GROBNER BASES OF CERTAIN DETERMINANTAL IDEALS

MATYAS DOMOKOS

ABSTRACT. We prove that the ideal of the locus of points (z1,...,z,) in C" for which the
n x k matrix (z:") has rank smaller than k is generated by the determinants of the k x k
minors of this matrix, if 41 < --+ < pg and g3 = 0 or 1. Moreover, these generators form a
universal Grobner basis. Special cases of our result apply for ideals arising in the study of
chromatic numbers of graphs or identities of matrices, and ideals of truncations of hyperplane
arrangements related to pseudo-reflection groups.

1. INTRODUCTION

We work over an algebraically closed field F' of characteristic zero. Let u = (u1, ..., pk)
be a strictly increasing sequence of non-negative integers with k& > 2, that is, 0 < p; <
-+ < pk. Consider the map

¢n,u AT Ank

(Ila"wxn) = (xih)

from the n dimensional affine space to the nk dimensional affine space, where n > k > 2,
which maps a point (z1,...,z,) to the n x k matrix whose (i, j) entry is z}”. We study

X = {z € A™[rk(dn,u(z)) < k - 1}

the locus of points in A™ whose image under ¢, , has rank smaller than k. One can also
think of X, , as the set of points £ € A™ with the property that there exists a polynomial
(depending on z) f(t) = a1t#' + - + axt** € F[t] such that all the coordinates of = are
roots of f.

The aim of the present paper is to give generators (a Grobner basis) of the ideal I(X, ,)
of polynomials in F[t,...,t,] vanishing on X, ,. We put

ulte, ..o k) = det((t¥ )1<i j<k)
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so 0, is the determinant of the k x k¥ matrix whose (z,7) entry is t!. Note that the integers
Ai = p; — 1+ 1 form a non-decreasing sequence of non-negative integers A = (A1,...,Ax)
and the Schur function sy is usually defined by the equality

)

6u(tey oy tr) = sa(ty, ... tk) H (t; —t;)

1<i<j<k

(see for example [Ma]). Since the points z € X, , are characterized by the property
that all the k X k minors of ¢, ,(z) are degenerate, the polynomials 6,(t;,,...,%;, ) with
1 <41 < -+ <1 < n define Xn,. set theoretically. We shall show that they generate
the ideal I(X, ,), unless §, has multiple factors. So our first question is that when the
polynomial ¢, has multiple factors. This is answered by the following elementary lemma.

Lemma 1.1. The polynomial §,(t1,...,tx) has multiple factors in Ft,, ... ,tx] if and only
1{ H1 Z 2

Proof. The equality

Sultry oo tk) = (b te)  det((t ™" )1<ij<k)

shows that if ¢, has no multiple factors, then pu; < 1.

To prove the converse direction we may assume that y; = 0, since in this case none
of t1,...,tx is a divisor of §,. We apply induction on k. The case k = 2 is obvious,
because then we have 6, (t1,t,) = th2 — {2 and this polynomial has no multiple factors in
characteristic zero. Assume now that k > 3, and

6ﬂ(t17""tk):f2'g

for some f,g € F[t1,...,t], where f is non-constant. Since 6, is homogeneous, f and ¢
are also homogeneous. Expand f and g according to the powers of #; :

T 3
f=Y ailti, . te)th and  g=Y bi(ty,... tkor)td,
1=0 7=0

where ar and bs are non-zero. On expanding the determinant of (¢! ) according to its last
row, we get

6# — (—1)k+1(t1 '"tk—l)mép'(tl,u-7tk—1) +"'+tzk5u”(tla~-atk—1)a

where p' = (0, p3—pa, ..., pe—p2) and p" = (u1, ..., pr—1). It follows that 8y = a2bs and
(=)t - tk—1)*26, = alby, and by the induction hypothesis a, must be a non-zero
constant and af is a divisor of (t, et ke,

On the other hand, we may assume that f is fixed up to sign by the symmetric group
Sym(k) acting on Fty,...,t;] via permutation of the variables. Indeed, take an irreducible
factor g of f, then ¢ divides §,. Now let ¢ = ¢y,...,gm be the pairwise different 1mages

of ¢ under the action of Sym(k), up to scalar multiplication. Since 7(8,) = sign(n)é,
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holds for any 7 € Sym(k), we have that n(¢)? divides é,. The polynomials gq1,...,qm are
pairwise non-associate irreducibles, hence ¢? - - - ¢2, is a divisor of 0u. So f =¢q1 - qm has
the required properties.

Summarizing, the leading term of f as a polynomial of #; is cty, wherer > land cis a
non-zero constant. The symmetry of f implies that

f=c(t] + - +1t;) + other terms,
hence
ao(ty,...,tk—1) =c(t] +--- +t;_;) + other terms,
which contradicts the fact that a? is a divisor of (t; ---tx—1)#2. O

Now we state the main result of the paper.

Theorem 1.2. Let n > k > 2, and let u = (p1,...,ux) be a strictly increasing sequence
of non-negative integers with 41, < 1. Then the ideal of X, , is generated by 6,(t;,,...,t;,)
with 1 <1y < --- <1 < n. Moreover, this generating set is a universal Grobner basis of
I(x

nop):

In order to explain the structure of the proof we introduce some terminology. Recall
that for any homogeneous ideal I the factor algebra F[t;,...,t,]/I is naturally graded,
and there exists a polynomial h(t) € Q[t] called the Hilbert polynomial of I such that
the dimension of the degree d homogeneous component of Fl[ty,...,t,]/I is hy(d) for
sufficiently large d. The leading term of hy(t) is %{T)tm, where e(I) is a positive integer,
called the degree of I, and m = dim(I) — 1. Now let M be a monomial ideal, that
1s, an ideal generated by monomials. Obviously, for any monomial ideal M' containing
M we have that dim(M') < dim(M), and in the case of equality e(M') < e(M). We
say that M is critical, if for any monomial ideal M’ strictly containing M we have that
dim(M') < dim(M) or e(M') < e(M). The strategy of the proof of Theorem 1.2 is based
on the fact that the initial monomial ideal of I(X,,,) turns out to be critical. To verify the
conjecture that a given critical monomial ideal M generated by the initial monomials of
certain polynomials vanishing on X, , is indeed the initial ideal of I(X, ,) it is sufficient
to show that the dimension and the degree of M is the same as for Xn . In Section 2
we derive the necessary information on the geometry of Xn,u- Section 3 is devoted to the

combinatorial study of the ideals generated by the initial monomials of §,(t;,,... ,t;,),
which we need to finish the proof of Theorem 1.2.
An interesting special case is 4 = (0,1, ..., k), when Xn,(0,1,...,k) 1s the subspace arrange-

ment consisting of points which have at most k different coordinates. The Kleitman-Lovasz
theorem [L] asserts that [];, ¢ cxpq(tj, —¢5,) (with 1 < j; < -+ < jry; < n) gener-
ate the ideal in question. The additional fact that the given generators form a universal
Grobner basis is due to de Loera [Lo]. The motivation of [L] comes from graph theory.
An n-variable polynomial pg is associated with any graph G having n nodes, and it is
observed that the chromatic number of G is greater than k if and only if pg is contained
mn I(Xn (0,1,... k). So the result of [Lo] gives some information on graph colorings.

The description of I(X, ,) when p = (0,1,... ,k) or p = (0,1,... ,k — 2, k) has conse-
quences also in the theory of polynomial identities and weak identities of matrices, as it is
shown in [D].
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In Section 4 we draw attention to other special cases of our result, which deal with
subspace arrangements related to complex pseudo-reflection groups. More precisely, let G
be a finite complex pseudo-reflection group, and consider the set of reflecting hyperplanes
belonging to G. Take the union of k dimensional subspaces which are intersections of
reflecting hyperplanes. The vanishing ideal of this subspace arrangement is described by
Theorem 1.2 for certain pseudo-reflection groups, including the Weyl groups of type An,
B, and D,,.

We finish the introduction with some comments on the result. Xn,, 1s the set of points
in the n dimensional affine space whose any k coordinates satisfy the alternating relation

0u = 0. Now let [(t;,...,tx) be any homogeneous alternating polynomial, that is,
Wty te) = s(ty,- o te) [ (ki —t5),
1<i<j<k
where s(t1,...,tx) is a symmetric polynomial. Assume that [(t1,...,tx) has no multiple

factors in F[ty,...,tx]. The following related problem is studied in [D]. We put

Zni = {z € A"|z has at most k different coordinates and

lzi,...,25)=0forany 1 <1y < - <4 < n},
and let denote 6(t1,. .., tx41) = [[1<;cschyr(ts — tr). We show in [D] that
I(Zn,l) = <l(ti17"'atik)> 6(t1at]1aatjk)ll S Z.1 <0 K ik S n, 2 S]l < - <.jk S 7'L>,

and this generating set is a Grébner basis with respect to the lexicographic monomial order
induced by ¢; < --- < t,. The motivation to study I(Z, ;) in [D] came from the theory
of polynomial identities of matrices, therefore the condition "z has at most k different
coordinates” was natural. However, one can also ask whether the ideal of

Xng={z € A"l(z;,,...,zi,)=0forany 1 <i; < - < iy <n}

1s generated by the polynomials I(2;,,...,¢;,) (with 1 <4¢; < --- <4 < n). The answer to
this question is no in general, as the following example shows, so it has some interest that
we have affirmative answer in the determinantal case.

Let n = 3 and let [ = (¢t; —t3)(¢} +t3). We claim that X3 does not contain a point with
pairwise different coordinates. Indeed, assume in the contrary that (z,,z,,z3) is such a
point, its coordinates are necessarily non-zero. Then 7+, 22, 22 must all be roots of the
polynomial 1 + ¢3. The roots of t3 + 1 are p, p° and —1, where p 1s a primitive 6th root
of unity. But the ratio of any two element of {p,p°, ~1} is not contained in this set, a
contradiction. Therefore, the polynomial (¢; — ¢5)(¢; — t3)(t3 — t3) lies in I(X3 ), but it is
of degree 3, hence is clearly not contained in (I(t1,%),1(t1,t3), [(t,3)).

On the other hand, [l <r<s<ktr(ti. — tj,) is not always contained in I(X,;). For
example, X3 ;3_;s contains the point (1, p, p?), where p is a primitive third root of unity.

Another possibility to generalize Theorem 1.2 is to consider Xn u,m, the locus of points
in A" whose image under ¢, , has rank smaller than m. (When m = k, the algebraic set
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X,k coincides with X, ,.) Though the m xm minors of ¢, ,(t1,...,t,) define X, p,m set
theoretically, they do not generate its ideal in general. For example, take u = (0,1, 3,6),
m = 3, and n = 3. The 3 x 3 minors of @3 ,(¢1,?2,%3) have no multiple factors in this
case, however, they do not generate a radical ideal. Indeed, we claim that (¢yt; + ;13 -+
tat3)(ty —t2)(t1 —t3)(t2 —t3) vanishes on X3,0,1,3,6),3- Since this polynomial is not divisible
by (t1 +t2 +13)(t1 — t2)(t1 — t3)(f2 — t3), and all the 3 x 3 minors not from the first three
columns are of degree greater than 5, this polynomial is not contained in the ideal generated
by the 3 x 3 minors of ¢3 ,(t1,t2,t3). To show the claim take a point z on X3,00,1,3,6),3
with three different coordinates. Then the first two columns of #3,00,1,3,6)(Z1,22,13) are
linearly independent, so their span contains the third and fourth columns. Therefore
there are a,b,c,d € C such that 2} = az; + b, and 28 = cz; + d for i = 1,2,3, hence
(az; + b)* = cz; + d, implying that a = 0. So z;, 2,23 are the third roots of b, and the
claim follows. Similarly, the 3 x 3 minors of $n,(0,1,3,6)(t1; - - -, tn) do not generate a radical
ideal for any n > 3.
The author thanks Endre Szabé for helpful discussions.

2. ON THE GEOMETRY OF X, ,

In this section we analyze a bit the geometry of X, ,. We assume here that the base field
1s ' = C, the field of complex numbers. We pass to the n — 1 dimensional projective space
P!, whose points are the lines in A™ containing the origin. A point of P*~! is usually
written as (z; : -+ : £,), by which we mean the line spanned by the non-zero (z1,...,2,) €
A™. The coordinate ring Ft1,...,t,] of A™ becomes the homogeneous coordinate ring of
Pt~ Obviously, X, , is a cone over the origin, hence the one dimensional subspaces
contained in X, , form a projective algebraic subset of P*~!, we denote it by ¥, ,. The
ideal I(Yy, ) of polynomials in Fty,...,t,] vanishing on Y, , is the same as I(X, ,).

Throughout this section we use the following notation:

7 PP {p} — P

(1 izp)—(T1: 1 Tpog)

1s the projection from p=(0:---:0:1) € P*~1,
First we show that Y, , is unmixed of dimension k¥ — 2. For the proof we need to
mntroduce a slightly more general class of varieties. As earlier, let n, k > 2 be integers, and

to= (fy,. .., px) with 0 < py < -+ < pg. For any positive integer m less than or equal to
n+ 1 and k& we put

Youm ={(z1: 1 z,)|tk((z!’ ){:112) <m-—1}.

Note that in the special case m = k we get Your =Yy,

Proposition 2.1. Any irreducible component of Y,, , is of dimension k — 2.

Proof. In the special case m = 2 it is easy to see that Y;, , 2 is a finite subset of P"~!.
When n = m — 1, then obviously Yooium = P2,
Now assume that n > m > 3, and by induction on m and n we show that dim(Y, ym) <
m—2. It is clear that 7(Y, . m \{p}) is contained in ¥;,_1 4 m. By the induction hypothesis
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dim(Y,—1,4,m-1) < m — 3. Since adding one row to a matrix increases its rank at most by
one, the whole 771 (Y5—1 4, .m—1) U {p} belongs to Ys,um, and all of its components have
dimension bounded by (m — 3) + 1 = m — 2. Now take an irreducible component Y of
Yo u,m such that 7(Y) is not contained in Y,—1 4, m_;. Denote by Z the Zariski closure
of 7(Y) in Y—1 4y m. Then Z is an irreducible projective variety, and Z \Yociym-11s a
Zariski dense open subset in it. Consider the restriction

resyn: Y \ {p} = Z

of the regular map 7. For any z € Z\Yn_1ym—1 thereexists 1 <i; <+ < i <n-—1

and 1 <71 <+ < Jm < k such that some m —1 x m — 1 minor of the m — 1 x m
matrix (2]*) is non-degenerate. Then if (z; : -+ : zn_; : zy) is contained in (resyw)~1(z),
then z, must be a root of the non-zero polynomial Oz i) (Zirs 5 Zip_ 1y t) € Clt].

So Z contains a Zariski dense open subset over which resy(m) has finite fibers, implying
that dim(Y’) = dim(Z) (see for example [M, 3.13]). By induction on n we know that
m —2 2 dm(Yn_y,4,m) > dim(Z2).

We have shown that any irreducible component of Y. u,m has dimension not exceeding
m — 2. On the other hand, a result from [Mac] shows that any irreducible component of
Yy, has dimension not smaller than k — 2 (see also [E, Exercise 10.9]). O

Remark. Y, , m need not be unmixed in general. For example, Y3 (g 13.4)3 1s the union
of Y3 (0.1.2) (which is the union of the three lines V(t; —t;), 1 <7< j <3)and the two
points {(1:p: p?),(1: p*: p)}, where p is a primitive third root of unity.

It is clear that m maps Y, , \ {p} into Y._1 .. Denote by

¢ = reSYn,pﬂ- : Yn’,u \ {p} - n—1,u

the restriction of 7 to Yo

Proposition 2.2. Assume that n > k > 3 and py < 1. Then there exists a Zariski dense

open subset U of Y,,_; , such that for any y € U the fiber Y~ 1(y) consists of py different
points.

Proof. Let denote K = F[t1,...,tx—1]. Consider f(t) = 6,(t1,...,tk—1,t) as a polynomial
of t over the ring K. It is of degree ux, and its leading coefficient is Sur(ty, ... te—1),
where 1’ is the sequence obtained by removing pi from u. Consider the discriminant
D, (t1,...,tx=1) of f(t), so D, is an element of K. We claim that D, is non-zero. Indeed,
suppose in the contrary that D, = 0. It means that f(t) has a multiple root in the
algebraic closure of the quotient field L of K. Therefore f(t) has multiple factors in L(t),
and it follows easily that f(t) has multiple factors in K[t], contradicting to Lemma 1.1.

Take an irreducible component ¥ of Y,,_; ,, and assume that for some 1 < ; < -+ <
tk—1 < n—1, the polynomial ,:(¢;,,...,t;,_,) does not vanish identically on Y. Then the
image of ¥ under the projection

T Y\ V(tiy, .. ti_,) — Ppk-2

(T1: i apog) o (Tyy 024, ,)
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1s not contained in V(§,/). Since all the coordinates of a point in the fiber of 7 over any
(z1:- 1 2k_1) contained in the set 7(Y)\ V(§,/) must be roots of the non-zero polynomial

ou(Tiy, .o 2iy_yyt), the map 7 : Y \ V(t;,...,t;,_,) — 7(Y) has finite fibers over a
Zariski dense open subset of the irreducible variety 7'(—Y)- It follows that dim(m) =
dim(Y') = k-2, so 7 is a dominating morphism into P*~2. Hence by the previous paragraph
D,(ti,,...,ti,_,) is not identically zero on Y.

Now remove from Y,,_; , the k — 3 dimensional algebraic subset Y,_; ,/, and from all
irreducible components Y of Y,,_; , remove the proper subvarieties YNV (8, (ti,,. .., ti,_,))
and YNV(D,(ti,,...,ti,_ ) forall1 <i; <.+ < ix_1 < n—1such that O (iyy ey tip )
1s not identically zero on Y. In this way we get a Zariski dense open subset U of Yoo,
and we claim that this U satisfies the conditions of the proposition.

Indeed, take any y = (27 : -+- : Tn—1) € U. It is not contained in Yn_1,, hence
there exists some 1 < j; < -+ < jz_; < n —1 with bu(zj,...,zj,_,) # 0. Hence the
J1s- -5 Jk—1 rows of ¢, ,(y) are linearly independent, and all the other rows of Gr-1,u(y)
are contained in their span. So z = (y : z,) is contained in Y, , if and only if the last
row of ¢, ,(z) is contained in the span of its jj,...,jk—; rows, that is, if z, is a root of
6u(Tjy, .., xj,_,,t). But the discriminant of this degree pj polynomial is non-zero by the

construction of U, hence it has py different roots, which yield the uj points in the fiber of
Y over y. O

Let ¥ be an irreducible projective subvariety of P* of dimension r, let z be a point in
P". and let L be an n—r dimensional linear subspace of P™ intersecting Y in finitely many
points, y is one of them. We refer to [M] for the definitions of the following basic notions
of algebraic geometry: the degree deg(Y) of Y, the multiplicity mult,(Y) of the point z
on Y, and the intersection multiplicity i(y;Y N L) of Y and L in the point y. If Y is not
necessarily irreducible, but unmixed, that is, its irreducible components Y7, .. .,Y,, all have
dimension 7, then one can define deg(Y) = Z;‘r;l deg(Y;), mult, (V) = Z;"zl mult, (Y;),
W(y:YNL) = 3270 i(y; Y;NL). Recall that dim(Y) = dim(I(Y))—1 and deg(Y) = e(I(Y)).
These definitions apply for Y, ,, and we have the following recursive formula for its degree.

Proposition 2.3. Assume that n > k > 3 and u; < 1. Then we have the formula

deg(Yn ) = mult,(Yy, ) + prdeg(Yn—1 ).

Proof. Let M be an n — k dimensional linear subvariety of P*~2, and denote by L =
7' (M)U {p} its preimage under the projection =, so L is an n — k + 1 dimensional linear
subspace of P! containing p. It is well known (see for example [M, Chapter 5.]), that if
M is sufficiently general, then the following conditions hold:

(1) M intersects Y,_; , in deg(Yn—1,,) points, and all of them are contained in the
Zariski dense open subset U taken from Proposition 2.2;

(2) i(p; Yn,u N L) = mult,(¥, ,);

(3) L intersects Y, , transversally in finitely many points besides p, that is, (z; Y, N
L) =1 for any z # p from the finite set LN Y, ,.
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Assume that M and L satisfy the above conditions. Then by [M, 5.3] and the choice of M
we have

deg(Yn,u)= > i(2;YnuNL)=i(p;Yn, NL)+ oo
Z€Yn, ,NL €Y, ,NL\{p}

= mu}-tp(yn,u) + |Yn,,u NL \ {p}'

Clearly, we have Y, , N L\ {p} =¥~} (M N Y._1,), and by Proposition 2.2 and the choice
of M this set contains prdeg(Yn_1 ,) points. O

Now we shall determine the tangent cone of Y, . at p. Consider the affine space
AP = P71\ V(¢t,) with affine coordinates (t%, el El't:—l) = (u1,...,Un—1). The point p
corresponds to the origin, and denote by X the affine part Y, .NA" 1 of Y, ,. Any non-
zero polynomial f € Fluy,...,un—1] can be decomposed as a sum f = f, + for1++ frm,
where f; is homogeneous of degree 7, and f, is non-zero. The homogeneous component f,
i1s called the leading term of f at 0, and is denoted by leado(f). Recall that the tangent
cone TCyX at 0 is the common zero locus of the leading terms of the elements in the ideal

of X, so TCyX = V(leado(f)|f € I(X)) (see for example [M, 5.10]). The multiplicity
multe(X) = mult, (Y, ) equals the degree of (leado(f)|f € I(X)).

Proposition 2.4. The tangent cone of X at 0 is the algebraic set Xn-1,u, where y' is
the sequence (pq, ..., pE—1).

Proof. Denote fi; the sequence of k — 1 increasing integers obtained by removing the ith
member of u, for example, fiy = u'. Forany 1 <i; < -+ < i4_; < n— 1 the polynomial
Ou(tiy,....ti_,,ts) is contained in I(Y, ,), and on passing to A"~! = Pn! \ V(¢t,) it
corresponds to

611): (ui17"'7uik—1) - 6ﬂk—1(ui17" "uik—l) -+ (_1)k+16ﬂ1(ui1""7uik—1)v

as one can see it from the expansion of the determinant of (27 )1<i,j<k according to its
last row. The leading terms Sur(tiy, o yug_ ) (With 1 <4 < - < ijy < n— 1) are
contained in I(T'CyX), and their common zero locus is Xn_1,p by definition, implying
that X,,_, , contains TCyX.

Now we turn to the proof of the reverse inclusion. Let z = (z1,-..,%n-1) € Xn_1 , bea
non-zero point. We claim that the line {Az|\ € C} belongs to TCyX. We use the following
geometric characterization of the tangent cone [M, 5.7 b)]: the projectivized tangent cone
PTCoX is the set of limiting positions of lines Og as ¢ € X \ {0} approaches 0.

Clearly, some (zy, ..., 2,-1) belongs to X if and only if (21,-..,2n-1,1) belongs to X, ,.
If the rank of the matrix (z!’ )f:'ll ’.""",]:_1 is at most k — 2, then the whole line 0z lies on X,
so it belongs to TCyX. o

From now on we suppose that rk((xﬁ‘f)jﬂv-.,k

i=1,...,n—1

) = k — 1, say the first £ — 1 rows

of this matrix are linearly independent. So in the (k — 1) x k matrix (xf’)lel’:_] the

(k —1) x (k = 1) minor obtained by removing the last column is degenerate, but there

exists some 1 < m < k — 1 such that the minor obtained by removing the mth column is
non-degenerate.
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For any y,z € A"! let denote d(y, z) the usual Euclidean distance of y and z.
Take a y = (y1,...,Yn-1) € Xn_y,. If y 1s sufficiently close to z, then the minor

obtained by removing the mth column of (y! )f 11 ,’: , 1s non-degenerate. Some point

Ay on Oy belongs to X if and only if (1,...,1) is contalned in the row space of the matrix

((Ay;)H )f 11 : 1> that is, if ) is a root of the polynomial §,(ty;,...,tyx—1,1) € C[t]. We
have the equahtles

é.u(tyla s atyk—l7 1) - tul+m+uk_1(6ﬂk(yl7 e ayk~l) — tHET - 16#1: 1(y17 ey yk—l)i
o (DTS (g, yer)) = T TR (L ye)(1).

We may choose y on X1, arbitrarily close to z satisfying also §,/(y1,...,y%k-1) # O.
Indeed, let Z be an irreducible component of X,_;, containing z. The polynomial

0 (U1, .., uk—1) is not identically zero on Z (since it does not vanish in ), hence the
projection

7 AP AR

(215 y2n1) = (21,. .., 25_1)

has finite fibers over the Zariski dense open subset 7(2Z) J\V(84,.), hence by Proposition 2.1
dlm((—Z)) = dim(Z) = k— 1, implying that resz7 : Z — A*~ 5 1s a dominating morphism,
$0 0ur(uy,...,uk—1) is not identically zero on Z (we have used already this argument in
the proof of Proposition 2.2). The proper algebraic subset Z N V(6 (u1,...,ug—1)) of Z
does not contain a neighborhood (in the Euclidean topology) of z, implying our claim.

Zero is a root of the non-constant polynomial g(z;,...,zk—1)(t) € C[t]. Since the
coefficients of the polynomial g(y1,...,yx—1)(t) depend continuously on y, if y is close
enough to z, then the polynomial has a root close to zero. More precisely, for any natural
n there exists y(™ on Xn—1,, satisfying the following conditions:

(1) d(z,y™) < &
( #m(ylv"'ayk—l)#o;

)
(3) ¢ (yl,.--,yk 1) #0;
(4) i

( ,...,y,C )(t) has a non-zero root A, with d(0,\,y(™) < %
These conditions imply that z(™) = X\,y(™ lie on X \ {0}, they tend to 0 as n goes to
infinity, and the limit of the secant lines 0z("™) is the line 0z. O

3. MONOMIAL IDEALS

A summary about Grobner bases can be found for example in [E, Chapter 15]. To speak
about Grobner bases one has to fix an admissible order < of the monomials in F[t;, ..., t,].
For any f € F[ty,...,t,] denote by In(f) the initial monomial of f, that is, the monomial
of f with non-zero coeflicient which is maximal with respect to <. The initial ideal of an
ideal I is

Ini(I) = (Ing(Flf € I),
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the ideal generated by the initial monomials of the elements of I. The polynomials
fiesfm € I form a Grébner basis of I with respect to < if Ing(I) is generated by
Ing(f1),...,Inx(fm). In this case I is generated by fi,..., fm. Any ideal has a finite
Grobner basis. We shall use the fact that the residue classes of monomials not contained
in In4(]) form an F-linear basis of the factor ring Ft1,...,t,]/I. In particular, the Hilbert
polynomial of a homogeneous ideal I coincides with the Hilbert polynomial of its initial
ideal. A subset of I is called a universal Grobner basis if it is a Grobner basis with respect
to any admissible monomial order.
Critical monomial ideals have the following algebraic characterization.

Lemma 3.1. A monomial ideal is critical if and only if all of its associated primes have
the same dimension.

Proof. Let M = Q1 N...N @, be an irredundant primary decomposition of a monomial
ideal. Then \/Q,,..., V@, are the associated primes of M. We may assume that the first
m of them have maximal dimension. It is well known that e(M) = e(Q1) + - - - + ¢(Q ).

If m < p, then @1 N...NQ,, is a monomial ideal that strictly contains M and has the
same degree as M, so M is not critical.

Conversely, assume that m = p. Let w be any monomial not contained in M. Then
w is not contained in some primary component of M, say w ¢ Q;. The prime ideal V@,
is generated by n — k variables from {t1,...,%,}, where k = dim(M). Thus there are k
variables not contained in /@, say t1,... ,tx & \/@,. Since Q; is primary, it follows that
w17 ¢ Q1 D M for any ag,...,ax. The number of degree d monomials of this
form is given by a polynomial P(d) for sufficiently large d, where the leading term of P(d)

k—1

is ———(i_l)!. This clearly implies that dim({w, M)) < dim(M) or deg((w, M)) < deg(M). O

Now we turn to the investigation of our concrete ideal.

Proposition 3.2. (i) If D = {§,(ti,,... ,t:,)|1 <41 < - < ix < n} is a Grébner basis
of (D) for any admissible monomial order satisfying t; < --- < t,, then D is a universal
Grobner basis of (D).

(i1) Let < be an admissible monomial order with t; < --- < tx. Then the initial
monomial of §,(ty,... ,tx) =t} - th*.

Proof. (i) See the proof of [Lo, Lemma 2.1]. The key fact is that D is stabilized by any
permutation of the variables. On the other hand, any admissible monomial order can be
obtained from an order with #; < --- < ¢, using a permutation of the variables.

(1) Any monomial of §, is of the form t‘;zl)---t’;’(‘k) for some m € Sym(k), so the
statement 1s obvious. [

Thus we may restrict to monomial orders with ¢; < --- < t,, and then the ideal
generated by the initial monomials of the elements in D is

My, =t 1 <4 <o < < ).

Forany 1 <¢; < -+ <ip_g41 < n we put

. . ki Biy—s41 Hip _pgr—ntk
Qn,u(lla--' ’Zn—k+1) - <ti1 1t vti, LA 7tin_k+1 )
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Proposition 3.3. The irredundant primary decomposition of My , is

Mn,p. = ﬂ Qn,u(ila--- 7in—k+1)

1< < <inog41<n
(if uy = 0, then the intersection runs over 2 < i; < --- < ln—k+1 < ).

Proof. Clearly, Qn u(i1,... ,in—k4+1) is a primary ideal with radical (tivs o s tin_ )

C: Consider a monomial w = t;‘ll . -t;-‘: € My, Forany 1 <4y <« - <ip_g4; <n the
mtersection {j1,...,7k} N {i1,... ,4n—k+1} is non-empty, let j, = i, be the element of the
intersection with r, s maximal. We have the inequality i, < n — (k=r)—(n—k+1-35)=
r+s— 1, implying that w € (¢§7) C (¢ ") C Q, u(i1,- -+ ,in_kt1).

O: Let w = ¢{" -+ -t%" be a monomial contained in the intersection on the right-hand
side. We define recursively j; > --- > j; as follows. Since w € Qnulk,k+1,... ,n) =
(tf:",t’,:il,... ,thx) . there exists some j with aj; > pup and k£ < 3 < n. We put j; for the
maximal such j. Assume that we have already defined Je > > Jkeryr 2 k—1+1
(1 < r < k). Then w is contained in Qnu(t1,. .. in—k+1), where {¢1,... ,in_sy1} U
Ukdk—tr o Jkmrprt = {b—rk—r+1,... ,n}. Therefore there exists some k —r < j <
Jk—r41 With @; > pg_r, and we put jg_, for the maximal such j. Now w is divisible by

tht . -t%* by construction, hence w € M,, O

Corollary 3.4. Foranyn > k > 2 the monomial ideal M, , is (k—1)-dimensional, critical,
and its degree equals to the (n + 1 — k)th complete symmetric function of iy pg. In
particular, we have the recursion e(Mp,,) = e(Mp_y )+ pre(Mn_1,,), wheren > k >3
and p' = (uy,. .., uk—1).

Proof. By Proposition 3.3 any associated prime of M, , is of the form (tis o s tin_ypy), SO
(k —1)-dimensional, and hence by Lemma 3.1 M., . 1s critical. The primary decomposition
shows also that

6(Mn’u) - Z deg(Qn!“(il’ e ’in_k"}'l)) = Z )uil /‘Li2~1 e ,uin_k+1—n+k-

1<6 < <in_k41<n
]

Proof of Theorem 1.2. Since the polynomial 0, has rational coefficients, if the theorem
holds over C then it holds over any algebraically closed field of characteristic zero. Hence
we may assume that F' = C, and we can use the results of Section 2.

Let < be an admissible monomial order with t; < --- < ¢,. Since the polynomials
Ou(tiy, ... ,ti,) vanish on Y, ,, we have In(I(Y; ,)) D M., ., and our aim is to show that
equality holds here. By Corollary 3.4 M, , is critical, therefore it is sufficient to show that
dim(In<(I(Yy ,))) = dim(M, ) and e(Ing(I(Y,,,))) = e(M, ). The Hilbert polynomials
of I(Y,,,) and InL(I(Y, ,)) coincide, hence we have dim(In4(I(Y,,,))) = dim(Y, ,) + 1 =
k—1=dim(M,,,) and e(In((I(Y, ,))) = deg(Yn, ).

By double induction on k and n we prove that e(M, ,) = deg(Yn ).

Consider first the case n = k > 2. Then e(Mg,,) = 1 + -+ + px by Proposition 3.4.
The algebraic set Yy , is a hypersurface defined by 6,(t1,...,tx), and since this polynomial
has no multiple factors by Lemma 1.1, we have deg(Y ) = deg(6,) = p1 + - - + px.
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Assume next that n > k = 2. If 4; = 0, then Y (0,u,) consists of the points (z1 : -+ : z,)
whose any coordinate is a pyth root of unity, and there are u;'_l such points. If u; =1,
then Y, (1 ,,) consists of the points whose any coordinate is either zero or a (12 — 1)th

root of unity, and there are %;;—_111— such points. In both cases we have deg(V,, ,) = %%%11— =
e( My 4.

Finally, assume that n > k > 3. By Corollary 3.4 and the induction hypothesis we have
(3.1) e(Mn) = e(Mp_1,,) + pre(Mp_1 ,) = deg(Yn_1,u1) + prdeg(Yn_1,4),

and by Proposition 2.3 we have

(3.2) deg(Yn,,) = mult,(Ys ) + urdeg(Yno1,,).

We use the notation of Proposition 2.4. The multiplicity mult,(Y;, ,) = multy(X) equals
(k —3)! times the leading coefficient of the Hilbert polynomial of the ideal (leady(f)|f €
I(X)) (see for example [H, p.258]). The common zero set of (leady(f)|f € I(X)) is the
tangent cone T'Cy X, which by Proposition 2.4 coincides with Xn-1,. On the other hand,
we saw 1n the proof of Proposition 2.4 that

(leado(f)If € I(X)) 2 (6 (tiy, - sty )1 S 1 <+ < gy Sn = 1),

and by the induction hypothesis this latter ideal is exactly the ideal of X,,_; .. It follows
that Fluy, ..., up—1]/(leado(f)|f € I(X)) is the coordinate ring of X,_1 ./, and so

(3.3) mult, (Y, ,) = deg(Yo—1 u).

Comparing (3.1), (3.2), and (3.3) we obtain the desired equality e(M, ,) = deg(Y, ,).
So we proved that In((I(Y, ,)) = M, ,, and by Proposition 3.2 this implies the uni-
versal Grobner basis property. O

Corollary 3.4 and Theorem 1.2 have the following corollary:

Corollary 3.3. The degree of X,, , equals the (n+1— k)th complete symmetric function
of i1, ..., ik, that is,

deg(Xn,u) = y AR
St ge=n—k+1

O

Remark. Since M, , is critical, to verify the equality In<(I(X, ,)) = M, , it was sufficient
to show that the dimension and the degree of M, , computed by combinatorial arguments
is what was predicted by the geometry of X, ,. So it is a natural question for which
affine cones it is true that the initial ideal of their vanishing ideal is critical. Let X be an
affine cone over the origin. Obviously, if In,(I(X)) is critical then X must be unmixed

(otherwise In (I(X")) 2 In4(I(X)) and e(In<(I(X"))) = e(In<(I(X))), where X' is the
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union of the irreducible components of X having maximal dimension). The converse is
not true, that is, the unmixedness of X does not imply that InL(I(X)) is critical, as the
following example shows. We put

X ={(z,2,y,9),(z,y,2,9),(z,y,y,2)|z,y € C} C A?,

so X 1s the union of three 2 dimensional linear subspaces, and hx(t) = 3t+ some constant .
The polynomials (t;, — t;,)(t;, — t;;)(t;, — ti,) and (t;, — ti, )(ti, — ti,)(t;, — t;,) with
{21,12,23,14} = {1,2,3,4} vanish on X. Let < be the lexicographic order induced by
i1 <ty <ty <ty. Then

In (I(X)) D (tat3, totd, tatd, tity, tity, totsty, t3)

(t3t4 is the initial monomial of (t1 —1t2)(t1 —t3)(t1 —ta) + (t2 — t1)(t2 — t3)(t2 — t4)). Those
degree d monomials outside In(I(X)) which are divisible by ¢, are all contained in the
set {tf—zt:‘i, tf_2t2t4, tf_2t3t4}, hence

#{degree d monomials ¢ In,(I(X))} — #{degree d monomials ¢ (InL(I(X)),t4)} < 3.

It follows that e(In4(I(X)),ts) = e(In4(I(X))), though t4 is clearly not contained in the
ideal InL(I(X)).

4. SUBSPACE ARRANGEMENTS RELATED TO REFLECTION GROUPS

A finite collection H of n — 1 dimensional linear subspaces of C" is called a complez
hyperplane arrangement. For any 1 < k < n — 1 denote by H(k) the collection of k
dimensional linear subspaces which are intersections of elements of H. It is called the
(n—k)-truncation of H, following the terminology of [B, 5.1.(iv)]. An interesting example is
the so called braid arrangement, consisting of the hyperplanes V(¢;—t;) with 1 < i < j < n.
The union of the elements of the (n — k)-truncation of the braid arrangement is

{z € C"|z has at most k different coordinates},

and the special case (u1,..., pk+1) = (0,1,2,..., k) of Theorem 1.2 gives a Grébner basis
of the vanishing ideal of this subspace arrangement. The reflections with respect to the
hyperplanes in the braid arrangement generate the standard representation of the sym-
metric group Sym(n). There are other interesting hyperplane arrangements belonging to
the other Weyl groups, or more generally, to the complex pseudo-reflection groups. Recall
that a linear transformation of C" is called a pseudo-reflection, if it is of finite order and
it fixes a hyperplane. A subgroup of GI,(C) generated by pseudo-reflections is called a
pseudo-reflection group.

Now let G be a finite pseudo-reflection group, and denote by Hg the set of the reflecting
hyperplanes. The problem to describe a Grobner basis of the vanishing ideal of the G-
orbit of a k dimensional subspace which is the intersection of reflecting hyperplanes (orbit
arrangement) was raised in [B, 13.5]. Note that the union of these orbit arrangements is
the (n — k)-truncation of Hg. We would like to point out that the corresponding special
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cases of Theorem 1.2 give Grobner bases of the vanishing ideal of the (n — k)-truncation
of Hg for all but finitely many irreducible pseudo-refiection groups G.

The finite irreducible unitary pseudo-reflection groups were classified in [ST]. We dis-
cussed already the infinite series of the symmetric groups Sym(n). (To get an irre-
ducible representation one has to restrict the standard representation onto the hyperplane
V(t1 + - +t,).) For the dihedral groups (the symmetry groups of regular m-gons) our
question is not interesting, because then n = 2 and the only truncations of H are itself
and {0}. Besides finitely many exceptional groups the remaining groups in the list are the
groups G(m,q,n), where m > 2 and ¢ divides m, defined as follows:

Consider Sym(n) as a subgroup of Gl,(C) consisting of permutation matrices, and
denote by D(m,q,n) the group of diagonal matrices whose diagonal entries are mth roots
of unity, and whose determinant is an m/gth root of unity. Obviously, Sym(n) normalizes
D(m,q,n), so they generate in Gl,,(C) their semi-direct product G(m, ¢,n) = D(m,q,n) x
Sym(n).

Case I: G = G(m,q,n), m > 2, ¢ # m. In this case the reflecting hyperplanes are

He :{V(ti—ét]'), V(t1)|1§i<j <n, lzl,...,n, Cm :1}.

We claim that for any 1 < k < n — 1 the union of the linear subspaces in the (n — k)-
truncation of Hg is Xy, with g = (1,m + 1,2m + 1,...,km + 1). By definition we

have

Xonpw={x € Cz;, - 24, H (z" —z")=0forany 1 <7y < - <iggy < nj.
1<r<s<k+1

On the other hand, take an element L of Hg(k). There are k "free coordinates” on L, say
t1,...,tk, and L is defined by n — k linear equations ly+; =--- =1, =0, where [; =t; or
lj =t = (jty; with (" =1 and 75 € {1,...,k}. It is easy to see that the union of all such
subspaces is

{r € C"| among any k + 1 coordinates of z there is a (

or there are two whose mth powers are equal} = X, ,
Note that in the special case m = 2 we get the Weyl group G(2,1,n) associated with
the Dynkin diagram B,,. (In this case the subspace arrangement is defined over the real
numbers, and the conclusion of Theorem 1.2 clearly holds with F' = R.)

Case II: G = G(m,m,n), m > 2. In this case we have

Ho ={V(ti—(tj)I1<i<j<n, (" =1},

and similarly to the above case for any 1 < k¥ < n — 1 we have UHg(k) = X, , with
it =(0,m,2m, ..., km). In the special case m = 2 the group G(2,2,n) is the Weyl group
belonging to the Dynkin diagram D,,.

So the special cases p = (1,m+1,2m + 1,...,km + 1) and g = (0,m,2m, ..., km)
of Theorem 1.2 give Grobner bases of the vanishing ideals of (n — k)-truncations of the
reflection arrangements belonging to the pseudo-reflection groups G(n,m, q).
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