the initial list
candEdges, and to sort the list of edges around each vertex. We can compute the convex
hull for Step 3 in worst-caseO(n logn) time using any of a number of methods.

The most expensive step of Algorithm 1 (asymptotically) is Step 4. Potentially, the
algorithm tests all empty quadrilaterals—of which there may be2(n4)—to see if a
particular edge is locally minimal with respect to at least one empty quadrilateral. The
goal is to spendO(1) (amortized) time per quadrilateral, which is equivalent to spending
O(n2) time per edge, in order to achieve a total running time ofO(n4) in the worst case.
Specifically, the innerFOR loops in Step 4 iterateO(n2) times, once for each candidate
edgee. In Step 4a we test all quadrilaterals (pairs of adjacent triangles) in whichemight
be a diagonal. Sinceemight have a linear number of triangles on each side, we may test
O(n2) quadrilaterals per edge. The convexity test requiresO(1) time. If the quadrilateral
is convex, then we also compare two diagonal lengths, also inO(1) time. In Step 4b we
compare an edge against at mostO(n2) other edges.

The question remains how to generate the empty triangles efficiently. If the list
candTrisis preprocessed (explicitly computed and stored in an appropriate data struc-
ture), thenO(1) time complexity is immediate, but the cost isO(n3) space in the worst
case. If the listcandTrisis not preprocessed, then we can use a brute-force approach to
compute theO(n) empty triangles adjacent to edgee= (p,q) in O(n2) time. For each
r ∈ Swith r 6= p,q, test first to see ifr is adjacent to bothp andq in candEdges. This
requiresO(logn) time if candEdgesare stored in a rotational-order binary search tree
around each point, orO(n) time in a simple unordered adjacency list. Ifr is adjacent to
both p andq, then test the trianglepqr for emptiness in worst-caseO(n) time, or using
bucketing in expected-caseO(1) time. This approach requiresO(n2) time andO(n2)

space per edge in the worst case to generateO(n) adjacent empty triangles. Thus the
overall running time for both of the innerFOR loops in Step 4 isO(n4).

Unfortunately, if only a constant number of edges change status for every completion
of the innerFOR loop, then the outerREPEAT-UNTIL loop may iterateO(n2) times
and it appears we have a total running time ofO(n6). However, a careful implementation
avoids this problem.5 Intuitively, we save time because the tests in both Steps 4a and 4b
terminate when a single instance quadrilateral or edge contradicts the condition. When
this happens, we need only keep track of where we were in the search, so that in subse-
quent tests we continue where we left off. In other words, for each edge we maintain a
pointer to the last triangle tested above and below the edge: that is, the pair of triangles
for which e was first found to be locally minimal, also called thecertificatefor e. In a
later test of edgee, we resume the search with the same pair of triangles. Thus we never
test more thann2 quadrilaterals (pairs of triangles) per edges. So the total number of
tests for all iterations of all edges isO(n4). We thus have an algorithm requiringO(n4)

time andO(n2) space in the worst case.

5 The idea for this came from Jack Snoeyink and theLMT-skeleton algorithm of [2]. Snoeyink’s imple-
mentation accomplishes the same result in the same asymptotic running time without using multiple passes.
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Fig. 3. LMT-skeleton of 250 uniform random points.

2.6. Sample Skeletons

We implemented our algorithms in Smalltalk/V on top of the existing objected-oriented
workbench of [10]. We ran both theLMT-skeleton algorithm (Algorithm 1) and the
modified LMT-skeleton algorithm on a number of different point sets. Figure 3 shows
an exampleLMT-skeleton of 250 points taken from a uniform random distribution over
a square region. In this example, all edges were found in three “rounds.” (Step 4 was
iterated three times to produce this graph. Nearly all edges were found in the first round.)
Note that the subgraph is not only connected, it is close to being a complete triangulation,
containing a very large percentage of the edges inMWT(S). The subgraph contains 607
edges, with only 312 edges remaining incandEdgesas edges of unknown status. Of a
total of 31,125 possible edges inE(S), 30,206 edges were elminated. In a later section we
present some more detailed experimental results. Figure 9 shows anotherLMT-skeleton
of points in a “clustered” distribution.

Note finally that the remaining untriangulated regions in Fig. 3 are simple polygons
with a small number of vertices. Thus the exactMWT(S) can be completed from this
subgraph inO(n) time. Specifically, we can determine inO(n) time by depth-first
search if theLMT-skeleton is connected. If it is, we search around each point to find
untriangulated simple polygons, and triangulate each one in time proportional to the
cube of the number of vertices. This step can be improved even further using a result of
Bern and Eppstein [3] which shows that a simple polygon can be minimally triangulated
in time O(E3/2

i ), whereEi is the number ofcandEdgesin the untriangulated simple
polygon i . (This follows from the fact that the number of empty triangles that can be
formed withE edges is alsoO(E3/2

i ).) In the example of Fig. 3, the number of remaining
candEdgesin an untriangulated region isO(n).

3. A Faster, More Extensive ModifiedLMT -Skeleton

With the use of Algorithm 1 and theLMT-skeleton, we are already producing the exact
MWTof much larger point sets than have previously been computed for uniform random
point sets. The next question is whether or not we can improve upon theLMT-skeleton,
either in running time or in the number of knownMWT edges produced. The answer is
yes to both questions, at least in the expected case.
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Fig. 4. Diamond property empty region.

Das and Joseph [8] have shown that all edges in theMWT(S) have what they call the
diamond property.6 This diamond property is as follows: for every edgee in MWT(S),
consider the two triangular regions defined on either side ofe such thate is the base of
each triangle and the base angles areπ/8, then at least one of the two triangular regions
contains no other site inS. (See Fig. 4.)

This diamond property is a necessary but not sufficient condition for an edgee to be
in MWT(S). The property alone does not produce a very large subgraph of knownMWT
edges, however, it can be used as apretestto eliminate a large number of edges in an
algorithm such as Algorithm 1. In fact, for a uniform distribution the expected number
of edges that satisfy the diamond property isO(n) [9]. For our modified approach,
we initiallly place only those edges which do satisfy the diamond property pretest into
candEdgesand then run Algorithm 1. We call the resulting subgraph themodified LMT-
skeleton.

Lemma 4. LMT-skeleton⊆ modifiedLMT-skeleton⊆ MWT.

Proof. (i) ThatLMT-skeleton⊆ modified LMT-skeleton follows directly from the al-
gorithm: any edgee added to theLMT-skeleton in Step 4b will also be added to the
modified LMT-skeleton in Step 4b because no new edges are introduced tocandEdges
that might intersecte.

(ii) The proof thatmodified LMT-skeleton⊆ MWT follows in the same manner as
the proof of Lemma 3. By [8], we know that any edge failing thediamond testcannot be
in theMWT and so its removal fromcandEdgescannot result in any edges being added
that are not in theMWT.

Note that the pretest may remove edges whichare in someother LMT-skeleton
(though not in theMWT), and thus themodified LMT-skeleton may contain some edges
which are not inevery LMT-skeleton. In fact, there are examples of point setsS where
strict inequality holds and theLMT-skeleton(S) is a proper subset of themodified LMT-
skeleton(S). Remember, however, that the primary purpose of theLMT-skeleton is to

6 During the summer and fall of 1995 the authors of this paper had several conversations with Scot Drysdale
and Scott McElfresh at Darmouth College, trying to prove a lemma for empty half-disks similar to thediamond
propertyof Das and Joseph, with the goal of using it as a pretest in anMWTalgorithm. Thanks to Scot Drysdale
who eventually discovered the paper [8] and brought it to the attention of the authors (thus invalidating the
need for the eventually proved half-disk property).
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get a well-connected subgraph of theMWT; this modified approach is not only faster but
produces at least as many knownMWT edges as the originalLMT-skeleton. Any extra
edges are actually advantageous.

3.1. Complexity of Modified Skeleton Approach

For a uniform distribution, the expected number of edges passing the pretest isO(n)
[9]. Using bucketing, the pretest can be efficiently implemented in constant expected
time per edge. So in the expected case, the initial set ofcandEdgesis of sizeO(n) and
is computed inO(n) time. The number of empty triangles that exist in a set ofO(n)
vertices andO(n) edges isO(n1.5) [7], [3]. More importantly in the analysis of Step 4
is the following:

Lemma 5. In a graph with n vertices and O(n) edges, there are at most O(n2) quadri-
laterals.

Proof. Each quadrilateral is uniquely determined by a pair of opposite edges. (Two
opposite edges give all four vertices of the quadrilateral.) Since there are onlyO(n)
edges, there can be onlyO(n2) pairs of edges.

By Lemma 5, since the expected number of edges passing the diamond test isO(n),
the total number of empty quadrilaterals to be tested in Step 4 isO(n2). We generate the
empty quadrilaterals by generating the empty triangles as in Algorithm 1, except we use
a bucketing approach to test for emptiness inO(1) time per triangle. As we saw earlier,
the number of empty quadrilaterals is the determining factor in the number of iterations
of Step 4. This suffices to prove the following:

Lemma 6. ThemodifiedLMT-skeleton version of Algorithm1 requires O(n2) time
and O(n) space in the expected case for a uniform random point set.

4. Experimental Data

We implemented both theLMT-skeleton version of Algorithm 1 and themodified LMT-
skeleton version using thediamond pretestdescribed in Section 3. The implementation
was done in Smalltalk/V for the Macintosh. We ran several thousand trials on various
points sets up to 350 points using a collection of Power Macintosh machines running
at 120 MHz with 32 MB RAM. For comparision, we also implemented algorithms for
the 1.17682-skeleton and

√
2-skeleton (which are substantial faster to compute). Before

presenting any numerical results, we first show some pictures of resulting subgraphs.
Figures 5 and 6 show the

√
2-skeleton and 1.17682-skeleton for the same random

uniformly distributed point set as theLMT-skeleton of Fig. 3. Note that the 1.17682-
skeleton is always a supergraph of the

√
2-skeleton and in general will contain more

edges. However, theLMT-skeleton contains significantly more edges even than the
1.17682-skeleton.
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Fig. 5. sqrt(2)-Skeleton of the 250 points.

Figures 7 and 8 show theLMT-skeleton, and 1.17682-skeleton of another point set:
225 points taken in a uniform random distribution over a disk. Finally, Fig. 9 shows
theLMT-skeleton of a different distribution of 250 points clustered in five groups of 50
points each at the corners and near the middle.

We now present some representative results in tabular form. Table 1 contains results
from one set of 343 trials in which we computed theLMT-skeleton and the 1.17682-
skeleton on the same sets of uniform random points ranging from 100 to 350 points.
For the 50-point intervals, each line of data (each value ofn) represents the averages of
approximately 50 trials.7 For the 1.17682-skeleton we report the average running time
in seconds as well as the average number of edges. For theLMT-skeleton we report the
running time, the number of edges in the skeleton, the number of remaining candidate
edges (edges remaining incandEdgeswhich may be in someLMT but are not necessarily
in theMWT), and the number of edges eliminated. Since in every trial theLMT-skeleton
was connected, we also completed the exactMWT and report the total number of edges
in the triangulation as well as the total time to compute the exactMWT.

Note that in each of these 343 trials theLMT-skeleton was a connected graph, while
in none of the trials was the 1.17682-skeleton connected. Since the 1.17682-skeleton is a

Fig. 6. 1.17682-Skeleton of the 250 points.

7 For sizes of 125, 175, 225, and 275 the averages are for approximately 25 trials instead of 50, and because
of the slower running times at 350 points, this average is taken over only seven trials.
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Fig. 7. LMT-skeleton of 225 points.

Fig. 8. 1.17682-Skeleton of 225 points.

Fig. 9. LMT-skeleton of 250 “clustered” points.
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Table 1. Subgraphs of the MWT.

1.17682-Skeleton LMT-skeleton MWT

Time Time Time
n (seconds) Edges in (seconds) Edges in Candidates Edges outTotal edges (seconds)

100 71 83 1,050 251 86 4,613 285 1,058
125 100 104 1,559 316 111 7,323 360 1,568
150 143 127 2,280 377 144 10,654 434 2,293
175 186 148 2,964 440 175 14,609 508 2,978
200 246 170 3,961 509 192 19,200 583 3,978
225 292 191 4,795 567 239 24,394 658 4,813
250 368 213 6,308 634 253 30,238 733 6,330
275 417 235 7,363 701 282 36,692 807 7,386
300 524 255 9,422 761 320 43,769 882 9,449
350 716 302 13,704 888 377 59,809 1,032 13,740

subgraph of the Delaunay triangulation, it can be computed very quickly (inO(n logn)
time). However, the time required to complete the exactMWT using the method of
[6] is O(nk+2) wherek is the number of unconnected components (after the convex
hull is added). Even with the convex hull added, the 1.17682-skeleton of the point set
in Fig. 6, for example, has 27 unconnected regions. To complete the exactMWT(S)
using the algorithm of Chenget al. [6] would requireO(n29) time, which is infeasible.
On the other hand, computing the exactMWT from theLMT-skeleton—since it was
connected—required just a few extra seconds (an average of 36 seconds for 350 points).

Finally, we mention that the modified version of Algorithm 1 making use of the dia-
mond pretest as well as bucketing for both the pretest and empty triangle test resulted in
a dramatic improvement in running time. For 250 points, our average run time dropped
from 43,295 to 6308 seconds. The improvement in space complexity fromO(n2) to O(n)
also allowed us to increasen significantly. This modified approach has also been imple-
mented inC by McElfresh [17]. His results show a similar improvement over theLMT-
skeleton approach. In one characteristic trial of 250 uniformly distributed points, the
modified LMT-skeleton required approximately one-tenth the time of theLMT-skeleton.
Belleville et al. have obtained even more dramatic results in their implementation de-
scribed in [2] and subsequent improvements. Jack Snoeyink has communicated that with
the pretest they are now running the algorithm on sets of size up ton = 40,000. It is
interesting to note that even for these much larger sets, the resulting subgraph has been
connected in every trial.

5. Conclusions and Discussion

The LMT-skeleton algorithm performs well. It requiresO(n4) time andO(n2) space
in the worst case. For uniform distributions of point sets ranging up to 350 points, it
produced a connected graph in every trial, leading to a completeMWT. The result is
a feasible algorithm to produce the exactMWT of uniform point sets in polynomial
time. We also gave a modified version that runs faster, requiring onlyO(n2) time and
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O(n) space in the expected case, and producing more edges known to be in theMWT.
However, thismodified LMT-skeleton may contain edges that are not in all locally
minimal triangulations.

5.1. Unconnected Regions

Although in all of our tests withuniformdistributions theLMT-skeleton subgraph was
connected, we have found distributions for which it is unconnected: a single point sur-
rounded by a sufficient number of points on a circle, for instance, produces anLMT-
skeleton that has one unconnected point. Boseet al. [4] have recently studied a similar
case more closely, and given details of a construction of an 18-gon with a single point
in the center, such that theLMT-skeleton of this configuration leaves the center point
unconnected. They have also shown that such a configuration occurs with frequency
linear in n for points in a uniform random distribution. However, the news is not as
bad as it seems for theLMT-skeleton algorithm. First, even when this configuration of
points occurs and the subgraph is not connected, it is still possible to complete theMWT
efficiently. The dynamic programming approach suggested by Chenget al. [6] requires
O(nk+2) time wherek is the number of disjoint connected components. (Whenk = 1,
we have the standard approach of [16] for theMWT of a simple polygon.) In the case of
the configuration of [4], we have two connected components and so theMWT requires
O(n4) with n = 18. Furthermore, though Boseet al. have given an elegant proof that
this configuration actually appears with linear frequency, the constant of proportionality
is very small. In fact, their result only shows that the expected number of disconnected
components is larger than one whenn is larger than 1051. In other words, though ap-
pearing with “linear” frequency, it is unlikely to occur even once in any random point
set that is ever likely to be tested.

Unfortunately, Bellevilleet al. [2] have extended the idea of [4] to show that the plane
can be tiled with a configuration that does not lead merely to single disconnected points
inside of 18-gons, but to a polygonal region with 2n/19−o(n) holes and isolated points.
Thus in this more troublesome example, theMWT cannot be directly completed from
theLMT-skeleton in polynomial time using the method of [6] on theLMT-skeleton. This
provides more persuasive evidence that the algorithm of this paper does not provide a
worst-case polynomial-time solution to theMWT problem. Nevertheless, our algorithm
performs very well on random point sets, and we have produced exactMWTs of much
larger sets than have previously been produced. Also, there is still promise that theMWT
of even this configuration can be computed efficiently because the number of remaining
edges incandEdgesis small.

5.2. Extending Local Minimality

Another possibility for increasing connectivity is to check larger areas for local minimal-
ity. TheLMT-skeleton subgraph algorithm partitionsE(S) into sets of edges in all, no,
or some locally minimal triangulation. We could create the same partition of the set of all
possible triangles inS, or all possible quadrilaterals inS, etc., and similiar lemmas will
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be true as long as we properly define “locally minimal.” For instance, an empty triangle
is locally minimal if when simultaneously flipping no two or three of its edges decreased
its weight. Similarly, an empty quadrilateral is locally minimal if when simultaneously
flipping no two, three, or four of its edges decreased its weight. Now, an algorithm si-
miliar to the one we presented in this paper will work. Such an algorithm would still
run in polynomial time, though much slower. Hence, it might be used as a second (and
third, etc.) phase for any graph that is still disconnected after theLMT-skeleton subgraph
algorithm is run. With each phase, the area of the regions being checked for minimality
may increase, while the size of the regions that are still disconnected may decrease.

5.3. Speeding Up the LMT-Skeleton Algorithm More?

We also expect that the modified algorithm could be accelerated even further. Though the
1.17682-skeleton does not in general produce a connected graph, it is quickly computable
(O(n logn) worst-case time) and produces a fair number of edges. As a preprocessing
step, we might compute the 1.17682-skeleton, and add its edges to the initialLMT-
skeleton, delete all edges inE(S) intersecting those edges, and likewise delete triangles
containing those deleted edges. We could then apply the diamond test to the remaining
edges, and finally run Algorithm 1. This potentially gives a skeleton different from
the LMT-skeleton, containing more potential edges, but one which is still provably a
subgraph of theMWT.

We note that we could also explicitly generate and store the listcandTrisin O(n3)

worst-case time and space using a method of Eppsteinet al. for enumerating all empty
triangles [12]. For worst-case space efficiency, we do not want to do this. We note,
however, that for general point sets where all the points do not fall on the convex hull,
the number of empty triangles will be much smaller than2(n3) and this preprocessing
may be useful. Rote [18] has implemented an output-sensitive variant of this algorithm
using onlyO(n2 logn + t) time and(n + t) space, wheret is the number of empty
triangles produced. Also, the order in which the edges are tested in theFOR loops of
Step 4 might have an effect as well.

5.4. Other Dimensions

One analog of theMWT problem in three dimensions is to find a tetrahedralization of a
point setS that minimizes the sum of the weights of the triangles contained in it (where,
again, the weight of a triangle might be its Euclidean surface area). An algorithm to
find a subgraph of such a tetrahedralization could work similiarly to theLMT-skeleton
subgraph algorithm. It would begin by enumerating all empty tetrahedra and triangles,
and would then test each triangle for local minimality. We do not at present know how
well such an algorithm would perform. One problem with this method, however, is that
we do not even know how to find anMWT for a simple polyhedron in three dimensions.
The naive dynamic programming algorithm does not work because adding one triangle
does not partition the polyhedron as it does in two dimensions. So, even if we found a
connected subgraph of anMWT(S), we have no way of patching the polyhedral holes in
polynomial time. This is an interesting open problem.
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5.5. Open Problems

Open problems stemming from the previous discussion include:

1. The complexity status of theMWTproblem in the general case still remains open.
2. What is the worst-case disconnectivity of theLMT-skeleton?
3. How would theLMT-skeleton work in higher dimensions?
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