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Abstract. The compiexity of linear programming and other problems in the geometry of d-
dimensions is studied. A notion of LP-completeness is introduced, and a set of problems is shown to
be (polynomially) equivalent to linear programming. Many of these problems involve computation
of subsets of convex hulls of polytopes, and require O(n log n) operations for d = 2. Known results
are surveyed in order to give an interesting characterization for the complexity of linear program-
ming and a transformation is given to produce NP-complete versions of LP-complete problems.

1. Introduction

The goal of computational geometry is to determine the complexity of problems of
a geometric nature. Many previous efforts in this direction have concentrated on
finding fast algorithms for geometric operations in 2 and 3 dimensions and have
resulted in large families of algorithms for a variety of such problems
[5,12,15,31, 34,35,36]. Unfortunately, research into extensions of such
algorithms into higher dimensions has generally met with varying degrees of success.
Problems that involve pairs of points or points and lines (for example finding the
closest pair of points [34], or testing which of a set of lines a point lies on [5]) can still
be done efficiently in higher dimensions. Problems that actually work with multi-
dimensional objects, however, seem to require time exponential in the dimension.
Moreover, some of the major successes in this area have involved demonstrating
nontrivial lower bounds on these multidimensional operations [6].

In this paper we study the complexity of some of these multidimensional problems.
We are particularly interested in problems which are known to be easily solvable in
the plane but which seem quite difficult in the worst case in higher dimensions. The
classic example of such a problem is linear programming. This problem and the
others we consider are all characterized by the fact that they each require a partial
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computation of the convex hull of a set of n points in d dimensions. While it is known
that such a hull in two or three dimensions can be computed in O(n log n) operations
[31], it is also known that a convex hull of n points in d dimensions can have O(n*/?)
facets and that every point on such a hull can be involved in O(n®/?"") facets. Since
the techniques used in the plane require constructing the entire convex hull, they are
not practical in higher dimensions.

These problems are interesting, however, because they do not actually require the
whole convex hull, but rather only a small part of its structure. For example, one
problem involves testing if a single point or a set of points lies.on a convex hull. The
complexity of such problems is not known. There is no nontrivial lower bound based
on the size of the output since only a single bit of information and not the entire
convex hull is produced. Moreover, while these problems have each been widely
studied, no known polynomial algorithms exist.

We use two major tools in our study of the complexity of these problems. The first
is the notion of polynomial reducibility as considered by Cook and Karp [18]. In
particular, we show that a variety of naturally arising multidimensional geometric
problems are polynomial equivalent to the problem of linear programming. For
many of these problems it is known that a solution could be found using linear
programming techniques. Our results strengthen this relationship by showing that
the problems are actually (polynomial) equivalent to linear programming. This is
surprising in the light of recent work in computational geometry where some of these
problems are conjectured to be of polynomial complexity {35].

The second tool of our study is a combination of intuitions into the complexity of
various problems. This includes the common intuition that linear programming is a
hard (non-polynomial) problem and the belief that NP and co-NP are not equal.
These, combined with a result of Ladner and Karp [26] and the notion of polynomial
reducibility allows us to infer that of the following three possibilities for the
complexity of linear programming; only the third is likely:

(1) linear programming is NP-complete and NP = co-NP,

(2) linear programming is solvable in polynomial time,

(3) linear programming is not in P and is not NP-complete.

Such a result is quite interesting since it suggests that there is a naturally arising class
of problems that are neither polynomial solvable nor NP-complete.

2. Definitions

To begin, we set forth the notions of reducibility which are used throughout this
paper. Problems under consideration are phrased either as language recognition
problems where we are interested in determining if a given input is a member of the
set of acceptable inputs, or as actual problems where we want to produce an answer.
In all cases the length of the desired answer is short enough to make lower bound
arguments based on output length meaningless. Our basic notions of reducibility and
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equivalence are those of Karp (1-1 reducibility) [18] or Ladner (many—one reduci-
bility) [26] and are defined for recognition problems as

Definition 1. Problem A is said to be (polynomial) reducible to problem B, denoted
A o B, if and only if there exists a function f, computable in deterministic polynomial
time, such that x € A if and only if f(x)€ B.

Definition 2. Problems A and B are said to be (polynomial) equivalent, denoted
A =B, if and only if both A B and B A.

In the case of problems where an answer is required, we extend these definitions to
allow A to be reducible to B if and only if an algorithm for solving B yeilds an
algorithm for solving A after polynomial transformation.

We let P denote the class of problems that are solvable in polynomial time on a
deterministic multitape Turing machine and let NP denote the class of problems that
can be solved in polynomial time on a nondeterministic multitape Turing machine. A
problem is called NP-complete if and only if it is in NP and every problem in NP is
reducible to it. A problem is called P-hard if and only if it is in NP, notin P, and is not
NP-complete. Finally a problem is said to be LP-complete if and only if it is
polynomial equivalent to the problem of Linear Programming (LP).

As miost of the problems we consider here have a geometric flavor, we introduce
the necéssary geometric concepts before proceeding. E? denotes d-dimensional
Euclidean space and a point P in E* is represented by a d-vector (py, . .., pa). The
function A.YM& x E* > E is the usual dot product, i.e., (P, Q) =Y, piq An affine
sum of a set of points py, . . ., p is any weighted sum ¥, x:P; such that Yiixi=1.
A convex sum of aset of points is an affine sum such that each x; = 0. An m-flat in E4,
m < d, is an m-dimensional surface. A 0-flat is a point; a 1-flat is a line; a 2-flatis a
plane. A (d — 1)-flat is called a hyperplane and can be written as {xeE|(a,x)=5)}
for some d-vector a and some scalar b. A (closed) halfspace is the set of points on or
on one side of a hyperplane. It can be written as {X € E’ [{a,X)=b} oras {Xe
E“|(a, X) < b}. The corresponding hyperplane, {X cE%|(a, X) = b}, is called the
determining hyperplane of the halfspace. A regionin E“is called convex if and only if
for every pair of points in the region, the line segment connecting them lies
completely inside the region. In particular, halfspaces and all flats are convex regions,
as is the intersection of any number of convex regions. Given a set of points, their
convex hull is the smallest convex set containing these points. Convex regions in E‘
determined by the intersection of a finite number of halfspaces are called polyhedra.
A bounded polyhedron is called a polytope. A hyperplane is a supporting hyperplane
of a polyhedron if and only if it has a non-empty intersection with the polyhedron and
the polyhedron lies totally in one of the two halfspaces determined by the hyper-
plane. The intersection of a supportmg hyperplane with the polyhedron is called a
face of the polyhedron. An m-face, m < d, is a face that has dimension m, that is, the
subspace that can be written as an affine sum of points from the face has dimension m.
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A (-face is called a vertex and a (d-1)-face is called a facet. For further details the
reader is referred to [13, 14].

3. Forms of linear programming

The most prominent example of the class of problems we want to consider is that of
_linear programming. This problem has been the subject of a vast body of literature
which has dealt with various linear programming problems, solutions and appli-
cations. In this section we consider how this literature directly relates linear
programming to the multidimensional geometric problems we are interested in.
The literature on linear programming includes several (polynomial) equivalent
forms of the problem. In this section we define those that are required for our
reducibilities. There are numerous proofs of the equivalence of these problem
statements and we shall not reproduce them here. The basic problem of linear
programming is:

Linear programming
Given: An integer n X d matrix A, integer n-vector b, integer d-vector c.
Find: A rational d-vector x such that Ax <b and ¢'x is maximized.

Further assumptions can be added to this statement of the problem. For example,
one can assume that elements of A, b and c are rational or that b is positive or that c'x
is bounded [4]. We summarize these assumptions into two modified versions of linear
programming that are the focus of our attention in what follows. These statements
are:

Linear inequalities
Given: An integer n x d matrix A, integer n-vector b.
Determine: If there is a rational d-vector x such that Ax <b.

Relevancy
Given: A set of constraints (ag, x) < by, . . ., (@n, x) < bp.
Determine: If satisfying the last n constraints is equivalent to satisfying the entire set.

In Section 4 we show that each of these problems is polynomial equivalent to linear
programming as is the following problem which is the complement of linear
programming.

Linear programming complement
Given: An integer n X d matrix A, integer n-vector b.
Show: That the system Ax <b has no rational solution.

It is this result more than any other that shows the difference between problems
involving linear programming and NP-complete problems such as integer pro-
gramming. Since we can show that linear programming and its complement are
polynomially equivalent problems, we know that they belong to the same complexity
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classes. A long standing conjecture in theoretical computer science, on the other
hand, suggests that the same is not true of NP-complete problems. This fact has been
noted by Ladner and Karp {26].

It has long been known that linear programming problems can be viewed as
problems in the geometry of d-dimensional Euclidean space, E°. This fact has beer
the basis of much of the study of linear programming and especially the study of the
complexity of linear programming. In the. basic linear programming problem, the
solution vector x can be thought of as a pointin E“ Each of the constraints, (a, x) < b
restricts the set of feasible solutions (possible points x that satisfy all the constraints,
to a halfspace in E“. As the solution must satisfy all the constraints simultaneously.
the set of feasible solutions is the intersection of the various halfspaces determined b
the constraints. This intersection is easily seen to be a convex polyhedron in | o
Moreover, it has been shown [4] that a solution to a linear programming problemn
corresponds to a vertex of this polyhedron. Thus, linear programming can be
reformulated as the geometric problem:

Geometric linear programming
Given: A set of halfspaces {H,, ..., H,} and a d-vector x.
Find: The vertex v of the polyhedron formed by the intersection of the halfspaces a

which (v, x) is maximized.

In geometry there is a well-defined concept of a geometric dual. The dual is forme
by a dimension-inverting mapping from E“ to E that takes objects of dimension |
into objects of dimension d—n—1. In particular, points are mapped into hyperplane
and hyperplanes are mapped into points. There are several methods of constructin;
such a mapping, and the most common is that of the use of polar sets. Such a mappin,
can be defined to take an object Q into an object Q such that ‘ ‘

Q={xcE*|(u,x)<1forall ueQ}.

It is a well-known goemetric result [13] that this mapping has several nice properties

Lemma 1. Let P be a polytope in E? and let P be its polar dual. Then
(1) Oe P if and only if P is bounded, where 0 is the origin; i
(2) There isa 1-1 onto mapping between the k-faces of P and the d—k-1 faces of P
(3) P, the dual of P, is P;
(4) if the supporting hyperplane to a facet of P is {x€ E‘|(u, x) =13, then th
corresponding point in P is u;
(5) Pis the convex hull of U, where U ={ue E®|u corresponds to a facet of P}.

For any geometric problem it is generally possible to consider the dual probler
instead since we can map the original or primal problem into the dual, solve the du
problem, and then apply the dual mapping, which by (3) above is its own inverse, t
construct the primal solution. In particular, the dual to the geometric version of th
linear programming problem is:
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Dual geometric linear programming

Given: A setof points xy, . . ., x, in E? such that the origin is interior to their convex
hull, and a ray r from the origin.

Find: The facet of the convex hull through which r passes.

In addition to considering the geometric forms of the linear programming prob-
lem, we consider the geometric versions of the problem of linear inequalities which is

Intersection of halfspaces
Given: Closed halfspaces H,, ..., H,..
Determine: If Hy - - - n H, is non-empty.

This problem and the others we have noted are the forms of linear programming
we use in establishing our reducibilities. In the next section of this paper we introduce
other problems that are polynomially equivalent to one of these forms. These new
problems are important in their own right and have their own applications and
associated methods of solution. For many of these it has been noted that linear
programming can be used to find a solution. What is surprising though is that these
problems which seem quite a bit simpler than linear programming are actually
polynomial equivalent to it.

4. Geometric problems

So far we have seen several forms of linear programming that are polynomial
equivalent and hence LP-complete. We have also seen several geometric problems
which are either restatements of some form of linear programming or are the
geometric duals of such problems. In this section we consider several other geometric
problems and show that they too are LP-complete. These problems are different than
those presented above, and do not correspond to a direct restatement of a linear
programming problem. From a geometric point of view, these problems have been
the subject of study independent from any connection to linear programming
problems. This geometric study has lead to conjectures suggesting that polynomial
time and possibly even subquadratic algorithms exist for such problems. It is this
connection of problems from different research areas which we view as one of the
major contributions of this paper.

The first class of such problems involves the identification of extreme points. We
say that a point Q is extreme with respect to points Py,. .., P, if and only if Q is
exterior to the convex huli of Py, .. ., P,. The basic problem here is:

Extreme point (EP)
Given: A set of points Py, P, ..., P, in E%,
Determine: if P, is extreme with respect to Py, ..., P,.

We can consider a simplification of this problem where we place all the points
P,, ..., P, on the unit sphere in E? and let P, be the origin. This yields:
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Origin point interior ,
Given: A set of points Py, ..., P, on §4-1 , the unit sphere in E.
Determine: If the origin is extreme with respect to Py, ..., P,

This version of the problem can also be restated as:

Hemisphere problem
Given: A set of points Py, ..., P, on §*7,
Determine: If P,, . . ., P, lie interior to some hemisphere.

A problem that is a generalization of the extreme point problem is that ¢
determining the depth of a set of points. The depth is defined as the numer of neste
convex hulls necessary to include all the points. In other words, the. points on th
original convex hull are at depth one and if these are removed, then the points on th
new convex hull are at depth two. The highest depth that is attained in this manner
called the dépth of the set. The problem here is:

Depth of a set
Given: A set of points {Py, ..., P,} in E%.
Find: The depth of the set.

The geometric dual problem t0 testing if a point is extreme is:

Hyperplane-halfspace intersection
Given: A set of halfspaces Hj, .
Determine: If h intersects D.n_

,H, »:a a hyperplane h.

It is interesting to note that this is the geometric form of the problem of relevanc
If we let the hyperplane A in this problem be the polar dual of the origin, then tt
problem becomes:

Boundedness
Given: A set of halfspaces {H1, . .., H.}.
Determine: If their intersection is bounded.

All of these extreme point problems can be solved in linear time in the plane ar
have typically been solved using linear programming techniques in higher dime:
sions. In Section 6 we furthermore show that they are all actually LP-complet
Moreover, Johnson and Preparata [16] have shown that a modification of th
problem is NP-complete. In particular, if we give as input the n pointson § “~!and
integer k <n and seek to determine whether k (or more) of the n points share
common hemisphere, then the NP-complete problem MAXSAT2 [11] can t
reduced to it. Furthermore, by applying their reduction to the hemisphere problen
we are able to make contact with the work of Jones and Laaser[17] and show that
linear programming is solvable in poly-log space, then all problems in P are solvab
in this space bound {7].
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A second class of geometry problems that can be shown to be LP-complete
involves the notion of separability. Two point sets are said to be separable if and only
if there is a hyperplane such that all points of one set lie on one side of the hyperplane
and all points of the other set lie on the other side (i.e., the hyperplane separates the
points). This problem has been the subject of several studies. Classical results in
geometry show that two point sets in E® are separable if and only if every subset of
d +2 points is separable. This yields an algorithm of complexity O(n**?*)forsetsof n
points in E®. More recent studies in computational geometry {32, 35] have shown
that this problem can be solved in the time O(n log n) in two or three dimensions.
While this is a vast improvement over the classical n* or n*, applying the same
techniques in higher dimensions means forming the convex hull and hence yields an
algorithm that is still of exponential complexity in E“. Finally, problems of separabil-
ity have been studied extensively for classifying data points for pattern recognition
purposes {8]. Here two basic solution methods are employed—gradient approxima-
tion techniques and linear programming. While experimental results here show that
the approximation techniques are more efficient, it is easy to see that they also have
worst case complexities that are at least exponential and sometimes infinite.

We consider several separability problems. The basic ones are:

Point-set separation
Given: Points Po, Py, . .., P. in E;
Determine: It P, is separable from {Py, ..., P.},

“and

Set—set separation
Given: Points Py, ..., Puy Q1,. .., Qm in EX.
Determine: 1t {P,, . . ., P,} is separable from {Q,, . . ., Q.}

We can also consider simpler versions of these basic problems. First of all, the
poiats can be restricted to the unit sphere. This yields:

Spherical separation
Given: Points Py, ..., P, Qy,...,Qnon $Vin E%
Determine: It {P,, . . ., P} is separable from {Q, . . .. Q.}

In addition, we consider the problem of testing if a set of points and its reflection
through the origin are separable:

Hemisphere separation
Given: Points Py,..., P, on §%'in EZ
Determine: If {Pi, ..., P,} is separable from {- P, ..., —-P.}.

All of these separability questions have been stated as recognition problems. We
can restate each of them as computational problems where we are required to
actually find a separating hyperplane if one exists. This yields the problems:

The complexity of linear programming 9

Finding point-set separation
Given: Points Po, Py, ..., Pain E“
Find: A hyperplane separating {Po} from {Pi, . .., Pa}-

Finding set-set separation .
Given: Points Py, ..., Pn, Q1, ..., Qmin E°.
Find: A hyperplane separating {Py, . .., Px} from {O1, ..., Qu}

Finding spherical separation T
Q«.cnxnwomzﬁw:....wa.Or....Qso:,w in E%
Find: A hyperplane separating {Py,..., P} from{Qy,..., Q.}.

Finding hemisphere separation .
Given: Points Py, ..., P, on $7" in EX
Find: A hyperplane separating {Py,..., P} from{-Py,..., -P.}.

5. Other problems

The techniques of linear programming are used to solve a wide <»nmn€. of
mathematical problems [4]. These.include network flow problems, transportation
problems, assignment problems, game theory problems, and, in a limited way,
traveling salesman problems. The first three of the classes of problems are known to
be equivalent [4] and can all be solved using the polynomial algorithm of m&.uos%
and Karp [9]. Unfortunately, linear programming does not seem to be reducible to
these special cases. The traveling salesman problem, on the other hand, is known to
be NP-complete [18] and hence can be used to solve linear programming problems.
However, in this case linear programming yields an approximate rather than an
actual solution, and hence the traveling salesman problem seems more complex.

The most common application of linear programming to game theory, the problem
of determining the optimal mixed strategies in a two person game, does involve an
LP-complete problem. A two person game is defined by a payoff matrix A ={a;)
where each a;; represents the cost or benefit of the game if the first player chooses
strategy i and the second chooses strategy j. It is known that each player can
maximize his earnings by using a mixed strategy where he plays the various individual
strategies at random using a fixed set of probabilities. Determining what these
probabilities are for the two players is the problem:

Two person game theory
Given: A payoff matrix A = (a:;)
Determine: The optimal mixed strategies of the two players.

That this problem is actually equivalent to linear programming (and hence
LP-complete) is a classic result that follows from von Neumann’s minimax theorerr

{41
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6. Main result
We are now ready to present our main result;

Theorem 1. The following prolbems are LP-complete

(1) Linear programming,
(2) Linear inequalities,
(3) Relevancy,
(4) Linear programming complement,
(5) Geometric linear programming,
(6) Dual geometric linear programming,
(7) Intersection of halfspaces,
(8) Extreme point,
(9) Origin interior problem,

(10} Hemisphere problem,

(11) Depth of a set,

(12) Hyperplane-halfspace intersection,

(13) Boundedness,

(14) Point-set separation,

(15) Set-set separation,

(16) Spherical separation,

(17) Hemisphere separation,

(18) Finding point-set separation,

(19) Finding set-set separation,

(20) Finding spherical separation,

(21) Finding hemisphere separation,

(22) Two person game theory.

Proof. Preliminary to proving the main theorem, we prove 18 basic reductions:

(1) E:nwn programming is LP-complete. This is trivially true based on the
definition of LP-complete. )

(2) Linear inequalities =LP. Clearly linear inequalitiesoccLP. To show o, one
uses a binary search technique over the rationdl numbers. Since a bound exists on the
denominator of the result of a linear programming problem, such a search can be
done [30, 33].

(3) Linear programming complement=LP. First note that LIccLPC. To solve a
LPC problem using linear programming, one merely needs to add artificial variables
which are all constrained to be greater than or equal to zero, and solve the linear
programming problem of minimizing the sum of these new variables. The details and
the proof that this is conclusive is fundamental to the classical study of linear
programming as it represents the first phase of the Simplex algorithm [4]. This has
also been observed by Karp.
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(4) (a) Geometric linear programming=LP,
(b) Intersection of halfspaces=LlI,
(c) Hyperplane-halfspace intersection = Relevancy.

These follow immediately since the one problem is the geometric interpretation of
the other.

(5) LI=EP. Classical transformations (see e.g. [4)) allow us to assume that the LI
problem is bounded and all solutions are positive. The geometric dual of this new
problem is then equivalent to the extreme points problem.

(6) (a) Extreme point= Hyperplane-halfspace intersection,

(b) Origin interior problem = Boundedness.

This reduction is based on the geometric duality concept and follow from the
properties of the polar dual.

(7) Origin interior problem = Extreme point. o follows since an origin interior
problem is a special case of an extreme point problem. We need to show that any
extreme point problem can be solved by solving a problem where Py is the origin and
all the other points lie on the unit sphere. We first can do a translation to insure that
P, is the origin. Now Py is interior to Py, . ..., P, if and only if the origin is interior to
the translated points Py, ..., P!, if and only if 0=Y7.: xP; where each x; =0 and
¥4.1x,=1.Let Q; =P'/|Pi|, be a point on the unit sphere corresponding to P;. Now
letr =71 x;|P}} and for each i, let y; = x;|{Pi} and let z; = y:/r. Then x; =0 if and only
if y;=0 if and only if z;=0as r>0. Also

L3 , n . n H n n
O.H M xPi=3 R\.WMM Y yiQi=— Y yQi= T 2@
i=1 i=1P; i=1 ri=1 i=1
while Y71 z; = 1. Hence Py is interiorto Py, . . . , P, if and only if the origin is interior

to Qy, . . . , Qn, and we are done.

(8) Hemisphere problem = Origin interior problem. These are actually the same
problem as the origin is an extreme point if and only if there is a supporting
hyperplane through the origin. But such a hyperplane exists if and only if the points
on the unit sphere share common hemisphere.

(9) Extreme point=Depth of a set. Since a point is extreme if and only if it has
depth one, o follows immediately. The depth of all points ina set can be determined
by finding all extreme points and assigning them depth 1. Then all the extreme points
of the original set with ali these points eliminated are assigned depth 2. This process is
repeated until all points are assigned a depth. Since it can be repeated at most n/d
times for n points in d dimensions, at most O(n®) extreme point problems must be
solved to determine the depth of the set.

(10) Point-set separation = Extreme point. This follows from the definitions of
extreme points and separation since P,isseparable from{P,, ..., P.}if and only if Py
is extreme with respect to {P,, ..., Pa}.

(11) (a) Spherical separation« Set-set separation,

(b) Hemisphere separation o Spherical separation,
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(c) Finding spherical separation oc Finding set-set separation,
(d) Finding hemisphere separation o Finding spherical separation.

These reductions all follow as in each case one problem is a special case of the
other.

(12) Set-set separation Point~set separation. It is sufficient to show how to
express a given set-set separation problem as a point-set separation problem. Let the
two sets to be separated be {P;, ..., P,}and {Q,, ..., Q.}. Let P be the convex hull
of Py, ..., P, and Q be the convex hullof Qy, . . ., Q.. Then the sets are separable if
and only if P~ Q is empty. Define ’

‘%10u?_anvlﬁwmwm:n&mOv.

Then P~ Q is empty if and only if the origin is exterior to P— Q, or alternatively, if
the origin is an extreme point of P — Q. It can be shown [3, 4] that P — Q is a subset of
the convex hull of U where

U={ulu=P,—Q;forl<isnandl<j<m)}.

Hence it is sufficient to separate the origin from the set U, and since {U| = mn, we are
done

(13) Hemisphere problemoc Hemisphere separation. Let the points on the unit
sphere be Py, .. ., P,. Then these lie interior to some hemisphere if and only if there
is arotation such that every first coordinate is greater than zero. Then the hyperplane
with first coordinate zero separates these points from their negatives, and we are
done.

(14) Hemisphere separation « Finding hemisphere separation. This is true since
finding the separating hyperplane determines separability.

(15) Finding set-set separation « Finding point-set separation. Here we can use
the same techniques as in our reduction from set—set separation to point-set
separation (reduction 12). We can thus find a hyperplane E°={x ¢ E|(a, x) = bo}
that separates the origin from P — Q. Now we assume, with loss of generality, that for
all points y in P—Q, (a, y) <0. Thus, for all p in P and all g in Q we have

(a,p)—(a,q)<0 or (a,p)<(a,q).

Next we compute 7 =max;(a, P;) and s =min;(a, Q;). Then r <s. Finally, let ¢ =
Yr+s5), and let

E={xcE%|{a,x)=1}.

Now we claim that E separates P from Q. For any p in P and q in Q we have
(a,p)sr<t<s=(a,q).

(16) Finding point-set separationoac Dual geometric linear programming. Let
{Py, ..., P,}be the set of points we are separating from Po. Then Q = (1/n) ¥, P;is
interior to the convexhullof Py, . . ., P,. We can transform all the points to place Q at
the origin. Let r be the ray from Q through P, under the transformation. We can now
find the facet F that this ray passes through. Given this facet, its affine hull is its

The complexity of linear prog ing 1

supporting hyperplane. Let this hyperplane be Eo={x|(a, x)= bo}. Let a paralle
hyperplane containing the point Py be E;= {x|(a, x)=5,}. Then let E,-
{x|(a, x)=%(bo+b1)}. Then E, is a scparating hyperplane between P, an
{Ps,.... P}

(17) Dual geometric linear programming = LP. Classical transformations (see e.g
[4]) allow us to assume that the LP problem is bounded and has only positiv
solutions. Taking the geometric dual and observing that these transformations als
hold in the geometric domain then allows us to complete the equivalence.

(18) Two person game theory = LP. This is a classic result due to Von Neumann'
minimax theorem{4]

We can now prove the theorem using these reductions as follows:

- Linear programming=LP 1
- Linear inequalities=LP 2
- Linear programming complement=LP 3
- Geometric linear programming=LP 4a
. - Intersection of halfspaces=LI 4b
- Extreme point=LI : 5
- Hyperplane-halfspace intersection=EP 6a
- Origin interior problem =EP 7
- Boundedness = Origin interior problem 6b
- Hemisphere problem = Origin interior problem 8
- Depth of a set=EP 9
- Point-set separation=EP 10
- Relevancy = Hyperplane-halfspace intersection 4c

- LP=Hemisphere problem o Hemisphere separation 13,11b, 11a, 12
oc Spherical separation oC Set—set separation
oc Point-set separation =LP
oc Dual geometric linear programming=LP 17
- LP=Hemisphere separation 14, 114, 11c, 15, 16
o Finding hemisphere separation
o« Finding spherical separation
oc Find set-set separation
o Finding point-set separation
o Dual geometric linear programming=LP 17
- Two person game theory=LP 18

7. Complexity of linear programming

So far we have demonstrated a class of natural problems related to d -dimension:
geometry that all have the same relative complexity. What this complexity i
however, is not clear. While many of the problems have been considered for som
time, no polynomial time algorithms are known for solving them. Moreover, thes
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problems also do not appear to be NP-compiete. These two observations make the
existence of this class of LP-complete problems quite interesting from both an
applied and a theoretical point of view. In this section we investigate this class of
problems by collecting previous results that reflect on their complexity.

One of the outstanding features of these problems is that they are typically solved
quite efficiently in the average case. This is principally illustrated in the class of
algorithms that first find an approximation to the solution and then methodically
proceed to a new approximation until the actual solution is found. The most widely
known example of such an algorithm is the Simplex algorithm [4]. This algorithm
solves a linear programming problem by finding an initial feasible solution and then,
if it does not maximize the objective function, a new feasible solution is found and the
check for maximizing the objective function is made again. The value of the objective
function with the new solution is always greater than or equal to its value at the
previous solution. In geometric terms this algorithm involves finding some vertex of a
polytope defined by the intersection of a set of halfspaces, and then, if this vertex
does not represent the desired solution, finding a new vertex adjacent to the current
one and considering it. This process is repeated, following a path of connected
vertices along the polytope until the proper one is reached. Under the proper
assumptions, it can be shown that these techniques always find the proper solution.
The Simplex algorithm can be used to solve any LP-complete using the proper
reducibilities. Moreover, this method of incremental search can be employed directly
in most of the problems under consideration. .

Empirical evidence for the complexity of the Simplex algorithm shows it to be
quite efficient, usually running in time linear with the number of constraints and
variables [1, 4, 25]. However, in recent years it has been shown that there are cases
where any Simplex-like algorithm requires exponential time [24]. Thus, although
LP-complete problems can be solved efficiently in the average case, the best upper
bound known for their worst-case complexity remains exponential.

Given this behavior, we know turn to a study of the relationship of LP-complete
problems to NP-complete prolbems. To begin with, we observe that all LP-complete
problems belong to NP.

Lemma 2. LPe NP.

Proof. Consider the problem of linear inequalities. A solution to this problem
consisting of a rational d-vector x can be checked in polynomial time to insure that
Ax < b. Thus this problem is in the class NP. Then, by Theorem 1, all LP-complete
problems are in NP, and, in particular, LP e NP.

This lemma puts an upper bound on the complexity of linear programming. It
leaves three broad possibilities for the actual complexity. These can be summarized
as:

The complexity of linear programming

Theorem 2. One of the following is true:
(a) LPeP,
(b) LP is P-hard,
(c) LP is NP-complete and NP is closed under complement.

Proof. If P = NP, then all the statements are true. Assume then that P # NP. Then
either LP is or is not doable in polynomial time. If it is, then LP& P. Otherwise, either
LP is NP-complete or it is not. If it is not, then Le NP—P and LP not NP-complete
imply that LP is P-hard. If LP is NP-complete then LI is also NP complete and the
complement of LI, LPC, is also NP-complete. But then NP is closed under comple-
ment, and the theorem is proved. Parts of this theorem have been alluded to in [26].

Of these three possibilities, the last one must be considered unlikely. Althoughitis
currently unknown whether NP is closed under complement or if P= NP, itis widely
believed that both of these statements are false. Hence, we may conjecture that
either statement (a) or statement (b) is true. If statement (a) is true, then polynomial
time algorithms exist for all of the problems that are LP-complete. This would be
interesting in terms of its impact on the study of geometric complexity as well as being
of possible practical interestin operations research. If, however, statement (b)is true,
then we would have demonstrated a natural problem belonging to NP — P which is
not NP-complete (assuming P # NP). Such a problem would be of considerable
interest to theoreticians. Thus, the resolution of Theorem 2 will be an important and
interesting result no matter which of the alternatives is true. Hence the problems
associated with determining the complexity of linear programming are important
problems of complexity theory.

It seems unlikely that the notions of LP-completeness and NP-completeness are
equivalent. Yet, we may extend the observation of Johnson and Preparata [16] to
transform each of these problems into an NP-complete problem by merely adding an
wa&:o:& parameter, k. For example, determining if any subset of size k of aset of n
points on S~ share a common hemisphere is NP-complete. We observe that in the
case where k=n, the E‘oEmE becomes LP-complete. We can similarly form
NP-complete versions of the other LP-complete problems. These transformations
are similar to methods introduced in [11]. Typical of these problems would be:

Intersection of common halfspaces . . .
Given: Halfspaces H,, ..., H, in E? such that the origin is interior to their
intersection, an integer k. .
Determine: If there is a subset consisting of k of the halfspaces which have the origin
as their intersection.

Extreme point
. . od .
Given: A set of points Py, Py, ..., P, in E“, an integer k.
Determine: 1f there exist 1 <i, < i, < - - - < i, < n such that Py is extreme with respect

to P,

igr vy
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Intersection of halfspaces

Given: Closed halfspaces H,, . .., H,, an integer k.
k

Determine: If there are 1 <iy<i>=<---<i,<n such that{ )=, H; is non-empty.

Relevancy

Given: A set of constraints (aq, X) < by, . . . , (an, x)<b,, an integer k.

Determine: If satisfying some set of k of the last n constraints is equivalent to
satisfying these constraints along with the first constraint.

Linear inequalities

Given: An integer n X d matrix A, integer n-vector b, integer k.

Determine: If there is a rational d-vector x such that k components of Ax = b are
negative.

These results expressing linear programming as an interesting limiting case of
integer programming take on added interest as a possible means of finding a
hierarchy of natural problems in their complexities. Furthermore, as observed in [7],
connections with logspace completeness can also be made.

8. Conclusion

The results in this paper can be divided into two parts. In the first part we
introduced the class of LP-complete problems. These problems are interesting and
important. Some of them are fundamental to the study of d-dimensional geometry
and others, especially those directly involved with linear programming, have vast

practical applications. Moreover, these problems represent a wide range of

geometric problems that all have the same intrinsic complexity. Hence, using our
notions of reducibility, information regarding the complexity of any single problem,
be it a fast algorithm or a good lower bound, is directly applicable to all the other
LP-complete problems as well.

The second part of the paper was devoted to a survey of known results on the
complexity of linear programming. Here we have shown that it is probable that linear
programming is either of polynomial complexity or is P-hard. In the light of the
efforts that have been made toward finding a polynomial algorithm, and considering
that these efforts have failed, it seems most probable that linear programming is
indeed P-hard. Further connection is made with NP-complete problems by introdu-
cing a simple transformation which converts each LP-complete problem into an
NP-complete problem.
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>...oon.= result of Khinchin shows that LP is in P. This resolves the discussion of
Section 7 and raises new open problems concerning the application of this algorithm
to other LP-complete problems.
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1. Introduction

1t is well-known that the set of A -terms modulo 87 -convertibility is a semi-grou
with I as identity element and composition °, defined by M o N = BMN, wher
B=Axyz.x(yz).In[6, pp. 167, 168] the question is raised under what conditions ai
element in this semi-group has an inverse.

Dezani-Ciancaglini gave in [8] a characterization of (w.r.t. ABn -calculus) inverti
ble terms having a normal form as the ‘finite hereditary permutators’, and sh
conjectures that these are all the Bn-invertible terms, i.e. a term without norma

In this paper we confirm her conjecture. Two proofs are given for this fact, of whic
the first is more direct. The second proof uses the in itself interesting fact that certai
‘A-trees’ can be represented as Bohm-trees of AI-terms (in fact we prove somethin
more), plus Hyland’s characterization of the equality in the Graph model Pw (se
[9, 1. .

The result on representation of A -trees is further used to characterize the A -termr
invertible in De, Scott’s well-known lattice model (see [12]).

Since for this last result a slightly more general form of the main lemma in [8]
needed, we have included a new proof of that lemma.

2. Preliminaries

In this section we collect the ingredients necessary for the sequel, without th
proofs which can be found in the literature. The basic definitions and facts about th
A-calculus are supposed to be known.
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