]

L

Contour Tracing
by Piecewise Linear Approximations

DAviD P. DOBKIN
Siwvio V. F. LEVY
WILLIAM P. THURSTON!

Princeton University

ALLAN R. WILKS

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

July 22, 1988

Abstract. We present a method for tracing a curve that is represented as the contour
of a function in Buclidean space of any dimension. The method proceeds locally by
following the intersections of the contour with the facets of a triangulation of space.

The algorithm does not fail in the presence of high curvature of the contour; it
accumulates essentially no round-off error, and has a well.-defined integer test for
detecting a loop. In developing the algorithm we explore the nature of a particular

class of triangulations of Euclidean space, namely, those generated by refiections.

Keywords: contour tracing, simplicial continuation, Cozeter triangulations.

1. Problem

We consider the problem of tracing the contours of a map between Euclidean
spaces. If f: R® — R* (k < n) is, say, smooth, the implicit function theorem
[Hoffman 1975] (together with Sard’s theorem [Guillemin and Pollack 1974]) says
that, for most points y in the image of f, the contour C = f~(y) is a smooth
manifold of dimension n — k. If k = n, again for most points y in the image of f,
C is a collection of isolated points, and finding C is the same as finding the roots
of y = f(z); although the solution to this problem has a vast literature, it seems to
be of little help in solving the problem for k < n.

The problem of finding the contour C breaks into two parts: locating the various
components of C (that is, finding at least one point in each component), then
tracing around each component, using the fact that the components are connected.
Later we state more precisely our definition of what it means to trace C ; the general
idea is that we want to compute a collection of “representative” points in C. In
this paper we will focus on the tracing problem, although we discuss very briefly

!Research of the first three authors was supported in part by the National Science Foundation

1s correspondingly easier to implement. A fairly general implementation of it is the
subject of a paper currently under preparation.

Many interesting problems can be stated in the context of contour tracing. A few
of them, drawn from computer graphics, computational geometry, pure mathematics
and statistics, are discussed in the next section. These examples of applications are
not meant to be exhaustive, but rather to illustrate some directions in which the
general method can be applied. In section 3 we outline two possible approaches to
the tracing problem, and indicate why we chose one over the other.

Section 4 is devoted to an easily understood instance of the algorithm, and to set-
ting the stage for the more general case. In section 5 we generalize the triangulation,
and in section 6 we present further computational details, including a theoretical
analysis of the relative performance of the various triangulations. Section 7 con-
tains the full algorithm, adapted to degenerate cases. Finally, in section 8 we give
examples of the algorithm in action, while in section 9 we suggest several possible
extensions of the method.

2. Some applications

Ve begin by describing a broad range of sample problems to which contour tracing
has been applied.

Example 1: curve tracing

Many simple curves may be represented as the contour of some suitable function.
For example, let f : R? — R! be the function defined by f(z,y) = z? + y2. The
graph of f is a paraboloid and contours of f, for y positive, are circles centered at
the origin. The contour of f containing the starting point (r,0) is just the circle

flz,y) =72
Example 2: shadow computation

Let T, and I, be spheres with centers ¢; = (22,3?,2?) and c; = (29,39, 29),
and radii 7; and r;. Assume that a light source is located at (Iz,ly,lz) and that it

is known that ¥, casts a shadow on £;. We can study the outline of this shadow
by considering a contour of the function f : R® — R® with components f =

(f1, f2, f3, fs, fs), where
filziyi, 21,22, 92, 22) = (2 = 20)’ + (i —0))* + (2~ 2])?, fori=1,2,
is the square of the distance from the point p; = (z;,¥i, z:) to the center of sphere

~i3

f3(P1,p2) = (21 — 2))(z1 — Iz) + (11 — yN)(1 — ly) + (21 = 22) (=1 — Iz)

vanishes if and only if p; lies on the horizon of the first sphere (the vector from the
P1 to ¢; is perpendicular to the vector from p; to the light source); and

fa(p1-p2) = (1 = Iz)(y2 — ly) — (22 — Iz)(3n - ly),
fs(P1.P2) = (21 = lz)(22 — I2) — (22 — Iz)(=1 - I2)

3

display of torus knots. The first of these problems is discussed in section 8. For the
latter, other considerations are more significant than the contour tracing and the
methodology will be described elsewhere.

3. A Framework for the Algorithm

We now analyze the problem of contour tracing in more detail. Let f : U — R*~1
be a C?! function on an open, connected subset U of R"™, and assume that we are
given zo and yo such that yo = f(zo). The contour of f passing through z, is the
inverse image C = f~!(yp), or sometimes the connected component of it containing
Zo. Assuming for the moment that yo is a regular value of f, that is, df(z) is of rank
n — 1 whenever f(z) = yo, the implicit function theorem says that C is a disjoint
union of smooth curves in U, each homeomorphic to either the reals R or to the
circle S1.

Our problem is to find the connected component Cy of C that contains z9. More
specifically, we would like to generate a finite sequence of points in C by starting
at 7o, and stepping along the curve until we either come back to z, or we reach the
boundary of U. In the latter case, we start again at zo and trace in the opposite
direction until we again hit the boundary. These are the only possibilities.

The first decision to be made is, how big should the steps along the curve be? A
natural criterion for the step size is that every point of the curve should be within
¢ of one of the computed points, for some preassigned ¢ > 0. In addition, we might
like the computed points to be closer together when the curve is changing more
rapidly, in order that the details of the changes can be followed. In fact, we might
vary the step size at each step, according to some estimate of the local curvature of
Co at the current position. In what follows, we will not take this dynamic approach;
we will assume that points that are at most ¢ apart on the curve are sufficient. This
is certainly a reasonable assumption if Cq is being graphically presented as, say,
the linear spline connecting the computed points, and if € is taken to be equal to
the resolution of the plotting device; in this case the true picture of Cy would be
indistinguishable from the computed picture. We will talk a bit more about variable
step sizes in section 9.

The basic problem is then to find the next point z;4; € Cy, given the current
point z; € Co, and perhaps previous points. Two general approaches can be broadly
characterized as “infinitesimal” and “local” (but see [Geisow 1983] for a classification
of methods that is somewhat different from ours); grosso modo, we can say that the
local approach consists in tracing the exact contour of an approximation to f, while
the infinitesimal approach traces an approximate contour of the exact f (figure 1).

The infinitesimal approach is easiest to describe for n = 2 (figure 1(a)). Our
current position is z;. on the contour C = f~!(yy). To find z;4,, we use the
derivative of f at r; to determine the tangent line to the curve. We take a small
step away from z; along this line, to the point ;4= f'(z;), then do a one-dimensional
search in the direction orthogonal to the tangent, along the dotted line, to rediscover

o

in C (figure 2(c)). It may even happen that a component disappears entirely, when
the open set bounded by it does not enclose any points of the grid (figure 2(d)).

Figure 2

In each of these situations the detail ignored or misconstrued in passing to the
approximation is geometrically “negligible” (in the sense that it’s occurring in a
scale smaller than the chosen resolution), although, as we have seen, it may be of
topological significance. At any rate it is unreasonable to expect any algorithm
to yield the topology of f~1(yo) for all differentiable f, since this set can be an
arbitrary compact (that is, bounded and topologically closed) subset of R™.

The one situation when the difference between C and C can have large-scale
consequences is when one component of C splits into two or more components of
C, as in figure 2(c). This case is examined in more detail in figure 3, where we
show C for f(z,y) = zy and various positions of the triangulation. Cases (a) and
(b) present no difficulty because C still has just one component, but in (c) the
algorithm would only draw the piece of C containing the starting point, and thus
would give an unsatisfactory approximation for C.

If f is differentiable one way to deal with this problem is to incorporate in f
a bias toward zero: one replaces values of components of f at the vertices of the
triangulation by 0 whenever their absolute value is less than a constant €. As ¢
increases so does the connectivity of €, ensuring that C is entirely represented by
C: figure 3(d). On the other hand, if ¢ is too large too many simplices get “blacked
out”. The right value of ¢ is essentially proportional to the second derivative of f
and the square of the resolution (since the first derivative is relatively small at the
places where things go wrong), but it’s often easier to choose £ by trial and error.

Figure 3

Conventions

To simplify the notation we will, in sections 4 through 7, use f to denote the affine
(linear) approximation of some original, not necessarily differentiable, function from
a bounded domain of interest U C R™ into R®~!. Without loss of generality, we
assume that the contour that interests us is the inverse image f~1(0,...,0) of the
origin. We assume further that we know a point z¢ in this contour, and we denote
by C the connected component of the contour that contains zg. Our goal is to
describe the piecewise linear set C.

2P RS ., 31=(O,...,1,...,0)

for every permutation = = (i3, 45,..., in) of the integers {1, 2, ...,n}, the set of points
(z1,...,2") that satisfy the constraints

T < g2 < ... < gin
is an n-simplex, and that these n! simplices triangulate the unit hypercube. The
vertices of such a simplex are
S * L so=(0,...,0)
(1 in the #,-th position), s,
. s2=(0,...,1,...,1,...,0) (1in the i,-th and i,_;-th position)

— sp=(1,...,1);

notice that so and s, are shared by all simplices, and the edge they span is a main
diagonal of the unit hypercube.

We complete the triangulation of R" by translating the triangulation of the
unit hypercube to all other hypercubes. Each simplex in this triangulation can
be uniquely referenced by the lowest-coordinate corner of the hypercube it’s con-
tained in, together with a permutation of {1, ..., n}. There is, however, a simpler
way to reference each simplex, namely, by the coordinates of its center of mass
(which, when multiplied by n + 1, are integers). It is important to have a sim-
ple way to address simplices because, as we shall see later, we must keep track of
already-visited ones.

With these examples in mind, we now describe in detail a simple version of the
algorithm. Imagine that we have an arbitrary triangulation of R™. (There is no need
to compute the positions of all the simplices of this triangulation; all we will need is
a means of finding the simplices that abut a given simplex. Finding a triangulation
for which this is easy turns out to be an interesting problem in its own right, and we
take it up in the next section.) We will denote by C? the (non-empty) intersection
of the contour C with a simplex ¢ of this triangulation.

For this simple version we’ll want to avoid two types of situations. The first
occurs when C?, which normally is a line segment, has dimension greater than one.
The second is when C?, which normally goes in and out of & through the interior of
facets, happens to intersect also the interior of a face of dimension less than n — 1.
The first type of degeneracy implies the second; both are ruled out for the nonce.

As in the two-dimensional example above, we work by keeping track of three pieces
of information, which together constitute the current state (o, k,b) and reflect the
situation as we are passing into a new simplex: '

(1) the current simplez o with vertices sq,...,s, € R™;
(2) the index k of the current facet through which we'’re entering o (remember
that facets are indexed by the subscript of the opposite vertex); and

3) the barycentric coordinates by, = (b2 ,...,5")¢, of the current position.
y n in

9

o) o

Here the equality has at least one solution bin, so the dimension of its set of solutions
is n + 1 minus the rank of F,. (Thus the first type of degeneracy mentioned above
occurs when F, does not have full rank n.) The general solution of the equality can
be written bj, + tv, where v is a non-trivial solution of the homogeneous equation

(*) F,v=0.

Finding v is therefore just a standard linear algebra problem.

To ensure that a barycentric vector anchored at b;, and pointing in the direction
Vv points into o, we simply look at the k-th coordinate v* of v and multiply v by —1
if this coordinate is negative. We observe for later use that a vector anchored in o,
and in the direction v, points away from facet 7 if v* is positive, points towards facet?
i if v* is negative and is parallel to facet i if v' is zero. If v* were zero C would run |
along facet £ and would intersect a lower-dimensional face, so we would have the
second kind of degeneracy mentioned above. Furthermore, since facet k is shared
with the previous simplex (unless we're just starting the process), this would imply
that in that simplex there was a degeneracy too. '

It is now a simple matter to find the exiting facet in which bgy, lies. In general,
b, () lies on an extended facet of ¢ whenever it has at least one zero coordinate.
For ¢ slightly larger than 0, b, (t) lies in the interior of & (because v points into o),
so 7 is the smallest positive number ¢ for which one of the coordinates of b, () is
0. In symbols,

(%) r = min{~b, /v’ : v* # 0, =8}, /v* > 0}.

The index k' that achieves the minimum gives the exiting facet, that is, —bF Jv¥' =
7. (If the minimum were achieved for more than one k’ the contour would pass out
of o through one of its faces of dimension less that n — 1, and a degeneracy of the
second kind would occur.)

The simplex o' into which C now passes shares all but one of its vertices with
o, namely, sg-. Thus to find ¢’ we just need to compute the new si.. In the next
section we show how our triangulation of R" can be chosen in such a way that this
1s very easy to do.

5. Triangulations

So far we have identified two properties that we would like our triangulation to

have: (a) it should be easy to find the simplex that shares a facet with a given |

simplex; and (b) it should be possible to label the vertices of all the simplices at the
same time with indices 0,...,n, in such a way that each of the n + 1 vertices of an
n-simplex has a different label. Two more conditions are intuitively desirable: (c)
all simplices should have more or less the same size, and (d) their dimensions should
be roughly the same in all directions. The reasoning here is that, having normalized
the largest dimension of a simplex to the pixel size, say, we don’t want to cross too

11

-

i
i
j

looks like an equilateral triangle, and in fact that is precisely what it represents,
but only by accident: the correct way to read the diagram is by observing rhat it
stands for a simplex with three edges (nodes), each pair of which have a 60° angle
between them (one edge in the diagram).

A sample of each of the three two-dimensional Coxeter triangulations, P3, 33 and
V3 is given in figure 5.

Figure 5

Notice that there are four families that have representatives in all but a few low
dimensions, namely, P, @Qm, Rm and S,,. These are the natural candidates for an
algorithm that is meant to work in any dimension, although the remaining =ntries
in the list might be useful in their specific dimensions.

To wrap up the description of the iteration step of our algorithm, in seciion 4,
we needed to display a rule to compute the simplex that shares a given facet with
the current simplex. Here this boils down to finding the reflection of a vertex s; of
the simplex in the opposite facet. The reflection of a point p in a hyperplane H is
reached by going from p to its orthogonal projection my(p) on H, then once again as
far in the same direction: in symbols, 27 g(p) — p. Finding 7 (p) is straightforward
given the equation of H and the coordinates of p, but it turns out that we can avoid
all of that because of the geometry of the simplices. Our treatment loosely rollows
Coxeter’s [1973, p. 182-184].

Let w;(si) be the projection of s; in the hyperplane containing facet :. We first
write 7;(s;) in barycentric coordinates with respect to the vertices of facet i: =, (s;) =
Dt wlsj, with Yw! = 1. To figure out the w!, consider the plane containing
the edge that joins s; and s; and orthogonal to the opposite face ®y; j3, which it
meets at u. The intersection of the simplex with this plane is shown in figurz 6. In
this figure, w{ is, by definition, the ratio between the length of the segment um;(s;)
and the side us;. Now the length of ux;(s;) equals the length of side us; times the
cosine of the angle at u, which is just the dihedral angle §;; = 7/p;;; since the sides
of a triangle are inversely proportional to the corresponding altitudes, we can write
w] = cos B;;-(hi/hj), where h; and h; are the altitudes of the simplex corresponding
to vertices s; and s;.

Figure 6

n i
=0 hi
unit vector normal to facet : and pointing out. This equality can be veriiied by
considering its inner product with each vector s; — so: we have n; - (s; —sp) =0
unless : = 0 or 7, in which cases the inner product is hg or —h;, respectively. Since
the n vectors s; — so form a basis for R”, this implies the equality.

To calculate the altitudes h;, we first show that }_ = 0, where n; is the

. .) 12 . ;
We have just shown that the expression “Z?:o n,~.r‘“ vanishes when the z* are
inversely proportional to the altitudes h;. Now this expression is a quadratic form

13

with 0 and n at the two ends.) The vertices of a Py, are s; = (m — 1)((m(m -
1)) M2 (m=1)(m—=2))"12, .. (m=—i+1)(m-1i)"12,0,..., 0), where the first
1 coordinates are non-zero. (Here the nodes of the Coxeter diagram are numbered
in order around the circle, with 0 and n next to one another.) The reflection rules
for P, are extremely simple: to reflect vertex s; in the opposite facet,

(%) replace s; by s;-1 + si+1 — si,

where we agree to take the indices modulo m whenever we talk about P, simplices.
The next simplest rules occur for R,

251 — s if 1 =0,
(%) replace s; by ¢ si—; +si41—5; if0<i<n,
28p—1 — Sn fi=n.

Once we have expressed a particular set of reflection rules in the form 8 —
> ot w’ sj, we can apply them to an arbitrary simplex, having nothing to do with
the Coxeter triangulation. The rules will no longer describe reflections, but they will
generate a triangulation of R", because the rules are preserved by affine transfor-
mations and we can always find an affine transformation to transform the Coxeter
simplex into our newfangled simplex. Thus it is that, if we apply the P,, reflection
rules to an Rp, simplex, we get the example triangulation in section 4. Like P,
but unlike R, it has the same number of simplices incident at each vertex, as illus-
trated by figure 7 in the case m = 3: in (a), R3 with R; rules, and in (b), R; with
P; rules. (These two triangulations are referred to as K and H in the fixed-point
literature; see, for example, [Todd 1976].) Notice that, in general, triangulations
obtained in this way from arbitrary simplices are not monohedral, and so may be
inferior from the point of view of criterion (c) at beginning of this section; but such
1s not the case with the ones in figure 7.

Figure 7

6. Some Implementation Details

To complete the non-degenerate algorithm, we must choose a triangulation of
the appropriate dimension from figure 4, then find an appropriate instance of the
prototype simplex containing the given starting point. We also need a test to
determine when we have found the entire contour. We take up each of these points
m turn.

ular simplex of the same dimension. Table 2 shows this value up to dimension 8,
and again the pattern is already clear: the Q,,, Rn and S,, entries are virtually
indistinguishable from one another (asymptotically they are the same) and more
than 50% bigger than those for P,, (the asymptotic ratio is v/3).

2 | 1.00 1.21 1.37
3 | 1.05 1.39 1.61

4 | 112 150 1.56 1.61 1.81

5 | 118 170 171 176

6 | 125 1.86 1.85 1.90 2.00

7 | 131 201 198 203 232

8 | 137 214 210 215 272

Table 2. Normalized ratios of circumscribed to inscribed spheres

The third, and subtlest, measure of nonregularity is the condition number of
the covariance matrix of a random point, uniformly distributed inside the simplex.
(The condition number of a matrix (for the Euclidean norm) is the ratio between
its largest and smallest eigenvalues. The condition number for regular simplices is
always 1, so no normalization is necessary here.) The logs of these numbers are
given in Table 3, again up to dimension 8 only because the relative behavior after

that 1s the same:

2 | 0.00 2.20 3.18
3 | 1.39 3.53 4.29

4 | 1.92 322 450 4.09 5.70

5 | 277 464 527 503

6 | 324 53¢ 591 57 5.74

7 | 38 622 646 636 7.33

8 | 423 6.78 694 687 8.72

Table 3. Logs of the condition numbers of Coxeter simplices

All measures seem to indicate that P, has a somewhat better geometry for our
purposes than all other Coxeter triangulations. It also has the simplest reflection
rules. However, it has one slight disadvantage over Rn,, in that it requires messier
arithmetic to pass from real-world coordinates to simplex coordinates.

17

to the resolution, or perhaps half the resolution; the expected step size can be
determined as explained at the beginning of subsection 6.1.

Finally, we have to find an instance of the scaled simplex that contains the starting
point. This can be done in two ways, depending on the application. If only one
contour of the function is to be traced, we can translate our scaled prototype simplex
so that zo equals, say, the barycenter of its facet n. Then we initialize the state
accordingly (k = n, bjn = (1/n,...,1/n,0)! and o as appropriate). If, on the other
hand, we are computing several contours, we may desire them all to use the same
triangulation, rather than computing a separate translation of the triangulation for
each contour. In this case, we must fix one particular instance of our triangulation
and find, for each contour to be traced, the particular simplex that contains the
starting point. This can be a little tricky; a nice treatment of essentially the same
problem is given in [Conway and Sloane 1982]. Unless 7o happens to lie on a simplex
face already, we also have to find our first b;, and k; as the reader can easily verify,
this is accomplished by solving for v and 7 as in section 4 (formulas (%) and (%),
with b;, replaced by the barycentric coordinates of z in the latter), then adding
TV to x9.

6.3. Termination

Termination of the algorithm occurs in two cases: when the contour exits the
region U of interest, and when it loops. An out-of-bounds check is straightforward;
we stop, say, when one vertex of o falls outside the region of interest (f may not
be defined there anyway). Then we restart the algorithm from z¢ in the opposite
direction; having saved the initial state (o,k, bix) we just have to replace o by its
reflection in facet k.

There is a simple integer test for loops as well. In a basis given by n edges
3; — 5o of a fized simplex of the triangulation, the coordinates of the barycenter
of any simplex (minus 3;) are integral multiples of 1/m, so we can multiply these
coordinates by m to obtain an integer vector that uniquely identifies a simplex.
As a matter of fact, it can be advantageous to work with coordinates in the basis
{5: — 5o} for other computations as well, including applications of the reflection
rules; this avoids possible accumulation of roundoff errors.

Checking if we’re back to the start, then, is trivial: we just compare the integer
coordinates of the current simplex with those of the starting simplex, and stop if
they are equal. It may also be useful to keep a hash table of the simplices that
have been visited; for example, if we have a method of generating starting points on
different components of the same contour, we will probably want a test for whether
two starting points lie on the same component.

7. The Degenerate Case

Having completed the description of the non-degenerate algorithm, we now tackle
the degenerate case. Recall first that two sorts of degeneracies can occur: the first

19

7.1. Crossing a Simplex

Our task after entering a simplex ¢ through a face &4 is to find at least one not
previously visited link starting at the current point bi;, and contained in o. Let’s
first consider how to characterize segments in C, that start at the current point,
then how to characterize the condition that such a segment is a link.

A direction v € ker F,, anchored at the current point, points into o if and only
if v* > 0 for all i € A. In addition, not all of these vi can be zero, otherwise
v is parallel to ®4, which implies that C intersects 4 in more than one point.
Since we're only interested in v up to a factor, we can express this last condition
by saying that Zi& A v! = 1. Thus finding a segment in C, starting at the current
point reduces to finding v = (v°,...,v") € R**! such that

(1) Fov =0,

(i) Tieqv' =1, and

(iii) v* > 0 for i € A.

By definition, such a segment S, = { bin +tv:t €0, ‘r]} determines a link—an
edge of C7—if and only if it does not intersect any segment whose endpoints by, b,
are in C? but not in Sy. We claim that, if By = {i € A : v* = 0} is the set of 4
coordinates of v that vanish, this condition is equivalent to saying that there is no
solution v' # v to (i) and (ii) above with By, C B,.. Geometrically, B, is the label
of the smallest face of o that contains Sy, and the claim is that Sy determines a
link if and only if &5, N C? has dimension one.

For suppose there is such a v': then there are solutions to (i)~(iii) on both sides of
v,say vi = (1—¢)v+ev’ and v; = (1+¢)v—eVv’, for € > 0 sufficiently small. For ¢
sufficiently small, b; = b;, +tv; and by = b;, +tv, belong to C7?, and the segment
b, b; intersects Sy, so Sy is not a link. Conversely, assume there is a segment in C”
whose endpoints b; and b, do not lie in Sy; then v is a convex linear combination
of the directions v; and v, corresponding to b; and b, and since, by assumption,
v} > 0 and v > 0 for i € A, this implies By C By, and B, C B,,.

In order to identify directions v such that ® g, N C? has dimension one, we define
the following routine:

solve(F, A, B)

(try to find v = (v°,...,v™) € R"*! such that Fv =0, ¥, ,v' = 1, and
v' =0for: € B):
if (v exists) {
if (v is unique) {
if (v > 0forall i € A) return v;
else if (v < Oforalli € A) return —v;
else return FAIL;
}

else return oco:

}

Skipping supersets of B is also easy:

{b01"-7bi—21bi—17bi+1} ifb! < k’
nezt_non_superset(B) « ¢ {bo,...,bi—2,b;i—1 + 1} if by = k and 1 > 0,
FAIL if b =k and i = 0.

We also need to keep a list of values of B for which solve returned oo or a vector,
called the hit list, so we can skip all subsets of sets in this list. Whenever solve
returns oo or a vector for some B, we add B to the hit list. We also delete any
existing subsets of the newly added B from the hit list, as they are now redundant:
in future tests, any subset of such a subset will also be a subset of B.

When describing the non-degenerate algorithm, we mentioned that we might
want to keep a hash table of simplices already visited. Here such a table becomes a
necessity, in a slightly different form: we must store each pair (0, A), together with a
pointer to a structure B, 4) that contains the hit list and the value of B at the end
of the last call to find_link(o, A). This structure is read every time find_link(o, A) is
invoked—these invocations being non-consecutive, since we’re conducting a depth-
first search—and destroyed when find_link knows there are no more vectors to be
returned. (Actually, B(, 4) may not be created at all if we only have to call solve
once, with B = (J.) A pair (0, A) in the hash table is called dead if B(s,) no longer
exists; otherwise it is called alive.

find_link(o, A)
{
if (B(s,4) exists) /* we have seen these arguments before */
(get B and the hit list from By, 4));
else (set B to @ and the hit list to the empty list Y
while (B # FAIL) { / there are still faces to examine * /
if (B C B' for some B’ in the hit list) {
B « successor(B); [* skip this B */
continue; /+ go back to beginning of while loop */
}
v «— solve(F,A,B); /* look for solutions in &5 x/
if (v = FAIL) { /* no solution */

B — nezt_non_superset(B); [+ skip this B and all its supersets */
continue;

}
/* at least one solution */
(delete subsets of B from the hit list);
(add B to the hit list);
if (v=00) { /% too many solutions */
B « successor(B);
continue;

}

geometric sense, because this reflection is not always a simplex in the triangulation
(think of the 60°-vertices in figure 5(c)); if it is, it coincides with gqpp.

As seen from a point in @z, the set of directions that point into g4pp is opposite
the set of directions that point into o, which means that when the direction of C
changes little at ®z chances are good that C goes into Oopp- But this is by no
means always the case, because, in principle, f can take any value at the remaining
vertices of oopp. For a concrete example, consider f = (z2 + y2) — n? on R?, for n
an integer, and the R;3 triangulation whose vertices form the lattice Z2 C R2. The
lattice point (0,n) (together with (n,0), (0,—n) and (—n,0)) lies in C, and it is
easily seen that the two triangles which intersect C and have (0,n) as a vertex are
not opposite with respect to (0, n).

This situation tends to occur when, as in this example, the intersection C? is
very close to one of the facets of ¢. It also occurs more often as n or ¢ increases,
simply because the measure of the set of directions that point into o4pp from a point
in a codimension-q face decreases as a fraction of the measure of the total set of
directions.

Our problem, then, is the following: as we’re exiting a simplex ¢ through a face
of codimension > 1, we want to find o,pp quickly, and, if it turns out that C%rr is
empty, we want to examine as few as possible of the other simplices containing the
face before we find one where the contour continues.

To do this we will again consider Coxeter triangulations. Readers who skipped
the discussion in section 5 are encouraged to go back and read it now, or they can
skip this one too, going down to the paragraph containing formula (x).

Imagine applying to o all the symmetries of the triangulation that leave the face
® 7 fixed. These symmetries evidently form a group G, which is finite because its
elements are in one-to-one correspondence with the simplices in the star of &.
Furthermore, G is generated by reflections in the g facets of ¢ that contain &.
The identity 1 of G represents o, and some element # 1 of G of order two, which
we call —1, represents oopp.

One extreme case of this procedure occurs when ¢ = 1, and then the group
reduces to {1, —1}. The other extreme is ¢ = n, that is, &z is a vertex: then G can
be seen as a group acting by reflections on an (n — 1)-dimensional sphere around
@z, and determining there a spherical triangulation. Spherical reflection groups
and spherical triangulations can be assigned Coxeter diagrams, following the same
conventions as their Euclidean counterparts. By the very nature of this construction,
the Coxeter diagram for the group that leaves fixed a vertex s; = Qo.,....i-1,i+1,...,n}
of o can be obtained by removing from the Coxeter diagram of ¢ the node that
represents facet z, plus any edges that end at that node. Observe that this can
vield a disconnected diagram; in this case the face group G is a direct product
of smaller groups corresponding to the pieces of the diagram, because the absence
of an edge between two nodes means that the angle between the respective facets
is 7/2. so reflections in these two facets commute. A list of connected spherical
Coxeter diagrams can be found on page 297 of [Coxeter 1973].

25

(But first, a word of caution. If we insist on tracking all of the 1-skeleton of C,
we do have to examine the star of §z exhaustively—even if C intersects oopp. This
is because C can actually intersect any number of simplices in the star, and there
is no way to tell by looking at some of them what C will do in the others: for
example, think of f defined in one simplex ¢ in such a way that C? is a vertex plus
an interior line segment, then extend f to the star of this vertex by applying to o
the group of symmetries that fix the vertex.

Thus, in addition to keeping a list of active pairs (o, A), one could keep a list of
active node faces: all exiting faces of codimension ¢ > 1 whose stars have not been
completely examined yet. One could define a procedure find_simplez (®), similar to
find_link, that would go through all the n-simplices in the star of such a face @,
in some order, and return all those that intersect C, one at a time. Obviously, it
would be advantageous to have things organized in such a way that, given a current
node face @, all pairs (0, A) such that & = &4 in simplex ¢ are easily accessible: by
consulting the hit lists of such pairs one could avoid calling solve on faces that had
been examined previously. Better yet would be to merge find_simplez and find_link
into one procedure that examines all the simplices, of any dimension, that have &
as a face.)

Here’s the alternative method. The corona of a simplex @ in a triangulation is
the union of all simplices that are faces of simplices in the star of ®, but do not
have @ as a face: in some sense, the simplices “opposite” ®. (The word “link” is
sometimes used for this concept, but here it would be terribly confusing.) Thus, if
® contains a node of C, the links of C starting at this node end at points on the
corona of ®. In particular, the point b;, where we got into the current simplex o
and from which we drew a link to the exiting face ®z lies on the corona of that
face. Since ®z is where we got into trouble, we will try to skirt it altogether by
navigating on its corona.

To do this, we relax momentarily the condition that the last component of f
vanishes, and follow the mini-contour defined by the first n — 2 components of f
on the corona of @z, starting at bj,. If all goes well, somewhere along this mini-
contour we will find another zero for the last component of f. This is a point where
C exits the star of &z, and we can resume our previous contour tracing, leaving
®z behind. Conceptually, then, we're reducing the dimension of the problem, by
solving for the contour of a function having n — 2 components and defined on an
(n — 1)-dimensional space, the corona of .

This may sound complicated, but algorithmically it is not, because we can use the
whole machinery developed so far with very little change. First observe that a point
in the star of ®z is on the corona if and only if its k-th barycentric coordinate is
zero, for some k ¢ Z. Thus tracing the contour of the first n — 2 components of f on
the corona of @z is more or less like tracing the contour of f(;) = (f!,..., f*~2, bF)
in R?. where f1,....f"=2? are the components of f and b* is the function that

gives the k-th barycentric coordinate of a point with respect to the current simplex.
However. k may change during this process.

27

PO

8. Examples

We give two sets of examples of the algorithm in action, in dimensions 2 and 4.
The first illustrates its behavior in the presence of high curvature of the contour,
and the second in the tracing of contours of non-regular values. In each case the R
triangulation was used with the P reflection rules, as outlined in section 5.

Consider the complex function g. : C — C defined by g.(z) = z2 + ¢, where ¢
is a fixed complex number. Fix a positive integer k > 0 and define f : C —» R
by f(z) = |q¥(z)|, where ¢l is the r-th iterate of g, that is, ql(z) = g¢.(z) and
qrt1(2) = qe(ql(2)) for r > 1. If we now consider f as a function from R? into R,
it becomes a candidate for the contour tracing procedure. For the two values of ¢
used in the examples below, any sufficiently large real number is a regular value of
f. In addition, the corresponding contour is a single closed curve.

This example is interesting because if we compute a sequence of contours for a
fixed value of f, for increasing values of k, they will converge to the so-called Julia
set of ¢, [Blanchard 1984], which is a fractal, or self-similar. Thus, as k increases,
the curvature of the contour increases without bound, and the contour would be
very difficult to trace with an infinitesimal method. This behavior is not surprising
since f is the absolute value of a polynomial of degree 2%. Self-similarity means we
can monitor the interaction of contour and triangulation at various relative scales.

Figure 8 shows f~1(9) for k = 15 and for two values of ¢. Notice that in Figure
8(a) the contour comes very close to itself in many places. At corresponding places
on smaller branches the true contour also looks like two strands very close to one
another, but the approximate contour unites the two.

Figure 8

In our second set of examples, we are interested in values of ¢ and z for which
z is a fixed point of g¥, that is, ¢¥(z) = z, and for which the derivative of gk
evaluated at z has absolute value 1. So we define ¢ : C x C — C x R to be
g9(c,2) = (g5(2) — z,)(g¥)'(2)]); thinking of g as a function from R* into R3 our
desired points now form the contour g=%(0,0,1). Unless k = 1, the value (0,0,1) is
not regular.

The interest in the contours g=1(0,0, 1) lies in that their union for all k > 1 is
related to the Mandelbrot set M [Blanchard 1984]; more exactly, the projection of
this union onto the c-coordinate plane is the boundary of the interior of M. This,
admittedly, is not a good method to draw M, because 971(0,0,1) is not connected
for £ > 2, so in addition to tracing the contours we must worry about starting
points. Still, it is instructive to watch the algorithm drawing the largest component
of g=1(0,0,1), which contains the point g(%,O,%,O) = (0,0,1) for all k: see figure
9, where the projections of this largest component onto each of the two coordinate
planes are shown side by side for several choices of k.

For example, the contour tracer begins at (3,0) in Figure 9(c) and at (3,0) in
Figure 9(d). As it sweeps out the top half of the cardioid in (c), it traverses the top

29

thickness: greater thickness means more lattice points would be projected, yielding
a denser triangulation. The thickness would be controlled by the desired resolution.
The basic drawback with this approach is that the computations involved in passing
from one simplex to the next are a good deal trickier.

Finally, there is the matter of finding starting points. There is much literature
on this subject (see, for example, [Ostrowski 1966], [Ortega and Rheinboldt 1970]
and references therein), and here we limit ourselves to briefly describing a simple
method that blends well with the rest of the algorithm; it does not intend to be
optimally efficient. The idea is to restrict the search space first to one dimension,
until we find a zero of some component of f; then to two dimensions, where we
trace the contour of this component until finding a zero of another one; and so on
until we find a point where all the components of f vanish. Notice that this is very
similar to what we did in 6.2, where we traced the contour of some components of
f on a subset of R™ of appropriate dimension.

10. Bibliography

E. L. Allgower and K. Georg, “Simplicial and continuation methods for approximat-
ing fixed points and solutions to systems of equations,” SIAM Review 22 (1980),
28-85.

E. L. Allgower and P. H. Schmidt, “An algorithm for piecewise linear approxima-
tion of an implicitly defined manifold,” SIAM Journal of Numerical Analysis 22
(1985), 322-346.

D. S. Arnon, “Topologically reliable display of algebraic curves,” ACM SIGGRAPH
Computer Graphics 17 (1983), 219-227.

P. Blanchard, “Complex analytic dynamics on the Riemann sphere,” Bulletin of the
American Mathematical Society 11 (1984), 85-141.

J. H. Conway and N. J. A. Sloane, “Fast quantizing and decoding algorithms for lat-

tice quantizers and codes,” IEEE Transactions on Information Theory 28 (1982),
227-232.

H. S. M. Coxeter, “Discrete groups generated by reflections,” Annals of Mathematics
6 (1934), 13-29.

H. S. M. Coxeter, Regular Polytopes, third edition, Dover Publicatioﬁs, New York,
1973.

J. J. Dongarra, J. R. Bunch, C. B. Moler, G. W. Stewart, LINPACK Users’ Guide,
SIAM, Philadelphia. 1979.

M. Duneau and A. Katz, “Quasiperiodic patterns and icosahedral symmetry,” J.
Physique 47 (1986). 181-196.

J. D. Foley and A. van Dam, Fundamentals of Interactive Computer Graphics,
Addison-Wesley, Reading, Mass., 1982.

A. Geisow, “Surface Interrogations,” Ph.D. Thesis. University of East Anglia.

31

CAPTIONS

\

Figure 1

Two approaches to the problem of tracing contours. In (a) derivative information
is used to take a step, while in (b) local values of the function are used to guide the
tracing.

Figure 2

Several examples of bad approximations. For each picture, C is on the left and €
on the right.

Figure 3

In (a), (b) and (c), we show the interaction of the triangulation with the contour of
zy = O for three different relative positions. In (d) we show how introducing a bias

toward 0 can repair the disconnectedness in (c): each vertex with a value less than

3 or less (for a triangle size of 1) is declared to lie on the contour.

Figure 4

Coxeter diagrams for all simplices in all dimensions that triangulate by reflection.

Figure 5

Portions of the three possible triangulations by reflection of R2.

Figure 6

Finding the barycentric coordinate of the projection of a vertex onto the opposite
face.

Figure 7

Two triangulations using Rj3; (a) shows triangulation by reflection and (b) just
replicates the squares. which is equivalent to using Pj; reflection rules on an R;
triangle.

Figure 8

Two contours that approximate Julia sets. The parameter values are approximately
(a) ¢ = —0.156546 + 1.03226: and (b) ¢ = —0.122561 + 0.744862:. The boxes are 3
units wide in each direction. The Rj3 triangulation was used, with step size (short
sides of each triangle) equal to .0002.

33

Figure 1

f"(yo

(a)
+
F T (y,)
xn
+:f> Yo
- f< yO

(b)

)

!

(p)

¢ oanbryg

N NNN NN

JANWANWANVANWANANAN

*L @anbtyg

Figure 9.

(b)

(d)

