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Abstract. A data set on categories of congenital heart malformations for sibling pairs
of Fraser and Hunter (1975) is analyzed exactly for quasi-independence with Monte Carlo
methods. Exact p-values are computed for a test of parameter significance and a test of
goodness-of-fit which contradict the model of quasi-independence and confirm an earlier
analysis of MacGibbon (1983).

Key words. exact conditional test, exponential family, Monte Carlo, quasi-independence,
structural zeros



1. Introduction.

Exact methods for categorical data have recently been the subject of renewed statis-
tical interest because contingency tables are arising in application areas such as genetics
which have integer entries of counts small enough in some cells to cause doubt about the va-
lidity of multivariate normal approximations. With some entries near zero, there is concern
about the validity of normal approximations whose accuracy gets worse for multinomial
probabilities near the boundary of the probability simplex. This is the same phenomenon
as the well-known fact that the normal approximation to the binomial is worse (for fixed
sample size n) when the success probability parameter p is near 0 or ¢ = 1 — p is near 0.
On the other hand, the tables in these applications have entries large enough in other cells
to make enumeration difficult.

In this paper we analyze exactly such a data set of Fraser and Hunter (1975). The re-
sults confirm earlier conclusions of Fraser and Hunter, and MacGibbon (1983). The exam-
ple is of interest for two reasons. First, the conclusions should be of interest to researchers
in biology since they confirm the original discovery of Fraser and Hunter concerning the
coincidence of Tetralogy of Fallot (ToF) and Pulmonary Stenosis (PS). Whereas p-values
for exact tests can be larger than approximate p-values because of the discrete data, the
significance in this case is strongly confirmed. Second, the example illustrates a slight
extension to nontriangular tables of an exact simulation method for the hypergeometric
distribution on triangular tables (with fixed row and column sums) which should be of
interest to statisticians.

Exact inference is the enterprise of computing p-values exactly and does not use asymp-
totic probability approximations for the distribution of a test statistic. Typically it uses
distributions conditional on a sufficient statistic so the result is uniform over all distri-
butions in the null family. The survey papers of Agresti (1992, 1999) and the paper of
Diaconis and Sturmfels (1998) give many references to recent applications and methods of
exact conditional tests.

The computations are of probabilities of events in nonnegative integer lattice points
(level sets for sufficient statistics) with respect to a multivariate hypergeometric distri-
bution. Exact computational methods fall into two groups: complete enumeration and
Monte Carlo methods. Complete enumeration is represented by work of Mehta and Patel
(1983) and is incorporated into the program StatXact. Related but different is the use of
multivariate generating functions of Dinwoodie (1998). These can be more efficient than

complete enumeration but can also be memory intensive because calculations are done
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symbolically using commutative algebra with rational coefficients and without round-off
simplifications.

The Monte Carlo methods are typically easier to program and are less memory inten-
sive. These can be of various types, such as Markov Chains, rejection methods, and others.
Markov chains and rejection methods must be used with great care because of convergence
and efficiency problems. The Monte Carlo method we use is one that is perfect in the
sense that it produces iid tables with the right hypergeometric distribution, and would be
classified as "other” (although it can be viewed as some kind of Markov chain if necessary).
So the results are quite reliable (see Table 4 for convergence diagnostics). The paper of
Agresti (1992) in describing existing software for exact tests does not say that the Monte
Carlo procedure that we use is currently implemented in commercial software, although it
has been known for some time and it is very practical. More about this will be said in §3.

Our problem in more detail involves triangular tables with structural zeros along
the diagonal and fitting parametric models to such tables, such as the model of quasi-
independence first described by Goodman (1968). We are also interested in the goodness-
of-fit of more complex parametric models for such tables. Such models are usually analysed
using normal approximations (see Bishop, Fienberg and Holland (1977)), which may not
be appropriate for sparse high-dimensional data.

Previous work on triangular tables appears in McDonald and Smith (1995). The
authors simulate triangular tables with fixed row and column sums using successive con-
ditional one-dimensional hypergeometric distributions to complete the table. This leads
to an exact Monte Carlo conditional test for quasi-independence. Their method is not
exactly the same as the one we use described in §3 but it is similar in spirit and effect. The
simulation method as we describe it goes back to Karl Pearson (see Stigler (1992)) and
is described clearly in Diaconis, Graham and Holmes (1999). One feature of the method
as described here in §3 is that it can be easily modified for testing goodness-of-fit for an
enhanced parametric model that requires simulation on a table that is not even triangular.
Finally, a simple symmetric Markov chain can be constructed on these tables, but conver-
gence is relatively slow. The only reason to use a Markov chain would be to obtain the
uniform distribution.

Our main interest here is to apply these methods to the following problem from
human genetics. Fraser and Hunter (1975) published the following table of pairs of siblings
with different types of congenital heart malformations. Only pairs exhibiting different
malformations were included as it was easier to collect such data (since it is well known
that the same congenital heart malformation often occurs in different siblings). An attempt
to provide evidence of non-random association of different defects within families was made
by calculating the rank correlation and then doing multiple chi-square tests. Of particular
interest was to know whether the malformations ToF and PS were related.



Table 1. Distribution of pairs of siblings with unlike cardiac malformations-major lesion
approach from Fraser and Hunter (1975)

ToF VSD PS TGV PDA AS ASD Tru TA CoA Dex Ptr A —V Total
ToF — 13 19 10 4 1 1 0 1 1 2 52
VSD - 3 5 3 24
PS - 2 0
TGV — 4
PDA —
AS
ASD
Tru —
TA —
CoA
Dex
Ptr
A-V
Total 0 13 22 17 11 8 12 6 6 b5 5 4
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2. Fitted Models.

We consider two parametric models for multinomial probabilities for the triangular
Table 1 with vanishing diagonal entries. The first of these is the quasi-independence model,
described in Goodman (1968) and Bishop, Fienberg and Holland (1977). This model
has a 22-dimensional parameter space that can be described with positive parameters

ai,...,Q12,82,...,613 and
Pij =aif;, 1<i<ji<13

>, afi=1 (2.1)

1<i<j<13
pr=1

This can be put in the form of an exponential family with 22 free parameters
92 ..... 912,’)’2 - 1,’)’3, «.eyY130

e ,
Prj= = 1<j<13
77
efit; ‘ (2'2)
Pij = , 1<1<3<13
20,~

To go from (2.2) back to (2.1), let a; = 1/2,, a; = eei/zf)ﬁ (1<i<12),8, = s =
g = eV (2< ) <13).



The enhanced model has an additional parameter 6 for box (1, 3), which in exponential
form has 23 free parameters:

1
P12 =
26,7,8
673+5
D13 = P
7’7,
o (2.3)
Dr5 = y 3 < .7 S 13
26,v,6
efit7; ' )
Dij = , 1<i1<jy3<13
26,v,6

where the normalizing constant zp ., s is the sum of the numerators over the (123) boxes.

The maximum likelihood estimates based on the table (1.1) are below. Each entry in
the 13 x 13 matrix is a triple of numbers, where the first is the data, the second is 111
times the fitted probabilities for quasi-independence (2.1), and the third is 111 times the
fitted probabilities for the enhanced model (2.3).



Table 2. Data and Fitted Expected Frequencies for Two Parametric Models

ToF VSD PS TGV PDA AS ASD Tru TA CoA Dex Ptr A—V Total
13 19 10 4 1 1 0 1 0 1 2 0

ToF - 130 136 88 44 27 31 14 1.2 11 1.1 09 04 52
13.0 19.0 6.9 35 21 25 1.1 1.1 09 0.9 0.7 04
3 5 3 3 6 1 0 0 2 1 0

VSD - 84 54 27 17 19 09 08 0.7 0.7 0.5 0.3 24
30 73 37 22 26 1.2 1.1 09 09 0.7 04
2 0 1 1 3 1 0 0 O 0

PS - 28 14 08 1.0 04 04 04 04 03 0.1 8
28 14 0.8 10 04 04 04 04 03 0.1
4 1 2 1 0 1 0 O 0

TGV - 24 15 1.7 0.8 0.7 06 0.6 0.5 0.2 9

24 15 1.7 0.8 0.7 06 06 05 0.2
2 0 1 2 0 0 O 1

PDA — 13 16 07 07 05 05 04 0.2 6
1.3 1.6 07 0.7 05 0.5 04 0.2
2 0 1 3 2 0 0

AS - 27 1.2 1.1 09 09 0.8 04 8
27 1.2 1.1 09 09 08 04
0 1 1 0 0 1

ASD - 07 06 05 05 04 0.2 3
0.7 06 05 0.5 0.4 0.2
0 0 0 1 0

Tru - 03 03 03 02 0.1 1
0.3 03 03 0.2 0.1
0 0 0 0

TA - 0.0 0.0 0.0 0.0 0

0.0 0.0 0.0 0.0
0 0 0
CoA — 0.0 0.0 0.0 0
0.0 0.0 0.0
0 0
Dex — 0.0 0.0 0
0.0 0.0
0
Ptr - 0.0 0
0.0
A-—V —
Total O 13 22 17 11 8 12 6 6 5 5 4 2 111



3. Computation and Analysis.

For computation under the hypergeometric distribution, an exact method of simula-
tion for triangular tables with fixed row and column sums goes back to Karl Pearson (see
Stigler (1992)) and is described clearly in Diaconis, Graham, and Holmes (1999). This can
be used for the exact (conditional) goodness-of-fit test for the model of quasi-independence.
However, for testing goodness-of-fit for the enhanced model, the sufficient statistics are the
row and column sums as well as the count in box (1, 3). Therefore, sampling must be done
with fixed row and column sums and fixed counts of 13,19,3 in boxes (1,2),(1,3), (2, 3)
respectively. This can be done by modifying the basic full triangular scheme: fill column
3 by drawing 17 balls of Types 1,2,3 from an urn of 52 — 32 = 20 Type 1, 24 — 3 = 21
of Type 2, and 8 of Type 3. Then remove this draw, and draw 11 for column 4 from the
remaining of Types 1, 2, 3, together with 9 of Type 4 (the row 4 total). These Monte
Carlo procedures are much more efficient than Markov chain methods, because they pro-
duce independent tables with exactly the right hypergeometric distribution each time. The
generating function methods of Dinwoodie (1998) are applicable to this problem, but are
much more demanding computationally than the Monte Carlo method.

For the model of quasi-independence with 22 free parameters, the value of the x?
goodness-of-fit statistic is 76.1. Using the asymptotic Xz((123) —1—22 =55 df) distribu-
tion, the asymptotic p-value for the goodness-of-fit test is approximately .031. The exact
conditional x? test computed with a Monte Carlo method yields a p-value of 0.006, based
on a sample of size 100, 000.

For the enhanced model of quasi-independence plus the 23rd parameter § for box
(1,3), the x* goodness-of-fit statistic is 65.9, which on the asymptotic scale of x2(54) gives
an asymptotic p-value of 0.13. The Monte Carlo exact method gives a p-value of .036.

To test the significance of the 23rd parameter 4 under a one-sided test

H, 0 - 6= 0

H,:6>0
the exact Monte Carlo simulation found a p-value of .003. This number is the conditional
probability of a count of 19 or more in box (1,3) with respect to the hypergeometric
distribution on triangular tables (with vanishing diagonal) with fixed row and column

sums equal to those of the observed data.

The following table of exact p-values summarizes the analysis.

Table 3. Exact conditional p-values

Test p — value
Quasi — independence fit 0.006
Enhanced Model fit (+4) .036
Hy: 6=0 .003



To explain in more detail the sampling for the enhanced model with &, consider the
underlying problem of sampling from the hypergeometric distribution from tables with
fixed row and column sums of the form:

nig N4 N5 Nig T1
n23 Tigga M5 MNge T2
N33 N34 N35 N3 T3
—  TN4q TN4g5 N4e T4
- — Ns5 TNse Ts
- - - MNes Te¢
C3 Cq Cs Cg n

Suppose there are r; balls of color Ry, 73 of color Rs, etc., and view the values C3,C4,...,Cq
as sample sizes. Sample c3 from the colors R;, Ry, R3, and remove the result. Then sample
¢4 from the remaining first 3 colors and also Ry, etc. This results in the factorization of
the hypergeometric as follows:
(nrs) () )

("'1 +7’2+7"3)

c3

(7’1—"13) (T2—n23) (rs—nzs) ( T4 )
14 24 734 N44

P(n) =

X
(7'1 +rao+rs +7‘4—C3)
C4
(T1—7L13—n14) (Tz—nzs—n24) (Ts—n33~n34) (7‘4—7144) ( rs5 )
X Nis Nn2s5 n3s5 g5 n55
(n +rotr3+ry +rs~63—04)
Cs
(7‘1 —n13—n14—n15) (Tz—nzs—n24—n25) (Ts—nss—n34—n35) (T4—"44—n45) (7‘5—7155) ( 6 )
% nie Na2e 36 46 N56 nee
(rl +re+rztrat+rs +Te—C3—C4~05)
Ce

which is the hypergeometric distribution in the variables n;;. This sampling scheme was
implemented on full-size tables (cs, ..., c12) using the sample command in the language R
for multivariate sampling without repetition to simulate tables.

To see convergence of the empirical fractions with a sample of 100,000, we plotted the
empirical fraction estimates of the p-value versus the trial number. Below is the graph for
the computation for testing § = 0.



Table 4. Diagnostic Ouput

Monte Carlo computation of p-value: Hy:8=0, H;: >0

0.006 0.008 0.010
|

Empirical Fraction

0.004

0.002
!

0.000
[

T T T T T
2e+05 4e+05 6e+05 8e+05 1e+06

Trial Number

4. Discussion and Conclusion.

We have employed Monte Carlo methods of exact inference to complete the statistical
analysis of a genetic study of sibling pair data that had been studied previously by Fraser
and Hunter (1975) and MacGibbon (1983). The data is in the form of a triangular table
with vanishing diagonal entries. Simulation required a slight extension of a known efficient
method for triangular tables. The exact analysis confirms and refines earlier conclusions.
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