
Fast Greedy Triangulation Algorithms�

Matthew T. Dickersony

Department of Mathematics and Computer Science

Middlebury College, Middlebury VT 05753

Robert L. Scot Drysdalez

Scott A. McElfresh

Department of Mathematics and Computer Science

Dartmouth College, Hanover NH 03755

Emo Welzl

Institut f�ur Informatik

Freie Universit�at Berlin

May 3, 1994

1 Introduction

1.1 Overview of the Results

The greedy triangulation (GT) of a set S of n points in the plane is the triangulation obtained by starting

with the empty set and at each step adding the shortest compatible edge between two of the points, where a

compatible edge is de�ned to be an edge that crosses none of the previously added edges. In this paper we

present a simple, practical algorithm that computes the greedy triangulation in expected time O(n logn) and

space O(n) for points uniformly distributed over any convex shape. A variant of this algorithm should also be

fast for many other distributions.

We �rst describe a surprisingly simple method for testing the compatibility of a candidate edge with edges

in a partially constructed greedy triangulation. The new edge is tentatively added to the embedding of the

partial GT and at most four constant time tests are done involving edges lying clockwise and counterclockwise

from the candidate edge at each vertex. Even though there can be O(n) edges adjacent to one of the endpoints,

we are able to show that if we can determine where in angular order the new edge falls among a subset of at

most 10 of those edges then we can perform the compatibility test and if necessary update the triangulation.

Our method therefore provides a �(1) time edge test that requires only �(1) time to update the structure,

�(n) time for initialization, and �(n) space. This compares favorably with the previous method of Gilbert [10],

which requires �(logn) time for an edge test, �(n logn) time for an update, �(n2 logn) time for initialization,

and �(n2) space. It is also faster than the probabilistic edge pretest of Manacher and Zobrist [28], and it

deterministically decides if a con
ict exists rather than just �nding a con
ict with high probability.

We next prove that an edge cannot be greedy if a small disk centered at its midpoint contains a point from

S in both half-disks. This fact allows us to prove a number of properties about the greedy triangulation for

uniformly distributed points drawn from a convex compact region C. We are able to prove that all edges in a

�This paper bene�tted from discussions with David Eppstein and others during the MSI Workshop on Computational Geom-

etry, Stony Brook NY, October 23-24, 1992, with Cli� Stein and others in the Dartmouth Algorithms Seminar, with Lorenz
Wernisch, and with Andrzej Lingas.

yThis study was supported in part by the funds of the National Science Foundation, CCR-9301714.
zThis study was supported in part by the funds of the National Science Foundation, DDM-9015851, and by a Fulbright

Foundation grant that helps support this author's sabbatical visit to the Freie Universit�at.

1



greedy triangulation of uniformly distributed points are expected either to be short or to have both endpoints

near the boundary of C. Furthermore, we expect that only O(n logn) pairs of points are either short enough

or have both endpoints close enough to the boundary of C to be in the greedy triangulation. Finally, we expect

that only O(n) pairs of points in S satisfy the condition that at least one of the two half-disks centered at the

midpoint of the pair is empty. These lemmas also apply to the Delaunay triangulation.

This leads to the following algorithmic approach: generate the O(n logn) candidate edges that are short

enough or whose endpoints are close enough to the boundary. Use an edge pretest based on empty half-disks

to reject all but O(n) of the candidates in constant expected time per candidate. Finally, sort these edges and

attempt to insert them in order into the triangulation, using the fast edge compatability test.

This algorithm will run in O(n logn) expected time and will produce the greedy triangulation with very

high probability for uniformly distributed points. We show how to modify it to create a two-phase algorithm

that always computes the greedy triangulation. Its run time on uniformly distributed points is O(n logn) with

very high probability. We also present another two-phase algorithm that is less tuned to uniform distributions.

It always computes the greedy triangulation, and tries to balance the work done on short edges and longer

ones. It runs in expected time O(n log2 n) time on uniformly distributed points, and O(n2 logn) in the worst

case.

These algorithms should be compared to an algorithm by Levcopolous and Lingas [21]. For the more

restricted case of points uniformly distributed in the unit square, their algorithm runs in expected time O(n).

Extending it to rectangles is straightforward. Extending it to non-rectangular convex shapes seems doable, but

would require non-trivial modications of the algorithm and the analysis. Although their algorithm is beautiful

theoretically, it has not been implemented and would be di�cult to implement practically. Our algorithms

not only work e�ciently for more general compact convex regions, but the simplicity of our algorithms and

smaller constant factors would make them preferable for most practical-sized problems.

1.2 Background

E�ciently computing the greedy triangulation is a problem of long standing, going back at least to 1970 [9].

A number of the properties of the GT have been discovered [19, 23, 27, 28] and the greedy algorithm has been

used in applications [5, 28].

A straightforward approach to computing the GT is to compute all
�
n

2

�
distances, sort them, and then

build the GT an edge at a time by examining each pair in order of length and adding or discarding it based

on its compatibility with the edges already added. It is easy to see that this method requires O(n2) space and

time

T (n) = O(n2 logn+ n2f(n) + ng(n)) (1)

where O(n2 logn) is the time required for an optimal comparison-based sort on
�
n

2

�
distances, f(n) is the time

required to test new edges for compatibility, and g(n) is the time required to update the data structure when

a new greedy edge is added [30]. A naive test would compare each new potential edge to each of the existing

edges (of which there are at most O(n)) for an O(n3) time algorithm. Gilbert [10] presented a data structure

allowing an O(logn) time compatibility test and an O(n logn) time update, thus improving the algorithm's

overall time complexity to O(n2 logn), without adversely a�ecting space complexity. He does this by building

a segment tree for each point in the set, where the endpoints of the \segments" are the polar angles between

the given point and every other point in the set. Manacher and Zobrist [28] have since given an O(n2) expected

time and O(n) space greedy triangulation algorithm that makes use of a probabilistic method for pretesting

compatibility of new edges. Note that our approach also uses this \generate and test" paradigm, and that we

gain improvements over previous results by generating fewer edges and supplying more e�cient tests.

Our approach can be viewed as an extension of Dickerson's [6]. He examined the idea of enumerating pairs

of points in increasing order by distance, attempting to add them to the greedy triangulation, and quitting

when the triangulation is complete. His hope was that only a small fraction of the
�
n

2

�
edges would have to be

examined. He showed that for points chosen uniformly from a disk only O(n4=3) edges would be examined,

but for points chosen uniformly from a polygon (or any shape with a 
at side) O(n2) edges must be examined.

The problem is long edges lying near the convex hull. This paper suggested using Gilbert's edge test, so

because of intialization and update costs was not able to achieve an asymptotic speedup in the algorithm.

An alternate approach to \generate and test" is to generate only compatible edges. One way to do this was

discovered independently by Goldman [11] and by Lingas [25]. The method uses the generalized or constrained

2



Delaunay triangulation [4, 16, 35]. The constrained Delaunay triangulation is required to include a set of edges

E. The rest of the edges in the triangulation have the property that the circumcircle of the vertices of any

triangle contains no point visible from all three vertices.

This alternate approach computes the constrained Delaunay triangulation of the points with the current

set of GT edges as the set E. The next edge to be added to the GT can be found in linear time from the

constrained Delaunay triangulation. The triangulation must then be updated to include the new edge in E,

which takes O(n logn) time in the worst case. This gives an O(n2 logn) time and O(n) space algorithm, thus

improving the space complexity of Gilbert's algorithm without a�ecting the worst case time. Lingas [25] shows

that his method runs in O(n log1:5 n) for points chosen uniformly from the unit square.

Recently Levcopoulos and Lingas, and independently Wang, have shown how to do the update step in

O(n) time, using a modi�cation of the linear-time algorithm for computing the Voronoi diagram of a convex

polygon [1], leading to an O(n2) time and O(n) space algorithm in the worst case [20, 33]. More recently

Levcopoulos and Lingas give a modi�cation of this algorithm that is expected to take O(n) time for points

uniformly distributed in a square [21]. These methods are elegant, but are signi�cantly more complicated to

implement than our methods and should be slower for practical-sized problems.

One use of the greedy triangulation is as an approximation to the minimumweight triangulation (MWT).

Given a set S of n points in the plane, a MinimumWeight Triangulation (MWT) of S is a triangulation that

minimizes the total length of all edges in the triangulation. The MWT arises in numerical analysis [23, 26, 30].

In a method suggested by Yoeli [36] for numerical approximation of bivariate data, the MWT provides a good

approximation of the sought-after function surface. Wang and Aggarwal use a minimum-weight triangulation

in their algorithm to reconstruct surfaces from contours [34]. Though it has been shown how to compute the

MWT in time O(n3) for the special case of n-vertex polygons [15], there are no known e�ciently computable

algorithms for the MWT in the general case [30]. We therefore seek e�ciently computable approximations to

the MWT.

Although neither the GT nor the Delaunay triangulation (DT) yields the MWT [27, 26], the GT appears

to be the better of the two at approximating it. In fact, for convex polygons the GT approximates the MWT

to with a constant factor while the DT can be a factor of 
(n) larger [19]. For general point sets, the DT can

be a factor of 
(n) larger than the MWT, but the best lower bound for the GT is 
(
p
n) [14, 18]. For points

lying on a convex polygon or uniformly distributed points in a square, both the GT and the DT are expected

to be within a constant factor of the MWT [21, 3]. For these reasons a large amount of e�ort has gone into

�nding e�cient methods for computing the greedy triangulation.

Other heuristics for approximating the MWT have also been developed. Plaisted and Hong have developed

a complicated polynomial-time heuristic that is guaranteed to be within a factor of O(logn) of the MWT [29].

The best heuristics known so far are those of Lingas [24] and Heath and Pemmaraju [12]. These approaches

make use of the convex hull and a spanning tree to create a single cell, and then use an optimal cell triangulation

algorithm generalized from Gilbert's dynamic programming approach for computing the MWT of points on

a convex polygon [10]. Lingas' method begins with a minimum spanning tree derived from the convex hull

and the DT, and provably produces a triangulation at least as good as the DT. The method of Heath and

Pemmaraju begins with a spanning tree derived from the convex hull and the GT, and provably produces a

triangulation always at least as good as the GT. In practice, both methods work extremely well, with that of

Heath and Pemmaraju proving slightly better. However, though both methods appear empirically to produce

triangulations much better than the GT, both of these algorithms require O(n3) time which is impractical for

large point sets. In [12], the authors only report on data for sets of size 50 and smaller. We also note that

with the method of Heath and Pemmaraju, the greedy triangulation still remains of interest as it is a substep

in their algorithm.

1.3 Notation

Throughout the paper, we let d(p; q) be the distance from point p to q using the standard Euclidean distance

metric.

3



sp sq 
 

s
v1
�
�

s
v2
�

�
�

s
v3
a

a

a

a

a

a

a

a

a

asx

Figure 1: CCW chain intersecting segment pq

2 A New Edge Test Method for the GT

We now present our new method for testing the compatibility of edges in a greedy triangulation. We will �rst

present some de�nitions, and then a new theorem stating a property of any pair of points that does not form

an edge in the GT. Following the theorem, we will present the edge test method with a proof of its correctness

and a complexity analysis of the run time required by each of the operations.

De�nition 1 In a straight line planar graph T , a clockwise chain from p1 (hereafter written \CW chain from

p1") is a sequence of points p1; : : : ; pk such that for 1 � i < k; pipi+1 are edges in T , and for 1 < i < k; pipi+1

is the next edge around point pi in a clockwise direction from pi�1pi.

De�nition 2 Let p1; : : : ; pk be a CW chain in straight line planar graph T . If (p1; p2) is the �rst edge in a

clockwise direction from a segment p1q (with p1q not necessarily an edge in T ), then we say that p1; : : : ; pk is

a CW chain with respect to p1q.

We de�ne a counter-clockwise chain, or CCW chain, in a similar fashion.

The new compatibility test method is based on the following lemma and theorem (see Figure 1).

Lemma 1 Given a set S of n points, let x, y, and z be oriented so that they form a CW triangle. Let T

be the partial triangulation in the standard greedy algorithm at the time when xz is tested for compatibility

or at some later time. Let x, y, z be a CCW chain in T . Then triangle xyz contains no points in S in its

interior and xz is either compatible with T or already in T . (The lemma is also true if CW and CCW are

interchanged.)

Proof We �rst show by contradiction that there are no points in the interior of triangle xyz. Assume

otherwise and let w be a �rst such point encountered by a line l parallel to xz passing through y as it sweeps

across the triangle towards xz. Because xw is shorter than the longest side of xyz, it was considered as a

possible edge. But it was not added, because the second edge in the CCW chain is yz, not yw. Therefore

some edge must intersect its interior. But no such edge can exist, because it cannot cross xy or yz and no

points interior to xyz lie on y's side of l when it reaches w. This contradiction shows that no points lie interior

to triangle xyz.

This implies that no edge can block xz. Such an edge cannot cross xy or yz and cannot have an endpoint

interior to triangle xyz. The only other possiblility would be for y to be an endpoint of the blocking edge, but

then yz would not be the second edge in the CCW chain. Therefore nothing can block xz and it is compatible

with T or already in T . 2

Theorem 1 (Clockwise/Counter-clockwise Chain Theorem) Given a set S of n points and a non-

negative integer k � �
n

2

�
, let T be a partial greedy triangulation of S constructed using the standard greedy

approach of examining the �rst k interpoint pairs in nondecreasing order of distance and adding to T exactly

those edges compatible with previously added edges. Now let (p; q) be the (k + 1)st pair to be tested with

� = d(p; q). If edge pq is not compatible with T , then T contains a CW or CCW chain p; v1; : : : ; vk; x (or,

respectively, q; v1; : : : ; vk; x) with respect to pq that has the following �ve properties:

1) edge vkx intersects segment pq,

2) points v1; : : : ; vk lie within the � � 2� rectangle R that is divided into two squares by segment pq and

d(p; vi) < � (respectively d(q; vi) < �) for 1 � i � k,

3) if d(q; v1) � � (respectively d(p; v1) � �) then k = 1,

4



4) the vertices p; v1; : : : ; vk (all edges of the chain before vkx) form a convex chain, and

5) vkx is the closest edge to p (respectively q) of all edges in T intersecting pq.

Proof Assume edge pq is not compatible with T . Then by de�nition of compatibility, T already contains

an edge intersecting pq. Furthermore, this edge is no longer than pq since it was already added to T in the

\greedy" fashion.

(i) We �rst show that T contains an edge vkx with the properties that vkx is the closest edge to p (respectively

q) of all edges intersecting pq, d(p; vk) < � (respectively, d(q; vk) < �), and point vk is inside the rectangle R.

Since pq is not a greedy edge, we know that there already exists in T an edge intersecting pq. Without

loss of generality, let there be an edge in T intersecting pq at a point at least as close to p as to q. (If this is

not the case, then simply reverse the roles of p and q for the remainder of the proof.) For ease of notation,

rearrange the plane so that pq is the horizontal axis with p on the left. Let ab be the edge intersecting pq

closest to p, calling the leftmost endpoint a. (If ab is vertical then call either endpoint a.) Note that a is

at least as close to p as it is to q. There are three possibilities for the position of a: 1) a falls inside R and

d(p; a) < �. In this case a satis�es the conditions for vk, so we let vk = a (and x = b). 2) a falls inside of R

but d(p; a) � �. Notice however that d(q; a) � � since a is at least as close to p as to q. But b must fall in the

circle of radius � centered at vk, and furthermore b is is on the other side of pq from a. By these constraints,

b meets the requirements for vk, and we let vk = b. 3) Finally, a could fall outside of R. Because ab intersects

pq, a must fall strictly to the left of R. But then b must lie in R, and the triangle inequality allows us to show

that d(p; b) < �. Thus we can let vk = b.

(ii) In part (i) we have described an edge meeting condition (5) in our theorem. We now show that there is

CCW chain from p to x containing edge vkx and meeting conditions (2) through (4). (Since the chain contains

vkx it automatically meets condition (1).) Label the point where xvk and pq intersect as o. Since d(p; vk) � �

and d(p; o) � �=2 it is clear that for every point y in triangle povk (except possibly point vk itself) we have

d(p; y) < �. Furthermore, by our assumption xvk was the closest greedy edge to p, and ovk is a segment of this

edge, and therefore there are no edges in T intersecting po or ovk. We now show how to construct the CCW

chain in a fashion similar to a Jarvis march [13]. Let v1 2 S be the point in triangle 4povk that minimizes the

counterclockwise angle of pv1 with respect to pq. (If 4povk is empty, then we have v1 = vk). We know that

d(p; v1) � �. Furthermore, there can be no greedy edges intersecting pv1 since there are no points in 4povk
below ray ~pv1, and there are no edges intersecting po or ovk. It follows that pv1 is a greedy edge already added

to T , and furthermore that pv1 is the next CCW edge out of p with respect to pq. If v1 = vk then we are done.

Otherwise, we continue in the same fashion and choose the point v2 that minimizes the angle v1v2. We see

that v1v2 must also be an edge in T for the same reasons. We continue to choose the next point of minimal

angle until we reach vk. At this point, we have a CCW chain from p to vk that meets condition (1) of the

theorem. Furthermore, every point along this chain falls in 4povk and therefore meets condition (2). From

the way in which these points were found, with each angle increasing with respect to the horizontal line, we

see that the chain p; v1; : : : ; vk is a convex chain and condition (4) is met also. Furthermore, by construction

there are no points in the region bounded by this chain, po, and ovk. Therefore vk�1vk and vkx must be

adjacent to one another around vk, making the entire chain a CCW chain.

We now prove by contradiction that our chain p; v1; : : : ; vk; x meets condition (3) of our theorem as well.

Assume that k > 1 and that point v1 does not lie strictly inside the circle C of radius � centered at q. (See

Figure 2. In this �gure, we show the boundary case where v1 lies exactly on the circle C. For reference, the

perpendicular bisectors of segments pv1 and vk�1vk are shown.)

Since p is on circle C and v1 is on or outside the circle, we know that the perpendicular bisector of pv1
passes through or over point q and that point x therefore lies closer to p than to v1. However since this

chain is convex, the same relationship holds true for all vi and vi+1; 1 � i � k � 1. That is, we know that

d(vk�1; x) < d(vk; x). (The only way this could be false is if the convex chain turned by more than 270 degrees

with respect to pq, but in this case either the chain would have to leave rectangle R or the edge vkx would have

to pass back through the chain, both of which are contradictions.) Given this and the fact that vk�1, vk, x

forms a CCW chain, we can conclude from Lemma 1 that vk�1x must be an edge in the partial triangulation.

Repeating this argument for vk�2 through v1 shows that each must connect directly to x. Thus if v1 lies

outside of C and is the �rst edge in a CCW chain intersecting pq, then it must connect directly to x. 2

5



sp sq

rectangle R

�
�
�
�
�
�
�
�
�
�
�
�
�
�
sv1

svk�1 �
�
�
svk
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
Esx

�

�

�

�

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P
P

P

P

P
P

bisector
pv1

X
X
X
X
X
X
X
X
X
X
X
X
X
XX

X
X

X
X

bisector
vk�1vk

Figure 2: Condition (3). Proof by contradiction. (Assume point v1 on or outside the circle C of radius �

centered at q. Here we show the boundary case with v1 on C.)

2.1 Edge Test Method and Proof of Correctness

We now give a fast greedy triangulation edge test method based on Theorem 1. To determine whether edge

pq is compatible, the algorithm examines the CW and CCW chains from p and q with respect to pq. The

method actually requires that we examine at most only two edges on each of these chains.

2.1.1 Greedy Triangulation Edge Test for (p; q) in T

Step 1: CCW Chain from p

1a. Find the next two points on the CCW chain from p (with respect to pq).

Label these points v1 and v2.

1b. IF angle 6 qpv1 � �=2 OR no CCW chain exists, THEN goto Step 2.

1c. IF v1v2 intersects pq THEN return FALSE (pq is incompatible).

1d. IF v2 = q THEN return TRUE

(pair (p; q) is compatible with T ).

1e. IF v1 is strictly inside Cq (the circle of radius � centered at q)

AND v2 6= q

THEN return FALSE.

ELSE goto Step 2.

Step 2: CW Chain from p

2a. Find the next two points on the CW chain from p (with respect to pq).

Label these points v1 and v2.

2b. IF angle 6 v1pq � �=2 OR no CW chain exists, THEN goto Step 3.

2c. IF v1v2 intersects pq THEN return FALSE (pq is incompatible).

2d. IF v2 = q THEN return TRUE

(pair (p; q) is compatible with T ).

6



2e. IF v1 is strictly inside Cq (the circle of radius � centered at q)

AND v2 6= q

THEN return FALSE.

ELSE goto Step 3.

Step 3: CCW Chain from q

3a. Find the next two points on the CCW chain from q (with respect to pq).

Label these points v1 and v2.

3b. IF angle 6 pqv1 � �=2 OR no CCW chain exists, THEN goto Step 4.

3c. IF v1v2 intersects pq THEN return FALSE (pq is incompatible).

3d. IF v2 = p THEN return TRUE

(pair (p; q) is compatible with T ).

3e. IF v1 is strictly inside Cp (the circle of radius � centered at p)

AND v2 6= p

THEN return FALSE.

ELSE goto Step 4.

Step 4: CW Chain from q

4a. Find the next two points on the CW chain from q (with respect to pq).

Label these points v1 and v2.

4b. IF angle 6 v1qp � �=2 OR no CW chain exists, THEN return TRUE.

4c. IF v1v2 intersects pq THEN return FALSE (pq is incompatible).

4d. IF v2 = p THEN return TRUE

(pair (p; q) is compatible with T ).

4e. IF v1 is strictly inside Cp (the circle of radius � centered at p)

AND v2 6= p

THEN return FALSE.

ELSE return TRUE.

Proof of Correctness We now show that the above algorithm correctly determines whether edge pq is

compatible with the edges already added to T (assuming the edges are added in greedy fashion). We give a

proof for Step 1; the other three steps are exactly analagous.

The �rst two cases are obvious. First assume that v1 is outside R (or equivalently that no CCW chain

exists). It follows directly from Theorem 1 that if pq is not compatible we will �nd a CW or CCW chain on

one of the subsequent steps and we can immediately go to Step 2. Now assume that v1v2 intersects pq. By

de�nition, pq is not compatible with T and we can halt.

Now assume that v2 = q. That is, the second edge on the CCW chain is v1q. In this case Lemma 1 says

that pq is compatible, so we can halt and answer TRUE.

If v1 is strictly inside Cq and v2 6= q, then we claim that pq can not be compatible with T . Though we

have not yet found an existing edge vkx intersecting pq, we know that one exists, because assuming otherwise

would lead to a contradiction. Suppose that pq were compatible and were added to the triangulation. Then

q, p, v1 would be a CCW chain, so by Lemma 1 triangle qpv1 would contain no points in its interior and v1q

would be compatible. Because it is shorter than pq it would already be in the triangulation. But then v1q

would be the next edge CCW around v1 from pv1, contradicting the assumption that v2 6= q. Therefore pq

cannot be compatible.

There is one remaining case, which is when v1 is inside rectangle R but not strictly inside circle C, v2 6= q,

and v1v2 does not intersect pq. That this CCW chain will not lead to any edge intersecting pq follows directly

from Condition (3) of Theorem 1.

We have now completed the proof of the correctness of our greedy edge test method. 2

7



2.2 Implementation and Analysis

We now discuss the implementation of our edge test and analyze its e�ciency. We store our greedy trian-

gulation T as a graph using adjacency lists. Each adjacency list is represented as a circular linked list of

edges ordered in polar (or rotational) order around the point. To �nd CW and CCW chains from a new edge

we must determine where in rotational order the new edge would �t. That would normally take O(n) time,

or O(logn) if we stored the circular list in a binary tree. Fortunately, we can use properties of the greedy

triangulation to do better.

Let p be a vertex in T . We consider the neighbors of p (in T ) in CCW order. Let x and y be two consecutive

neighbors, and let � be the CCW angle swept from px to py. We call the ordered pair (x; y) closed if � < �

and xy is in T, and we call (x; y) open otherwise. (Note that if (x; y) is closed, by Lemma 1 the triangle pxy

must be empty, so no new greedy edges can connect to p between px and py.) We call an edge an open edge

if it connects p to a point in an open ordered pair. A closed interval is a wedge around p that is bounded by

two adjacent open edges whose endpoints in CCW order do not form an open pair. (If the edges around p

are viewed as spokes of a wheel, then the open pairs will correspond to pairs of spokes with no \rim" between

them and the closed intervals will be maximal sections of the wheel with the entire \rim" present.) A closed

point is a point incident to at least one edge but to no open edges.

To the each edge structure in the data structure for storing the edges as a circular linked list we add

pointers to the next CW and CCW open edge and a 
ag to show whether the wedge lying between that edge

and the next open edge CCW from it is an open ordered pair or a closed interval. These new �elds will only

be maintained for open edges, and will provide a doubly-linked circular list of open edges around each point.

Maintaining this structure when a new edge pq is added to T is fairly straightforward. We will discuss

updates at p; q is symmetric. If pq is the �rst edge incident to p, the new edge will point to itself as an open

ordered pair spanning 2�. If pq is added to the middle of an open pair (x; y) (note that new edges can only

be added between edges of an open ordered pair), we must do two types of updates. First, (x; y) must be split

into two pairs (x; q) and (q; y), which may be open or closed. To �nd out which, we must see if edges xq and

yq are in T , which can be done in constant time. Second, we must see if the new edge closes o� a previously

open pair. To do that, we see if the CCW edge from pq has the same endpoint w as the CW edge from qp

(and the symmetric case on the other side). In either case, we must be able to update the data structure so

that a previously open interval (x; y) is now closed. To do this the new closed interval (x; y) must be merged

with possible closed intervals lying to either side of it to form a single closed interval. All of these tests and

updates can be done in constant time.

With this data structure, the edge test is done as follows. The new edge pq is located in the circular list

of open edges at p and q. If pq falls in a closed interval for either point, then the edge is not compatible.

Otherwise perform the test described in the previous subsection, using the open edges as the �rst edges in the

CW and CCW chains. This test will take time proportional to the number of open edges.

Fortunately, the maximum number of open edges adjacent to any point p is 10. This is because any pair

(x; y) with � < �=3 must be closed. Because � is not the largest angle in triangle pxy, we know that xy is not

the longest edge in the triangle. By Lemma 1, xy is in T, which means that (x; y) is closed. Therefore every

open pair has � � �=3, so so there cannot be more than six of them around p. If there are six, each edge

is shared by two open intervals, so there are only six edges. If there are �ve or fewer open pairs, then there

cannot be more than 10 open edges.

To initialize the data structure we simply create n empty circular lists in O(n) time. Because there are

O(n) edges in the entire triangulation the total space required by all lists is O(n).

Thus we have a data structure that requires O(1) time for an edge test or an update, O(n) time to initialize,

and O(n) space. For comparison, we end this subsection by noting that the method of Gilbert [10] requires

O(n2 logn) time for initialization, O(n logn) time for update, and O(n2) space.

3 A Necessary Condition for an Edge to be in the Greedy Trian-

gulation

We begin by stating a simple and obvious lemma.

Lemma 2 (Convex Quadrilateral Rule) Let pqr and pqs be two empty triangles in a greedy triangulation.

If segment rs intersects segment pq (that is, prqs is a convex quadrilateral), then d(p; q) � d(r; s).

8



sp s q

s

a

s

b

s w1

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
((

�

�

�

�

�

�

s wk�1

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

sx ((
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
((

s

z1

@

@

@

@

@

@

@�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

Figure 3: Edges intersecting ab

Proof The proof follows directly from the greedy method. Since both triangles 4pqr and 4pqs are empty,

we know that no edge except pq intersects segment rs. Assume d(r; s) < d(p; q). Then edge (r; s) would have

been chosen �rst and added to the triangulation, and edge (p; q) would not have been added. 2

Heath and Pemmaraju [12] describe this as the property of \local optimality."

We now give an important (though less obvious) lemma1 that states a necessary (but not su�cient)

condition for an edge to be a greedy triangulation edge. This is a variant of Lemma 3.1 in [21].

Lemma 3 Let p; q be a pair of points in a set S. Consider the disc D of radius � = d(p; q)=(2
p
5) centered at

the midpoint of pq. Let pq divide the disc into two half-disks. If both half-disks contain at least one point in

S then pq cannot be in the GT of S.

Proof For notational convenience, orient the plane so that segment pq is horizontal, with p on the left side.

(For the remainder of the proof, refer to Figure 3.) Let a be the point closest to pq in the upper half-disk of

D, and let b be the point closest to pq in the lower half-disk of D. Let C be the circle with pq as a diameter,

and let � be the length of the shortest segment with endpoints on or outside of C that passes through D.

Then � =
p
d(p; q)2 � 4�2.

We will assume that pq is a GT edge and show that this leads to a contradiction. We will use the following

observation.

Observation 1 Let p1 and p2 be any pair of points that are not connected by an edge in the GT. Then

some GT edge intersecting segment p1p2 must have length � d(p1; p2).

If pq is a GT edge, then ab cannot be a GT edge because they would intersect. Therefore, by Observation

1 there must be some GT edge of length less than d(a; b) \cutting o�" ab. This edge must be of length � 2�.

We will show that no such edge exists either above or below pq.

Since there are points on both sides of edge pq, it is not a CH edge, and therefore it must be an edge in

two triangles { an upper and a lower. Let pw1q be the upper triangle and let pz1q be the lower triangle.

If w1 and z1 are both in C, then d(w1; z1) < d(p; q) and thus by Lemma 2 pq could not be a GT edge and

we have a contradiction. Without loss of generality, we therefore assume that w1 is outside of C. Also without

loss of generality, we assume that w1 is closer to q than to p. That is, w1 falls outside C on the q side. Since

edge pw1 cuts o� ab and w1 is outside C, it follows that d(p; w1) � �.

1an earlier false version of this lemma with � = d(p; q)=2 was given in [6]. We give the corrected version here.

9



For notational convenience, we also label all the GT edges intersecting segment ab. The GT edges above

pq that intersect ab we will label e1; : : : ; em and the edges below ab that intersect ab we label f1; : : : ; fn. More

formally, consider the ray ~ba. Leaving point b, it eventually passes through pq and then crosses a sequence of

GT edges before reaching a. We label these edges in order e1; : : : ; em. Likewise, ray ~ab leaves a and eventually

crosses pq followed by a sequence of GT edges f1; : : : ; fn before reaching b.

Our proof will be a case analysis on the edges e1; : : : ; em and f1; : : : ; fn. All of these edges cannot have

both endpoints outside of or on C, because they comprise all of the edges crossing ab, and all of them would

be longer than �. But our choice of � causes � to be greater than 2�, and by Observation 1, one intersecting

GT edge must be shorter than d(a; b). We will show that in fact some ei above and some fj below would have

to have at least one endpoint in C, and we will then show that however this happens pq will not be a greedy

edge.

Observation 2 At least one ei and at least one fj must have an endpoint in C.

Assume that none of the ei had endpoints in C. Then all of the ei have length at least �. Let fl be the

lowest-numbered fj with an endpoint in C, and let y be an endpoint of fl in C. Then all edges crossing ya

are at least � long, but d(y; a) must be shorter than � because y is in C and a is in D. This contradicts

Observation 1. A symmetric argument shows that one of the fj edges must also have an endpoint in C.

Observation 3 If ek is the �rst ei to have an endpoint in C, then e1; : : : ; ek�1 are all of the form pwi for

1 � i � k�1, and ek is of the form xwk�1. Furthermore, x lies to the left of D. Finally, for some 1 � l � k�1

there is an point wl that lies within d(p; q) of p. (See Figure 3 again.)

This observation follows from several points. First, no wi can lie to the left of ray ~qw1 and closer than � to

q unless a GT edge shorter than � intersects wiq. But any edge ei whose left endpoint lies to the left of C that

intersects ab cannot have its right endpoint inside of C unless it lies closer than � to q. Furthermore, such an

endpoint cannot lie to the right of ray ~qw1 without being outside of C. In either case the right endpoints of

the ei will be outside of C until some left endpoint lies in C.

Therefore we consider the �rst edge to have a left endpoint di�erent than p. If this endpoint lies outside of

C, then a similar argument to the one above will show that no left endpoints can lie within C either. Therefore

no ei will have an endpoint in C, contradicting Observation 2. This means that the �rst edge to have a left

endpoint other than p will be ek, and its left endpoint (which we will call x) must lie in C.

Finally, at least one of the edges pwi for 1 � i � k � 1 must be shorter than d(p; q). If it were not, then

xq would cut o� all of the edges e1; : : : ; ek�1.

The Contradiction This structure is very constraining. We have constrained x to lie to the left of D and

inside of C. Furthermore, if x were closer to q than �, then by Observation 1 one of the ei with 1 � i � k� 1

would have to be shorter than �, which cannot be the case. (None of them have endpoints in C.) Therefore

x is at least � from q. Finally, x must lie below the ray from q that is tangent to D from above.

We have also constrained point wl to lie outside of C near q, but inside the circle of radius d(p; q) centered

at p. It must also lie below the ray from from p tangent to D from above.

Observation 2 says that some edge fj will be the �rst edge below pq along ab with an endpoint y inside of

C. But where can y lie? It must lie above either the ray from p tangent to D from below or the ray from q

tangent to D from below. If it is in the left half of C, its distance to x will be less than �. If it is in the right

half of C, its distance to wl will be less than �. In either case we have a contradiction, because all intervening

edges will be at least � long. (All of them have both endpoints on or outside of C.) 2

The proof above requires � to be larger than a number of di�erent values. The strongest requirement

arises in the last case, when we let y lie at the intersection of the ray from p tangent to D from below and C

and we let wl lie at the intersection of the ray from p tangent to D from above and the circle of radius d(p; q)

centered at p. The actual bound of d(p; q)=(2
p
5) is derived from a slightly worse con�guration, which cannot

be actually achieved. We require that the intersection points between the two rays from p tangent to D and

the circle of radius d(p; q) centered at p be at most � apart. This case is less than 5 percent worse than the

actual worst case, and is less complicated to calculate and express.

10



We do not believe that our bound is tight. The worst example that we have been able to �nd is a diamond

with pq as its diameter, with two additional points just outside of the midpoints of two opposite edges of the

diamond. This case approaches the bound � = d(p; q)=(2
p
2) as closely as is desired.

4 An Analysis of the Edges in the Greedy Triangulation

For two points p and q in the plane, and for a real number r > 0, let D(p; q; r) denote the closed disk of

radius r centered at (p+ q)=2. The line through p and q de�nes two closed semidisks of D(p; q; r), denoted by

D0(p; q; r) and D00(p; q; r) (without specifying which half is D0 and D00, respectively).

Let us employ a constant 0 < 
 � 1, �xed for the whole section. Given a set S of n points in the plane, we

call a pair fp; qg of points in S plausible, if D0(p; q; r1) \ S = ; or D00(p; q; r1) \ S = ;, with r1 = 
jp � qj=2.
The previous section showed that if 
 = 1=

p
5, only plausible edge edges can be in a greedy triangulation.

When 
 = 1 only plausible edges can be Delaunay, so the lemmas we prove about distributions of edge lengths

apply to both greedy and Delaunay triangulations.

Our �rst goal is to estimate the expected number of plausible pairs in a set S of n points, uniformily

distributed in a convex compact region C. We normalize C to be of area 1 to simplify the notation.

Suppose p and q are points in C, so that D(p; q; r1) is contained in C (r1 as above). If we choose another

n� 2 points at random from C, then the probability of fp; qg being plausible is given by

Prob(D0(p; q; r1) is empty or D00(p; q; r1) is empty) �

Prob(D0 is empty) + Prob(D00 is empty) = 2

�
1� r21�

2

�n�2

< 2e�r
2

1
�(n�2)=2 :

We have to cope with pairs of points fp; qg where D(p; q; r1) extends beyond the boundaries of C: For p 2 C,
let �(p) denote the distance of p from the boundary of C, or, in other words, the largest radius of a disk

centered at p which is still contained in C. Then we observe that for any pair if points p and q in C, the disk
D(p; q; r2), r2 = (�(p) + �(q))=2, is contained in C. It follows that for any pair fp; qg � C the probability of

being plausible (after adding (n-2) random points) is bounded by

2e�r
2
�(n�2)=2; r = rp;q := minfr1; r2g ;

with r1 and r2 dependent on p and q as previously speci�ed. Now let p and q be two random points in a

random set of n points in C. Then the probability of being plausible is bounded byZ
p2C

Z
q2C

2e�r
2
�(n�2)=2 dqdp <

Z
p2C

Z
q2C

2e�r
2

1
�(n�2)=2 dqdp +

Z
p2C

Z
q2C

2e�r
2

2
�(n�2)=2 dqdp : (2)

In order to estimate the terms in (2) we use density functions fp(x), p 2 C, and g(x).
R z
�1

fp(x)dx is the

probability for a random point in C to have distance at most z from p; clearly, fp(x) � 2x� for all p 2 C and

x � 0.
R
z

�1
g(x)dx is the probability of a random point in C to have distance at most z from the boundary of

C; here we have a bound of g(x) � U , U is the perimeter of C, for all x � 0.

Now the left term in (2) equals

Z
p2C

Z
1

x=0

2fp(x)e
�x

2


2
�(n�2)=8 dxdp �

Z
1

x=0

4x�e�x
2


2
�(n�2)=8 dx =

�16

2(n� 2)

e�x
2


2
�(n�2)=8

����
1

0

=
16


2(n� 2)
:

The right term in (2) equals

Z
1

x=0

g(x)

Z
1

y=0

g(y)2e�(x+y)2�(n�2)=8 dydx � 2U2

Z
1

x=0

Z
1

y=0

e�(x+y)2�(n�2)=8 dydx =

2U2

Z
1

z=0

ze�z
2
�(n�2)=8 dz = 2U2

� �4
�(n � 2)

e�z
2
�(n�2)=8

����
1

0

�
=

8U2

�(n� 2)
:

11



Lemma 4 Let X be the random variable for the number of plausible pairs in a random set S of n > 4 points

uniformly distributed in a convex region of area 1 and perimeter U . Then

E(X) < 4(n+ 2)(
U2

�
+

2


2
) = O(U2n)

and

E(X logX) � 2E(X) logn = O(U2n logn) :

The �rst bound follows from

E(X) =

�
n

2

�
Prob(fp; qg is plausible) <

�
n

2

�
1

n� 2

�
8U2

�
+

16


2

�
� 4(n+ 2)

�
U2

�
+

2


2

�
:

For 
 = 1=
p
5 and U = 2

p
� (the perimeter of the disk of area 1) this gives E(X) < 56(n+ 2).

The second bound is now easily obtained by

E(X logX) =

1X
m=1

(m logm)Prob(X = m) �
1X

m=1

(m log

�
n

2

�
)Prob(X = m) < 2E(X) log n :

2

Let us call a pair fp; qg � C a candidate (for being plausible), if r = rp;q � B, where B :=
p
(c lnn)=(n � 2)

for a constant c. Our next goal is now to show, that a random set does not contain too many candidates, and

{ with high probability { all plausible pairs are indeed candidates. We split again the problem by using the

inequality

Prob(r � B) = Prob(r1 � B or r2 � B) < Prob(r1 � B) + Prob(r2 � B) :

We have

Prob(r1 � B) = Prob(jp� qj � 2B



) �

�
2B




�2

� =
4�c lnn


2(n� 2)
;

and

Prob(r2 � B) = Prob(�(p) + �(q) � 2B) =Z 2B

x=0

g(x)

Z 2B�x

y=0

g(y) dydx � U2

Z 2B

x=0

(2B � x) dx = 2U2B2 =
2U2c lnn

n� 2
:

Finally,

Prob(fp; qg is plausible j r > B) < 2e�B
2
�(n�2)=2 = 2e�c ln n�=2 = 2n�c�=2 : (3)

Hence, the probability, that there is a plausible pair which is not a candidate is bounded by
�
n

2

�
times the

bound in (3). We summarize:

Lemma 5 Let Y be the random variable for the number of candidates in a random set S of n > 4 points

uniformly distributed in a convex region of area 1 and perimeter U . Then

E(Y ) <

�
2�


2
+ U2

�
c(n+ 2) lnn = O(U2cn logn) :

The probability that there exists a plausible pair that is not a candidate is bounded by

n2�c�=2 :

The bound for E(Y ) follows from

E(Y ) =

�
n

2

�
Prob(r � B) <

�
n

2

��
4�


2
+ 2U2

�
c lnn

n� 2
:

2

12



5 Greedy Triangulation Algorithms

These results lead to the following greedy triangulation algorithm:

5.1 Algorithm 1

Step 1: Generate all plausible pairs with r1 � B. To do this, we generate all pairs of points

separated by a distance of at most 2B=
. This is the �xed-radius-near-neighbors problem [2, 7]. In this case

a bucketing algorithm by Bentley, Stanat, and Williams can solve the problem in time O(n+m), where m is

the number of pairs that lie within 2B=
 of one another. As each pair is generated, test to see if it is plausible

using the method described below.

Step 2: Generate all plausible pairs with r2 � B. The easy way to do this is to �nd all points

within 2B of the boundary of C and to generate all pairs. However, this can generate pairs with r2 as long

as 2B. By sorting the points within 2B of the boundary of C in order of their distance from the boundary

one can generate only the pairs needed by matching each point with points further from the boundary than

itself only until r2 > B, then going on to the next point. Also, note that pairs that also have r1 � B can be

ignored, because they were generated in Step 1. Test each pair to see if it is plausible.

Step 3: Generate the greedy triangulation of the plausible pairs generated in Steps 1 and

2. To do this, �rst sort the pairs in increasing order of distance between the points. Start with an empty

triangulation, and attempt to create an edge between each pair in turn, failing to create the edge if it fails the

compatibility test described above.

5.2 Testing to See if a Pair is Plausible

We need a fast test to see if an edge is plausible. One way to do this uses a grid of squares. As a preprocessing

step, cover C by a grid of O(n) squares, each with side 1=
p
n. For each bucket, create a list of the points in

S that fall in that bucket. Then to test a pair (p; q), compute D(p; q; r), with r = min(r1; r2) as described

above. Go through the squares that overlap D0(p; q; r) until you �nd a point lying in D0(p; q; r) or �nd that

no such point exists. Similarly go through the squares that overlap D00(p; q; r) until you �nd a point lying in

this half-disk or �nd that no such point exists. If either half-disk is empty, the point is plausible. In searching

through the grid squares, start with the squares with maximum overlap with the half-disk.

For uniformly distributed points this test will run in O(1) expected time. The probability that a grid square

that lies completely in C contains no point from S is (1� 1=n)n. This is always less than e�1. Therefore the

probability that a given grid square contains a point is greater than 1� e�1 > 0:63. This implies that a search

through grid squares looking for a non-empty one is expected to look at fewer than 2 squares. When r is small

enough that no full grid squares overlap a half-disk, then only a constant number of grid squares overlap the

half-disk. When r is larger, the number of grid squares examined before an point is found is expected be a

constant.

Unfortunately, a bad distribution of points could cause this test to look at O(n) squares for a very long edge.

To prevent this, we stop testing after looking at c lnn squares for some c that we choose. Thus the test could

occasionally decide that a half-disk is empty when it in fact is not. Thus a candidate could occasionally be

considered plausible when it is not. But this will happen with probability less than (1�e�1)c lnn = nc(ln(e�1)�1).

This is about n�:46c. We can therefore choose c so that the expected number of edges on which the test fails

is o(1), and this limitation will avoid bad worst-case times without hurting expected times.

5.3 Analysis of Algorithm 1

Given this test for plausible pairs, it is easy to show that Algorithm 1 runs in O(n logn) expected time. By

using the 
oor function we can do the preprocessing for the edge test in O(n) time. By Lemma 5 the number

of pairs considered in Steps 1 and 2 is O(n logn). Each test for plausibility takes constant expected time, so

these steps require O(n logn) time. By Lemma 4 the number of pairs that are generated in Steps 1 and 2

that are plausible is O(n). Sorting these takes O(n logn) time, and the compatibility test for each takes O(1)

13



time. Therefore we expect Step 3 and the entire algorithm require O(n logn) time and O(n) space. In the

worst case the algorithm could take O(n log2 n) time and O(n logn) space.

Unfortunately, this algorithm is not guaranteed to generate the greedy triangulation. It will generate it

with probability 1 � n2�c�=2 ; and because we can choose c as large as we like we can make this probability

arbitrarily close to 1. But the algorithm could fail to produce a triangulation, either because neither diagonal

of a quadrilateral was a candidate or because the edge compatibility test (which depends on the correctness of

the partial triangulation) could fail if edges were missing. Alternately, it could produce a triangulation that

was not the greedy one, and there is no known fast way to verify the correctness of a greedy triangulation.

Fortunately, a minor modi�cation of the algorithm will eliminate this problem.

5.4 Algorithm 2

We turn Algorithm 1 into a two-phase algorithm. We run Steps 1 and 3 of Algorithm 1, but skip Step 2. What

we will be left with at the end of this process is a partial greedy triangulation. All of the short edges will be

present, but no edge longer than 2B=
 will be present. But Lemma 5 implies that with very high probability,

all edges that have either endpoint at least 2B=
 from the boundary of C will be present. We will call points

at least 2B=
 from the boundary interior points. We call a greedy triangulation edge with an interior point

as (at least) one of its endpoints an interior edge. The expected number of interior edges that are missing is

bounded by the expected number of plausible edges which are not candidates, so is at most n2�c�=2 : As long

as c is chosen to be at least 4=� this is O(1) edges. This implies that at most O(1) interior points will not be

closed (as de�ned in the edge test section). This is because a missing edge can cause at most four points to

be not closed (the four vertices of the quadrilateral with the missing edge as diagonal).

This observation leads to a new Step 20.

Step 20: Generate plausible long pairs Generate all possible pairs of non-closed points, and reject

all implausible pairs. Sort these pairs, and continue running Step 3 of Algorithm 1 with these pairs as well.

Because all short pairs are tried and then all longer pairs that could possibly create an edge are tried, the

algorithm will correctly generate the greedy triangulation of any set of points.

The edge test data structure keeps track of the list of incident open edges for each point. A point which

is closed will have incident edges, but no open edges in its list.

Will this step generate too many candidate pairs? The number of interior points that are not closed is

O(1). Non-interior points lie within 2B=
 of the boundary of C. The total number of non-interior points is

expected to be at most 2BUn=
, because 2BU=
 is an upper bound on the area close enough to the boundary

of C. Therefore the total number of candidate edges generated in Step 20 is
�
2BUn=
+O(1)

2

�
= O(n logn).

Lemma 4 says that the total expected number of plausible pairs is O(n), so Step 20 is expected to generate

O(n) plausible pairs. Therefore sorting and testing these for compatability will take O(n logn) time.

This shows that Algorithm 2 will always compute the greedy triangulation and is expected to run in

O(n logn) time, using O(n) space. In the worst case it could take O(n2 logn) time and O(n2) space.

5.5 Algorithm 3 { An Algorithm that Depends Less on the Uniform Distribution

Algorithm 2 depends heavily on the uniform distribution, both to get a fast expected-time test for plausibility

and to tell when to end the �rst phase and begin the second. The following algorithm is a variant that is less

sensitive to the exact distribution. It will dynamically decide when to switch from one phase to the next in

an attempt to balance the amount of work done in each phase.

In the �rst phase it generates possible edges in increasing order using an algorithm of Dickerson, Drysdale,

and Sack [8]. (Algorithms to enumerate the k closest interpoint pairs have been invented by Salowe and

by Lenhof and Smid, but because they need to know k in advance they are less appropriate in this context

[32, 17].) When the number of pairs of not closed points is proportional to the number of pairs already

examined, it starts over, enumerating pairs of not closed points in increasing order (similar to Step 20 above).

How do we know when to switch over? We keep track of the number of points which are not closed. When

during an edge insertion a point becomes closed, we subtract 1 from the number of non-closed points c. When

c2=2 is greater than the number of edges tested so far, the number of edges generated in the second phase will

equal the number in the �rst, so we change to the second phase.

14



5.6 Analysis of Algorithm 3

Generating the next pair in increasing order requires O(logn) time, and a compatibility test takes O(1)

time. Therefore the algorithm runs in time O(logn) times the number of pairs generated. It requires space

proportional to the number of pairs generated.

For the uniform distribution, we have already seen that all interior points are expected to be closed after

examining O(n logn) edges, and that at that point the number of points which are not closed is O(Bn) =

O(
p
n logn). Therefore the number of pairs in the second phase will be O(n logn). This implies that the

algorithm is expected to take O(n log2 n) time and O(n logn) space for a uniform distribution.

6 Summary and Open Problems

We have given a new method for testing edge compatibility in a greedy triangulation. The method is based on

Theorem 1, the CW/CCW chain theorem, which states an interesting property of greedy triangulations. Our

method requires only O(1) time for both the compatibility test and updates operations. This is a signi�cant

improvement over previous methods.

We then proved a necessary condition involving half-disks for an edge to be in the greedy triangulation.

This lead to theorems on the number of pairs of points that were plausible and that were candidates to be

plausible edges.

Finally, we used these characterizations and the compatibility test to prove the correctness and runtime

of several new algorithms for computing the greedy triangulation. On uniformly distributed points we can

compute the greedy triangulation in expected time O(n logn) and space O(n).

Some obvious questions arise from this work.

Problem 1 OPEN We can construct a point set for which Algorithm 3 would require �(n2 logn) time. How-

ever this set is highly structured and non-random. What is the expected run time for Algorithm 3 for random

distributions other than the uniform distribution?

Problem 2 OPEN Is there a greedy triangulation algorithm requiring o(n2) time in the worst case? Note

that with our edge test, a way to enumerate all pairs of points in increasing order by distance in O(n2) time

would lead to an O(n2) algorithm for the GT, but would not lead to an o(n2) algorithm.

Problem 3 OPEN What is the true worst-case ratio for � in Lemma 3? We have bounded it between

d(p; q)=(2
p
5) and d(p; q)=(2

p
2).

References

[1] A. Aggarwal and L. J. Guibas and J. Saxe and P. Shor, \A linear time algorithm for computing the Voronoi

diagram of a convex polygon ." Discrete Comput. Geom. 4 (1989) 591{604.

[2] J. Bentley, D. Stanat and E. William Jr., \The complexity of �nding �xed-radius near neighbors." Infor-

mation Processing Letters 6 (1977) 209{213.

[3] R. C. Chang and R. C. T. Lee, \On the average length of Delaunay triangulations." BIT 24 (1984)

269{213.

[4] P. L. Chew, \Constrained Delaunay triangulations." Proceedings of the Third Annual ACM Symposium on

Computational Geometry (1987) 215{222.

[5] Dehen, Flach, Sack, and Valiveti, \Analog Parallel Computational Geometry." Proceedings of the 5th

Canadian Conference on Computational Geometry (1993) 143{153.

[6] M. Dickerson, \Expected rank of the longest edge in the greedy triangulation." Proc. of the 4th Canadian

Conference on Computational Geometry (1992) 182{187.

[7] M. Dickerson and R. S. Drysdale, \Fixed-radius near neighbors search algorithms for points and segments."

Information Processing Letters 35 (1990) 269{273.

15



[8] M. Dickerson, R.L. Drysdale, and J-R Sack, \Simple Algorithms for enumerating interpoint distances and

�nding k nearest neighbors." International Journal of Computational Geometry and Applications 3 (1992)

221{239.

[9] R. D. D�uppe and H. J. Gottschalk, \Automatische Interpolation von Isolinien bei willk�uerlich verteilten

St�utzpunkten." Allgemeine Vermessungsnachrichten 77 (1970) 423{426.

[10] P. Gilbert, \New results in planar triangulations." MS Thesis, University of Illinois, Urbana, IL, 1979.

[11] S. Goldman, \A Space E�cient Greedy Triangulation Algorithm." Information Processing Letters 31

(1989) 191{196.

[12] L. Heath and S. Pemmaraju, \New results for the minimum weight triangulation problem." Virginia

Polytechnic Institute and State University, Department of Computer Science, TR 92-30 (1992). To appear

in Algorithmica.

[13] R. Jarvis, \On the identi�cation of the convex hull of a �nite set of points in the plane." Information

Processing Letters 2 (1973) 18{21.

[14] D. Kirkpatrick, \A note on Delaunay and optimal triangulations." Information Processing Letters 10

(1980) 127{128.

[15] G. Klincsek, \Minimal triangulations of polygonal domains." Ann. Discrete Math. 9 121{123.

[16] D. T. Lee and A. K. Lin, \Generalized Delaunay triangulations for planar graphs." Discrete Comput.

Geom. 1 (1986) 201{217.

[17] H. P. Lenhof, M. Smid, \Enumerating the k-closest pairs optimally." Proceedings of the 33rd FOCS ,

(1992) 380{386.

[18] C. Levcopoulos, \An 
(
p
n) Lower Bound for the Nonoptimality of the Greedy Triangulation." Informa-

tion Processing Letters 25 (1987) 247{251.

[19] C. Levcopoulos and A. Lingas, \On Approximating Behavior of the Greedy Triangulation for Convex

Polygons." Algorithmica 2 (1987) 175{193.

[20] C. Levcopoulos and A. Lingas, \Fast Algorithms for Greedy Triangulation." BIT 32 (1992) 280{296.

[21] C. Levcopoulos and A. Lingas, \Greedy Triangulation Approximates the MinimumWeight Triangulation

and Can be Computed in Linear Time in the Average Case." Tech. Report LU-CS-TR:92-105, Dept. of

Computer Science, Lund University, 1992. A preliminary version of this report appeared in Proc. ICCI

'91, LCNS 497.

[22] A. Lingas, \The greedy and Delaunay triangulations are not bad in the average case." Information

Processing Letters 22 (1986) 25{31.

[23] A. Lingas, \On Approximating Behavior and Implementation of the Greedy Triangulation for Convex

Planar Point Sets." Proceedings of the Second Annual ACM Symposium on Computational Geometry (1986)

72{79.

[24] A. Lingas, \A new heuristic for the minimum weight triangulation." SIAM Journal of Algebraic and

Discrete Methods 8 (1987) 646{658.

[25] A. Lingas, \Greedy triangulation can be e�ciently implemented in the average case." Proceedings of

Graph-Theoretic Concepts in Computer Science (1988) 253{261.

[26] E. Lloyd, \On triangulations of a set of points in the plane." Proceedings of the 18th FOCS (1977)

228{240.

[27] G. Manacher and A. Zobrist, \Neither the greedy nor the Delaunay triangulation of the planar set

approximates the optimal triangulation." IPL 9 (1979) 31{34.

16



[28] G. Manacher and A. Zobrist, \Probabilistic methods with heaps for fast-average-case greedy algorithms."

Advances in Computing Research vol. 1 (1983) 261{278.

[29] D. A. Plaisted and J. Hong, \A heuristic triangulation algorithm." J. Algorithms 8 (1987) 405{437.

[30] F. Preparata and M. Shamos, \Computational Geometry: an introduction." Springer-Verlag, 1985.

[31] A. R�enyi and R. Sulanke, \�Uber die konvexe H�ulle von n zuf�allig gew�ahlten Punkten, I." Z. Wahrsch

Verw Gebiete 2 (1963) 75{84.

[32] J.S. Salowe, \Enumerating distances in space." Internat. J. Comput. Geometry Appl. 2 (1992) 49{59

[33] C. A. Wang, \E�ciently updating the constrained Delaunay triangulations." BIT 33 (1993) 238{252.

[34] Y.F. Wang and J.K. Aggarwal, \Surface reconstruction and representation of 3-D scenes." Pattern Recog-

nition 19 (1986) 197{207.

[35] C. A. Wang and L. Schubert, \An optimal algorithm for constructing the Delaunay triangulation of a set

of line segment." Proceedings of the Third Annual ACM Symposium on Computational Geometry (1987)

223{232.

[36] P. Yoeli, \Compilation of data for computer-assisted relief cartography." In Display and Analysis of Spatial

Data J.C.Davis and M.J. McCullagh, editors, John Wiley & Sons, NY (1975).

17


