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Abstract

An (s,t)-sparse matrix has s non-zero entries per column and t per row. (s,t)-sparse integer
matrices arise in the computation of integral homology. In this paper a probabilistic analysis
is given for diagonalizing an integer (s,t)-sparse matrix into normal formal. By normal form
of a matrix, we mean the diagonalization of the matrix over the ring of integers. We prove
that under high probability the expected running time is O(n?) where n is the size of the given
(s, t)-sparse matrix, i.e. this expected running time can be achieved with probability very close
to 1 when s,t € n.

1 Introduction

Donald in his paper [3] discusses the sparsity of the boundary matrices in homology-type computa-
tion of a triangulated geometric design(i.e. a finite dimensional simplicial complex). In this paper,
we study the probabilistic complexity of (Smith) normal form computation of such a sparse matrix.
In [5], a polynomial time O(n®) deterministic algorithm is given to compute the normal form of a
matrix. However, in this paper, we will study the classical reduction algorithm (see, e.g., [?]) and
show that this reduction algorithm runs fast(i.e. O(n?)) probabilistically on a (s, t)-sparse matrix
with non-zero entries uniformly distributed over the set Z_,, ;\{0}, where Zi__; is the set of
integers in the interval [~gp, p], p is a very small positive integer and 7 is the size of the matrix. In
the case of integral homology computation, p = 1.

Definition 1 We denote the algebraic complexity of @ matriz A by alg(A). alg(A) = max{|a;;| |
a;j is an entry in A}.

Definition 2 Henceforth we will consider diagonalization of an integer matriz A over Z. We will
assume A has n rows and m columns, and without loss of generality we take n > m. We calln the
size of the matriz.
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Definition 3 Annxm matriz M is called (s, t)-sparse if each row (resp. column) of M has ezactly
t (resp. s) non-zero elements and s € n and t € m. Furthermore, we require that the non-zero
entries in M are uniformly distributed over the set Z(_,,;)\{0} where p is a very small positive
integer, and each entry of this matriz has equal chance of being non-zero. For convenience, we
define a = log, n, § = log, m and assume n > m wlog.

1.1 Statements of Approach and Results

In this section, we give a brief overview of our approach in order to give the reader the general
idea; a formal and careful exposition comes later in the paper. All claims are proven, but due to
limited space we have relegated some proofs to the appendix, labeled A.

We proceed as follows. The approach Donald took [3] in analyzing the probabilistic complexity
of normal form computation was to examine pre-reduction complexity. This operation reduces the
computation on an # X m matrix to the computation on an (n — 1) x (m — 1) matrix.

Definition 4 [3] When an arbitrary matriz is in the form of eq. (1), where ay,; divides each element
of B, we say the matriz is in pre-reduced form. We call the algorithmic process of bringing a matriz

into pre-reduced form pre-reduction. We call the matriz B in eq. (1) the remaining matrix after a
pre-reduction.
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By a cursory examination of the reduction algorithm, it is evident that the change in algebraic
complexity of an entry after a pre-reduction depends only on the algebraic complexity before the
pre-reduction. Suppose we begin with an (s,t)-sparse n X m matrix A. In this paper we first
notice that our original (s, t)-sparse matrix gets denser after each pre-reduction but the algebraic
complexity remains the same (probabilistically) for the first few pre-reductions. That is, initially,
as the matrix is diagonalized, it remains “sparse enough” that a subsequent pre-reduction will
increase its density, but not its algebraic complexity. However, the remaining matrix becomes
increasingly dense, and this “sparse enough” property is eventually violated. At this point, we call
the remaining matrix “dense”. We show that the dense remaining matrix we obtain has uniformly

distributed entries all of low algebraic complexity. From our point of view, the difference between
“sparse enough” and “dense” is as follows:

Definition 5 “Sparse enough” matrices have non-zero elements that are uniformly distributed and
of low algebraic complezity. A pre-reduction of a “sparse enough” matriz will make it somewhat
denser, but will not raise its ezpected algebraic complezity.

Definition 8 The entries of a “dense” matriz are uniformly distributed and of low algebraic com-
plerity. A pre-reduction of a “dense” matriz is ezpected to raise its algebraic complezity.



In this paper we show that the expected number of pre-reductions we can perform before
obtaining a dense remaining matrix B is at least n — ¢/n, and hence the resulting dense remaining
matrix B is of expected size at most ¢/7 (recall the definition of size, def. 2). Furthermore, the
entries in this dense remaining matrix B of size at most /7 are uniformly distributed over the
integral interval Z_, ; with p a very small positive integer. From [3], we know that each pre-
reduction of a “sparse enough” matrix of size n takes time O(n), and hence we can obtain our
dense remaining matrix B in time O(n?).

It then remains to analyze the complexity of diagonalizing the remaining dense matrix B. First,
we will prove that the algebraic complexity of B changes by a constant amount after each successive
pre-reduction. We show that for the case of integral homology computation the expected value of
this constant is in fact 1. Pre-reducing a general dense n X m matrix of uniform algebraic complexity
p can be done in time O(pmn) (see [3]). Let r = ¢/n. Hence we can diagonalize an r X r dense
remaining matrix B with initial algebraic complexity p = 1 in expected time

r24+2(r-1)2+3(r-2)+.-- (2)

which is O(r4) = O(n). Hence B can be diagonalized in linear (O(n)) expected time. We conclude
that the complexity of normal form computation for a (s,t)-sparse matrix A is O(n?) probabilis-
tically where n is the size of A, i.e. This expected running time can be achieved with probability
very close to 1 when s,t € n.

In order to prove this result, we describe a number of tools. First we develop a technique for
analyzing the combinatorics of diagonalization, by gathering successive pre-reduction steps together
into “groups” called groups of pre-reductions. By group pre-reduction we mean a sequence of pre-
reductions having the property that each pre-reduction in the sequence increases the number of
non-zero entries in a row by the same expected amount. We then gather the group pre-reductions
into sequences called “phases”. By a phase of group pre-reductions we mean a sequence of at most
v2a successive group pre-reductions, where a = log; n. Phases of group pre-reductions can be
combinatorially cascaded in order to effect a complexity analysis. We use discrete random vari-
ables to model integral matrix entries, and thereby determine bounds on their expected growth and
density. The probabilistic analysis is complicated by the destruction of uniformness and indepen-
dence of the matrix entries after the dense matrix is obtained. However, we are able to show that
the entries are nevertheless conditionally independent and uniform (on the outer row and column).
This admits an inductive probabilistic argument (based on the recursive conditioning) that we use
to derive our theorem on the constant algebraic complexity growth per pre-reduction in a dense
matrix with low algebraic complexity.

In an appendix, labeled B, we generalize our probabilistic analysis to a non-uniform and de-
pendent n X m (s,t)-sparse matrix, that is a (s, t)-sparse matrix whose entries have dependent and
non-uniform probability distributions on being non-zero. We propose a pre-processing algorithm
using active randomization to destroy the non-uniformness and dependence in order to obtain a
uniform and independent (s,t)-sparse matrix, that is a (s,t)-sparse matrix whose entries have in-
dependent and uniform probability distributions on being non-zero. Then we can use the reduction
algorithm to diagonalize this uniform and independent (s, t)-sparse matrix. The randomization cor-
responds to a random “change of basis”, hence the Smith normal form will be the same. We show
that the active randomization algorithm takes time O(n + m). Hence, we prove that diagonalizing
a non-uniform and dependent n x m (s,t)-sparse matrix can be done in expected time O(n?) with
probability very close to 1 as n is large.



2 Normal Form Computation of a (s,t)-sparse Matrix

Consider a pre-reduction computation. For the given matrix A = ( a;; ), we can always find an
element @ with the smallest size and transform it to the (1,1)-position. Next, we can use elementary
row operations to ensure that this element will divide all the entries in the first column. We can
then subtract off multiples of rows to zero out the entries in the first column (except for ay,;). This
process halts after most |a| row operations (as can be seen from the Euclidean division algorithm).
The entries in the first row can be zeroed out similarly. We have

Proposition 1 [3] Let £ be the smallest (in size) non-zero element of the initial matriz A. Then
pre-reducing the matriz can be done in time O(énm). For a sparse matriz, a pre-reduction can be
done in time O({n).

Without loss of generality, will assume a;,1 = 1, because this case can maximize the possible
worst-case increase in algebraic complexity [3]. Now, let’s consider the following step in a pre-
reduction.

1 .. b .. 1 .. b | S 0

qg . a .. |7 0 ... a-bg .. “1lo .. a—-bg .. (3)

Definition 7 We call the step illustrated in eq. (3) a basic step in a pre-reduction.

Definition 8 We call the first row of the matriz A the outer row, and the row containing a and q
hit row. The outer and hit columns are defined analogously.

We are interested in the following two questions for a (s, t)-sparse matrix A:

Question 1 Will a (s,t)-sparse matriz get denser after a sequence of pre-reductions? If so, how
fast?

Question 2 Will the algebraic complexity alg(A) grow after a sequence of pre-reductions? If so,
how fast?

2.1 Change of Sparsity

We notice that a row can get denser after performing a basic step if and only if some zero entries
are converted to non-zero. In the following, we will define a random variable X to measure the
density growth after one basic step.

2.1.1 Discrete Random Variable, Expected Value and Variance of a Basic Step

For a (s,t)-sparse matrix A, the discrete random variable X is defined as a map from the set
of indices of non-zero entries in the outer row (except the first entry on that row), to the set
{0,1,...,t — 1}(i.e. the set of possible number of zero entries being converted to non-zero in a
basic step). We know that the probability of a entry being non-zero in a (s, t)-sparse matrix A is
Pla;; #0)=1-(1-2)1-£)= £+ L _ 2L For convenience, we define p to be L4 Lo,
Clearly, p — 0 as L ﬁ — 0 asymptotically. So we have



Definition 9 The probability distribution function f is defined as follows,

t-1
z

f(z)=P(X =z)= ( ) (1 -p)(p)~*! (4)

f here is usually called the binomial distribution function.
We know that the expectation E(X) and variance V(X) can be computed easily as follows,

E(X) = (t-1)(1-p) (5)
= (t-—l)(l—%-&-%—:‘—tn)—vt—lasp—-ro (6)
V(X) = (t-1)p(1-p) (7
< (t-1)p (8)
_ t(t_1)+s(t_1)-st(t_1)—>Oasp—»0 (9)

n m mn

E(X) and V(X) tell us that, t — 1 zero entries are converted to non-zero in a basic step of a
pre-reduction with probability very close to 1 as p — 0, i.e., the hit row now is expected to have
2t — 2 non-zero entries and no non-zero entries on the hit row are expected to be hit in a basic
step. So, we can also conclude that, the algebraic complexity stays unchanged with probability
very close to 1 as p — 0. Since in a pre-reduction there are exactly s rows involved, so we have

Proposition 2 After n/s pre-reductions, we obtain an 2*(1 - 1) x (28 - L) remaining matriz B
of ezpected sparsity (2s-2, 2t-2) with probability very close to 1 as £,L — 0 asymptotically where
n=22m=20n>m.

Proof: See appendix A. 0O

2.1.2 Group Pre-reductions and Phases of Group Pre-reductions

Proposition 2 tells us that during the first n/s (expected number of) pre-reductions, the expected
number of zero entries converted to non-zero in a hit row stays the same with probability very close
to 1 as £, % — 0 asymptotically. So,

Definition 10 We group these pre-reductions together and call them the first group pre-reduction.
In general, group pre-reduction means that we group a sequence of successive pre-reductions together
when this sequence of pre-reductions has the property that the ezpected number of zero entries
converted to non-zero in a hit row stays the same after each pre-reduction in this sequence of
pre-reductions.

We know that after the first group pre-reduction, we get a denser matrix, but the probability
of any entry of this matrix being non-zero is very close to 0 as the ratios (2s —2)/(2*(1 - 1)), (2t -
2)/(2°-2*) — 0 asymptotically where 2t—2 (resp. 2s—2) is the expected number of non-zero entries
in each row (resp. column) and 2%(1 — 1) (resp. 28 — L) is the number of rows (resp. columns)
of the remaining matrix after the first group pre-reduction. In other words, the remaining matrix

4



s still “sparse enough” in the sense that an additional pre-reduction will not change its expected
algebraic complexity (we see this from the proof of proposition 1 above). Recall that (Def. 6)
a dense matrix B is one where a pre-reduction of B results in an expected increase in algebraic
complexity. In general, we want to know how many such group pre-reductions we can perform
before we reach such a dense matrix. We observe that after one group pre-reduction, the number of
non-zero entries in a row is nearly doubled and P(a;; # 0), where a;; is any entry in the remaining
matrix, is also doubled. But as long as P(a,; # 0) — 0 we can keep performing the next group
pre-reduction.

From the proof of proposition 2 and the definition of group pre-reduction, we can derive that
the expected number of pre-reductions in a group pre-reduction is n’ /8’ where n’ is the size of the
matrix before the group pre-reduction and s is the number of non-zero entries in the outer column
of the matrix before the group pre-reduction. We now derive the expected number of group pre-
reductions we can perform before P(a;j # 0) /> 0. Suppose the i* group pre-reduction contains p;
pre-reductions. Then the total expected number of pre-reductions we can perform before obtaining
a dense remaining matrix is ¥; p;. We bound this sum below.

For convenience in our analysis, we gather successive group pre-reductions into sequences called
“phases”.

Definition 11 The it* phase of group pre-reductions consists of a sequence of n; group pre-
reductions with n; < /2a such that after this sequence of group pre-reductions we obtain a matriz
of size 2% with 0 < a < 1 for some a, where n = 2% is the size of the original matriz.

Also, we will assume that after each group pre-reduction, the number of non-zero entries in
each row is doubled. Now, we claim the following,

Theorem 1 For a given (s,t)-sparse matriz of size n = 2°: The ezpected number of phases of
group pre-reductions is k and the ezpected number of group pre-reductions we can perform before
obtaining a dense remaining matriz is ny + np + - - - + ng where n; < \/2a is the number of group

pre-reductions in the i*h phase of group pre-reductions for i = 1,2,...,kand k < 3@.
Corollary 1 The remaining dense matriz is of size at most 2% = Vn.

In order to prove theorem 1, we will make several observations about the size (def. 2) of the
remaining matrix after each group pre-reduction. Let us consider the following sequence of values,
each of which represents the size of the remaining matrix after each successive group pre-reduction.
We start out with a matrix of size n = 22 for some a:

oa after first grol;:’pre—reduction 20(1 _ é) (10)
after second gv:o__ug pre—reduction 20_1(1 _ %)(2 _ é) (11)
after third gro_u&prc-—rcduction 20,_3(1 _ ‘3‘)(2 _ é)(‘! _ i) (12)
(13)

after i*? group pre—reduction a_.’(l) 1 1 1 i 1
2 2= 2= E- )@ -0 ()

S $ 8 L]
(15)



In deriving the above sequence of sizes of the remaining matrix after each successive group
pre-reduction, we obtained the following recurrence relation on 7.(1):
) = 0 (16)

1 1),
MU an)

The 7,-(1) here is a combinatorial device to help us find the transition point from the first phase
of group pre-reductions to the second phase of group pre-reductions. Precisely, when 7'(1) reaches
a, we obtain a sequence of i group pre-reductions, and we will show that i < \/2a. According to
the definition of a phase of group pre-reductions, we will call this sequence of i group pre-reductions

the first phase of group pre-reductions.

Proposition 3 In the above sequence (10) - (15), if ‘y.m = a, then a and i satisfy the relation
a = Y41 and the size of the remaining matriz is (1 — 1)2-1)..(2" = 1) = 291« for some real
0<a;<1.

Proof: See appendix A. 0O

We call the above ((10) - (15)) sequence of group pre-reductions before 7,—(1) reaches a the first
phase of group pre-reductions. For convenience, we denote n; to be i, i.e. n; is the number of
group pre-reductions in the first phase of group pre-reductions. From proposition 3, we know that
n1 < v2a. The remaining matrix obtained after the nth group pre-reduction is of size (1 - 1)(2 -
2)---(2m -1), and the number of non-zero entries in a row (resp. column) of this remaining matrix
is at most 2™ ¢ (resp. 2™ s) and the ratio

2Ms
-hHe-H-- -9
1
i 1 2 _ 1
1-3)2=-2)-(2m-2~3
— 0as a — o and ny = V2a by proposition 3.

<

For convenience, we define the following,

Definition 12 We let n’ (resp. m') denote the number of rows (resp. columns) of the remaining
matriz after the first phase of group pre-reductions, and t' (resp. s') the number of non-zero entries
in a row (resp. column).

The total number of non-zero entries in the remaining matrix after the first phase of group
pre-reductions is n’t’ = m's’. So, the ratio ':._I' — 0 as a — 00, i.e. the probability of any entry
being non-zero in the remaining matrix after the first phase of group pre-reductions is very close
to 0 as -;i,, ,:.—', — 0 asymptotically. Hence, we can keep performing group pre-reductions.

Now we start out with the remaining matrix of size 221* and obtain the following sequence
of values, each of which represents the size of the remaining matrix after each successive group
pre-reduction.



ga1a after 1°* group pre--reduction

2010=nr1 (M _ %) (18)

after 2™ group gre—reduch'on gaia—n, _("1.4.1)(2,,1 _ .]_-)(2,-.”.1 _ l) (19)
L] 38

after 374 group g'e-'cduc“o" 2ala—nl—(n1+1)-(n1+2)(2n1 _ _]_1)(2m+1 _ _1_)(2n1+2 _ l) (20)
8 S S

(21)
%) .. _(2n1+l'—l - %022)

ter ith —reduction
after group pre—re

-2 1 ny+1 1 m+2
a1~y Lo S—— 1 —— 1 —_
zefgm — Syentt - )2

(23)

In deriving the above sequence of sizes of the remaining matrix after each successive group
pre-reduction, we obtained the following recurrence relation on 7(2) :

7&2) = n (24)
1 = P rmriot (28)

The 7.?(2) here is a combinatorial device to help us find the transition point from the second phase

of group pre-reductions to the third phase of group pre-reductions. Precisely, when 7}2) reaches
a,a, we obtain a sequence of i group pre-reductions, and we will show that i < V2a. According to
the definition of a phase of group pre-reductions, we will call this sequence of ¢ group pre-reductions
the second phase of group pre-reductions.

Proposition 4 In the above sequence (1 8) - (23), if 7,-(2) = aya, then a,a and i satisfy the relation
aga= 5';—“ + n1t where ny is the number of group pre-reductions in the first phase of group pre-
reductions and the size of the remaining matriz is (2™ — 1)(2m+1 - ) (@mti-1 - 1) = pama
for some real0 < a3 < 1.

Proof: See appendix A. 0O

We call the above ((18) - (23)) sequence of group pre-reductions before 7.(2) reaches a the
second phase of group pre-reductions. For convenience, we denote na to be ¢, i.e. ny is the number
of group pre-reductions in the second phase of group pre-reductions. From proposition 4, we
know that n; < v/2a. The remaining matrix obtained after the n&® group pre-reduction is of size
(2™ = 1)(2m+1 1y, (2mtna-1 _ 1) and the number of non-zero entries in a row (resp. column)

of this remaining matrix is at most 2" +"2¢ (resp. 2"+"23) and the ratio

oni+nz g
2m — .})(2m+1 - .1. coo(2mtna _ .})
1

(2m - .})(2m+1 - .1.) e (2mtna-2 _ .1.)
— 0as aja — oo and ny = V2a by proposition 3.

For convenience, we define the following,



Definition 13 we let n” (resp. m"”) denote the number of rows (resp. columns) of the remaining
matriz after the second phase of group pre-reduction, and t" (resp. s") the number of non-zero
entries in a row (resp. column).

The total number of non-zero entries in the remaining matrix after the second phase of group
pre-reductions is n”t” = m”s"”. So, the ratio ,:7"7 — 0 as @« — 00, i.e. the probability of any
entry being non-zero in the remaining matrix after the second phase of group pre-reductions is

" "

very close to 0 as 47, & — 0. Hence, we are ensured that we can perform at least n, + ny group
pre-reductions.

In general, we can use this combinatorial device 7?'” to find the transition point from the
(7 — 1)** phase of group pre-reductions to the jt* phase of group pre-reductions. After the jt*
phase of group pre-reductions, we obtain a remaining matrix of size 20192492 with 0 < a; < 1
for i = 1,2,...,5, and each row (resp. column) of this remaining matrix has 2™ +n2+-+nj¢ (resp.
2m+n2+-4nig) non-zero entries. Since the remaining matrix becomes denser after each phase
of group pre-reductions, the process of performing pre-reductions without changing the expected
algebraic complexity of the remaining matrix has to stop after the k*» phase of group pre-reductions
for some k, i.e. the remaining matrix we obtain after the kt# phase of group pre-reductions is dense
(recall def. 6). Now, we are ready to prove theorem 1.

Proof of theorem 1:

We obtain a bound k on the number of expected phases of group pre-reductions. We know
that after ny + ny + - - - + ni of group pre-reductions, the size of the remaining matrix is 20192-3xa,
Now, suppose k > %E We derive a contradiction. Since a — oo, 3@ — o0. Hence, Hf.__l a; —» 0
as k — oo because 0 < a; < 1,i = 1,2,...,k. Then 2™ > 20102-3x@ hecause n; ~ v/2a and lemma
1 below. Now, the number of non-zero entries after k phases is sp = 2nt+n2++ns and the size of
the remaining matrix is Nj = 291929x@, Clearly, sy > N as k — oo, which is a contradiction.
Thus the assumption that that k& > 58@ is false. Hence, k < %E Therefore, we can perform at

most %E phases of group pre-reductions, i.e. k is at most Jéé By propositions 3 & 4, we see that
n; < V2a,t=1,2,...,k, therefore ny + ny + - - - + 0z < 2. Hence, the remaining dense matrix is of
size at most 2¢ = ¥m. O

Lemma 1 Let ny = /2a and ]'[f-‘=1 a; > 0as k — oo where0 < a; < 1 fori = i,2,.... Then
2™ > 201620x@ gg k — 00.

Proof: See appendix A. 0O

Theorem 1 essentially tells us that as long as the size of the original matrix (recall def. 2)
n = 27 is large, the expected number of phases of group pre-reductions we can perform is at most
38@ and the expected size of the remaining dense matrix is at most 2¢ = ¢/n. In the next section,
we consider diagonalizing this remaining matrix. We will show that the algebraic complexity is
increased by a constant after each pre-reduction on a dense matrix with low algebraic complexity.
In the case of integral homology group computation, the algebraic complexity is initially 1, and
we show that the expected algebraic complexity in this case is actually increased by 1 after each
pre-reduction. Recall proposition 1, that each pre-reduction on a dense matrix takes time O({mn)
where £ the smallest (in size) non-zero entry of the dense matrix and n (resp. m) is the number of



rows (resp. columns) of this dense matrix. So, the total expected running time for a dense matrix
of size r = J/n with initial algebraic complexity 1 is given by eq. (2) which is O(n). Hence, the
dense remaining matrix obtained from pre-reducing a sparse enough initial matrix of size n can be
diagonalized in expected linear time. This expected running time is achieved with probability very
close to 1 when n is large.

2.2 Change of Algebraic Complexity

From last section, we know that after k < 3@ phases of group pre-reductions, i.e., after "5, n;
group pre-reductions with n; < v/2a. We are left with a dense matrix of entries uniformly dis-
tributed over Zj_,, ;. Pre-reducing a dense matrix will change the algebraic complexity since the
non-zero entries will be hit. We want to find a fast probabilistic bound on the growth of algebraic
complexity. In the following, we will prove that, the algebraic complexity is increased by a expected
constant per pre-reduction with probability very close to 1 when the size of the original matrix n
is large.

2.2.1 Pre-reducing a Dense Matrix With Low Algebraic Complexity

In this section, we only consider a dense matrix A having entries uniformly distributed over Z_1)-

We would like to know whether after a pre-reduction, the remaining matrix has independent entries
that are uniformly distributed.

Proposition 5 After the first pre-reduction of the dense matriz A, the uniformness and inde-
pendence of entries in B are destroyed where B is the remaining matriz obtained after first pre-
reduction.

Proof: See appendix A. O

Proposition 5 tells us that if we only consider the probability distribution for the algebraic
complexity of entries in the remaining matrix B, it will be very complicated to derive the probability
distribution of algebraic complexity growth after in turn pre-reducing this matrix B, since we
don’t have independence and uniformness on the entries in matrix B. However, we notice that
the change of algebraic complexity of entries in matrix B depends solely on the outer row and
column of matrix A, and the entries in matrix A are independent and uniform. So, in the next
section, we will introduce conditional independence and uniformness of entries in the remaining
matrix (conditioned on the outer row and column). This essentially enables us to derive a theorem
on constant growth of algebraic complexity after each pre-reduction by an inductive probabilistic
argument.

2.2.2 Conditional Independence and Uniformness After Pre-reducing a Dense matrix
Definition 14 Events A and B are called conditionally independent on event C if P(AB|C) =
P(A|C)P(B|C).

Definition 15 Events A,, A, ..., A, are called conditionally uniform on event C if P(A|C) =
P(AlC)=-..= P(A,q|C).



Since we have that entries in the outer row and column of the matrix A are uniformly distributed
and independent, we claim the following

Proposition 8 The entries in the remaining matriz B obtained after pre-reducing the dense matriz
A are conditionally uniform and independent on the outer row and column in A.

Proof: See appendix A. 0O

In general, the uniformness and independence of entries in A;, which is the remaining matrix
obtained after i*h pre-reduction, is recursively conditioned on the outer row and column in A,
which is the remaining matrix obtained after (i — 1)** pre-reduction. There are two cases. In the
first, the dense remaining matrix is “small”. In the second, it is “large”. We must show that in

both cases, it can be quickly diagonalized. To do this we must show that the algebraic complexity
grows slowly.

Remark 1 As we see from the sparsity analysis in [3](lemma C.5) and the proof of proposition 5
above, during the first few (i.e. O(1)) pre-reductions of a dense matriz of low algebraic complezity,
the algebraic complezity is increased by a ezpected constant after each successive pre-reduction. So,
for a constant size (i.e. O(1)) dense matriz, we can diagonalize this matriz in constant time o(1).
On the other hand, when the size of a dense matriz of low algebraic complezity is large, Theorem 2
below ensures us that the ezpected algebraic complezity is still only increased by a constant amount
after each successive pre-reduction.

Hence we conclude this section with the following theorem.

Theorem 2 The algebraic complezity of a dense matriz increases by 1 after each pre-reduction
with probability very close to 1 when the size of the original dense matriz is asymptotically large.

Proof: See appendix A. 0

3 Conclusions

In this paper we gave a probabilistic analysis of diagonalizing a (s,t)-sparse matrix (recall def. 3).
From (3], we know that each pre-reduction of a “sparse enough” (recall def. 5) matrix of size n takes
time O(n). Let n'(resp. m’) be the number of rows (resp. columns) and #/(resp. s') the number
of non-zero entries in a row (resp. column) in the remaining matrix after one pre-reduction. This
remaining matrix is still “sparse enough” as long as the probability of any entry being non-zero
in this remaining matrix is very close to 0 as %’;,'f‘—', - 0 asymptotically i.e. a subsequent pre-
reduction of this matrix can increase the number of non-zero entries in a row (resp. column) by
some expected amount, but can not increase its expected algebraic complexity. We then introduced
an combinatorial tool called group pre-reduction (recall def. 10), that is, we group together all the
pre-reductions that increase the number of non-zero entries in a row (resp. column) by the same
expected amount. The “sparse enough” property of a matrix ensures us that we can keep per-
forming group pre-reductions on a “sparse enough” matrix. This process stops when the remaining
matrix turns out to be dense (recall def. 6) after some number of group pre-reductions. We showed
that the expected number of pre-reductions we can perform before we obtain a dense matrix is at
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least n — ¢/n where n is the size of the original matrix, and the expected size of the remaining
dense matrix is at most ¢/n. Since pre-reducing a “sparse enough” takes time O(n), therefore it
takes time O(n?) to perform n — ¢/n pre-reductions before we obtain a dense matrix. Pre-reducing
a dense matrix will raise its expected algebraic complexity. Moreover, pre-reducing a dense matrix
with independent entries uniformly distributed over some integral interval will destroy the indepen-
dence and uniformness of entries in the remaining dense matrix. This complicates our probabilistic
analysis of pre-reducing the remaining dense matrix. In order to overcome this difficulty, we intro-
duced conditional independence and uniformness of entries in the remaining dense matrix. That is,
the entries in the remaning dense matrix are conditionally independent and uniformly distributed
(conditioned on the outer row and column). We made use of this conditional independence and
uniformness and gave an inductive probabilistic argument (based on the recursive conditioning)
that if we start out with a dense matrix of low algebraic complexity, then the expected algebraic
complexity grows by a constant amount with probability very close to 1 when the size of this dense
matrix is large asymptotically. In the case of integral homology computation, the expected value
of this constant is actually 1. Recall proposition 1, which says pre-reducing a dense matrix can be
done in time O(¢mn) where n (resp. m) is the number of rows (resp. columns) and £ is the smallest
(in size) non-zero entry in the matrix. Now, let us consider the dense remaning matrix of size ¢/n
we obtained after performing n — ¢/n pre-reductions on a “sparse enough” matrix. Let r = ¥/n.
The total time for diagonalizing this dense remaining matrix is 72 + 2(r-1)243(r-2)%+. .. which
is O(r*) = O(n). Therefore, diagonalizing a (s,?)-sparse matrix takes expected time O(n?).
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APPENDICES

A Proofs

We now prove the lemmas and claims that for reasons of space could not be included in the body
of this paper.

Proposition 2 After n/s pre-reductions, we obtain an 2%(1 — yx (28 - £') remaining matriz B
of ezpected sparsity (2s-2, 2t-2) with probability very close to 1 as 2, L —, 0 asymptotically where
n=2""m=20n>m.

Proof:

Let us consider the remaining matrix B after the first pre-reduction. The matrix looks like the
one in eq. (1). We know that after the first pre-reduction, some rows of B have 2¢ — 2 non-zero
entries and some columns of B have 2s — 2 non-zero entries. In order that the outer row (resp.
column) of B has 2¢ — 2 (resp. 2s — 2) non-zero entries, a2 and az,; have to be non-zero in the
original matrix A. But we know that P(a;; # 0) — 0 and P(az1 #0) — 0 as ﬁ,# — 0. So, the
outer row (resp. column) of B will still have ¢ (resp. s) non-zero entries with probability very close
tolas £, £ — 0. Then, the second pre-reduction will convert ¢ — 1 (expected number of) zero
entries to non-zero in each of its hit rows. By the same analysis, we know that we can perform an
expected number n/s of pre-reductions such that during each pre-reduction only ¢ — 1 (expected
number of) zero entries are converted to non-zero in a hit row with probability very close to 1 as
. # — 0. After an expected number n/s of pre-reductions, each row will have at most 2t — 2

expected non-zero entries and each column will have at most 2s — 2 expected non-zero entries. 0O

Recall the sequence of values (10) - (15) in the body of the paper above, representing the size
of the remaining matrix after each successive group pre-reduction. We call such a sequence a size
sequence. The following proposition about the size sequence (10) - (15) employs the recurrence
relation in equations (16) - (17), above.

Proposition 3 In the above size sequence (10) - (15), if 751) = a, then a and i satisfy the relation
i(i+1

a = 25~ and the size of the remaining matriz is (1 - 1)(2 - 1)...(2' = 1) = 291% for some real
0<a; <.
Proof:
From recurrence relation given by the equations (16) - (17) above, we obtain
= 44
_ i+ 1)
B 2

So, after it? group pre-reduction, the remaining matrix has 291 number of rows with 0 < a; < 1
for some real a; and

_1 _L i_ly - aa
(1 s)(2 8) (2 3) = 2" 5 0 as a = ©
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and the number of non-zero entries in a row (resp. column) is 2°t (resp. 2's) O

The following proposition about the size sequence (18) - (23) employs the recurrence relation
in equations (24) - (25), above.

Proposition 4 In the above size sequence (18) - (23), if 7}2) = aya, then aya and i satisfy the

relation aya = '-('1'—1)- +nyt where n, is the number of group pre-reductions in the first phase of group
pre-reductions and the size of the remaining matriz is (2™ — 1)(2m+1 - 1)...(2m+i-1 _1) = ga1a:a
for some real0 < a3 < 1.

Proof:
From the recurrence relation given by the equations (24) - (25) above, we get

= i
= m+(m+)+(m+2)+---+(m+i-1)
i(i-1)

2

+n1i

So, after i*h group pre-reduction, the remaining matrix has 29192@ number of rows with 0 < a; < 1
for some real a; and

1

(21:1 _ %)(2n1+1 _ ;) . .(2n1+i—l - %) = 9% _, 00 as a — 00,

and the number of non-zero entries in a row (resp. column) is 2"+t (resp. 2m+is). 0O

Lemma 1 Let ny =~ /2a and ]’]f-‘=l a; > 0ask — oo where0 < a; < 1 fori = 1,2,.... Then
2M > 2a1920k@ gg k5 oo,

Proof:
Since we have

log,2 > 0

k
. logaHa.- — —ooask—oo
=1
Therefore,

log, vV2a = %(loga 2+1)

k
> 1+logana.- as k — oo
i=1

= log,ajaz---ara

Hence, v2a > aya3---apa i.e, 2™ > 201030k a5 k 00, 0
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Proposition 5 After the first pre-reduction of the dense matriz A, the uniformness and inde-
pendence of entries in B are destroyed where B is the remaining matriz obtained after first pre-
reduction.

Proof:

Let us consider eq. (3). We have over all 27 ways to choose the triple (a, b, q) from Z[_, ;) X
Z_y 3 % Z(_,,)- Among these 27 triples, 9 triples will result in la - bg| = 0, 14 triples will result
in |a — bg| = 1 and 4 will result in |a — bg| = 2 after a basic step in a pre-reduction. We conclude
that, the uniformness of entries in B is not preserved after a pre-reduction.

Let us now consider the following basic step in a pre-reduction:

1 .. X .Y .. 1 .. 0 0

Z U .V {0 .. v-xz .. v_vz . (26)

where X,Y, Z,U and V are discrete random variables taking values in Z[_m]. In order to determine
whether U — XZ and V — Y Z are independent, we will check whether E(U-XZ)E(V-Y2Z)is
equal to E((U - XZ)(V — Y Z)). We have

E(U-XZ)E(V -YZ)
= (E(U)- E(X)E(Z))(E(V)- E(Y)E(Z))
= E(U)E(V)- E(U)E(Y)E(Z) - E(V)E(X)E(Z) + E(X)E(Y)E(Z)?
E((U - XZ)(V -YZ))
E(UV -UYZ-VXZ+XYZ2%
E(U)E(V) - E(U)E(Y)E(Z) — E(V)E(X)E(Z) + E(X)E(Y)E(2?)

But we know that E(2?) # E(Z)?, s0o E(U - XZ)E(V -YZ) # E((U - XZ)(V - YZ)),ie. U~ XZ and
V —YZ are not independent. 0O

Proposition 8 The entries in the remaining matriz B obtained after pre-reducing the dense matriz
A are conditionally uniform and independent on the outer row and column in A.

Proof:
Let us first prove the conditional uniformness of entries in B. We consider the following basic
step in a pre-reduction.

1 ... Y .. 1 .. 0

X ..z .. 0 .. Z-XY (27)
where X,Y and Z are discrete random variables taking values in Z(_,,)- By conditioned on X and
Y, we mean that we fix X and Y to be some constants ¢; and ¢, respectively. We know that X is
uniformly distributed before the basic step is performed. Now subtracting a constant c;c; from X
simply means shifting the uniform interval by ¢;cs. So, Z — ¢y¢; is uniformly distributed. Hence,
Z - XY is conditionally uniform on the outer row and column.
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Now let us derive the conditional independence of entries in B. We have three cases to consider.
They are 1) entries in the same row, 2) entries in the same column, and 3) entries in different rows
and columns.

Case 1) independence of entries in the same row:
We consider the following basic step in a pre-reduction.

1 ... X .. Y .. ) 0 0
— (28)

zZ .. X' ..Y . 0 .. XX-XZ .. Y'-YZ

where X, X' Y,Y’ and Z are discrete random variables taking values in Z[_,,)- Again, by condi-
tioning on the outer row and column, we fix these discrete random variables X, Y and Z to be some
constants cy, c; and c3 respectively. Since X’ and Y’ are independent, so X’ ~ ¢;¢3 and Y’ — ¢c3¢3

are independent. Hence, X'~ XZ and Y’ — Y Z are independent conditioned on the outer row and
column.

Case 2) independence of entries in the same column:
This case is symmetric to case 1), so the analysis is similar to that of case 1).

Case 3) independence of entries in different rows and columns:
We again consider the following basic step in a pre-reduction.

1 ... X .Y .. 1 .. 0 0
zZ ... X ... . . | 9 - X-XZ .. (29)
VAR 0 .. w Y'-YZ

where X, X',Y,Y’,Z and Z’ are discrete random variables taking values in Z[_,,). Again, by
conditioning on the outer row and column, we fix these discrete random variables X,Y, Z and Z’
to be some constants c;, ¢z, c3, and c, respectively. Since X’ and Y’ were independent, so X’ — c;c3
and Y’ — cac4 are independent. Hence, X/ — X Z and Y’ — Y 2’ are independent conditioned on the
outer row and column. 0O

Theorem 2 The algebraic complezity of a dense matriz increases by 1 after each pre-reduction
with probability very close to 1 when the size of the original dense matriz is asymptotically large.

Proof:

We proceed by induction on the number of pre-reductions.

Base case: entries a; j in A; are independent and uniformly distributed over Z_; ) conditioning
on the outer row and column of matrix A by proposition 5.

Inductive hypothesis: alg(A;) = alg(A,_;) + 1 with high probability.

Inductive step: We perform a pre-reduction on A;. Recall the basic step as illustrated in eq.
(3),if g,a,b € Z|_;41,i—1), then by inductive hypothesis, with very high probability a — bq € Z._;,.
By enlarging Z(_iy1,i-1) to Z[_;;}, we want to know how many ways there are to choose g,a,b so
that |a — bg| > ¢ + 2. We have the following three cases to consider:

Casge 1) We fix ¢ to be i, then we have 4i? ways to choose a and b so that |a — bg| > i + 2.
Similarly for fixing q to be —i.
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Case 2) We fix b to be i, then we have 4i> ways to choose a and b so that |a — bg| > i + 2.
Similarly for fixing b to be —1.

Case 3) We fix a to be i, then we have 4(i — 1)? ways to choose ¢ and b so that |a — bg| > i + 2.
Similarly for fixing a to be —i.

So, totally we have 16i? + 8(i — 1)? ways to choose a, b and ¢ so that |a — bg| > i + 2. But
there exist 8:3 ways of choosing a,b, g over all. since %ﬁ#:lﬁ =~ -} — 0 as t = 00, and entries
of A; are independent and uniformly distributed over Z(_;,1,i-1) conditioned on the outer row and
column of A;_;, so the probability of having a,b and ¢ so that |a — bg| > i + 2 is very close to 0 as
i — oo.

Hence, we have alg(A;;1) = alg(A;) + 1 with probability very close to 1 when the size of the
original dense matrix is large. 0O

B Active Randomization of a (s,t)-sparse Matrix

B.1 Introduction

The discussion in Donald [3] concerns “random” sparse simplicial complexes. Our analysis has
concerned “random” (s,t)-sparse integer matrices. Unfortunately, these two categories are not in
one-to-one correspondence because not every random (s,t)-sparse integer matrix corresponds to
a legal boundary matrix of a triangulation. We now show how using active randomization we
can get around this problem. Specifically, while the boundary matrices arising in homology-type
computation of a triangulated geometric design are sparse as discussed in Donald [3], they can
have non-uniform distribution and dependence on the probability of their entries being non-zero.
Namely, two g-simplices in a triangulation can intersect at some common face, hence constraining
some entries in the boundary matrix to be zero. This constraint arises from the simple fact that
two simplices of the same dimension must have at least one different vertex. Hence the boundary
matrices have non-uniform distribution and dependence on the probability of their entries being
non-zero (see Donald (3] for discussion on the boundary matrices). However, in our probabilistic
analysis of normal form computation of a (s, t)-sparse matrix, we assumed that a given (s, t)-sparse
matrix has uniform distribution and independent probabilities on its entries being non-zero. Now,
we want to relax this assumption. We show that our results go through for a given (s,t)-sparse
matrix with non-uniform distribution and dependence on the probability of its entries being non-
zero. For convenience, we will adopt the following definitions.

Definition 16 A (s,t)-sparse matriz is called non-uniform and dependent if it has non-uniform
distribution and dependence on the probability of its entries being non-zero. It is called uniform

and independent if it has uniform distribution and independent probabilities on its entries being
non-zero.

Definition 17 A permutation o on n digits is called random if o is uniform among all n! permu-
tations on n digits, i.e., for j € Zyy ), the probability P(o(i) = j) = 1 and for ay,a,...,ai_; all
distinct and different from j, P(o(i) = j | o(1) = a1,0(2) = a2,...,0(i— 1) = a;_;) = by with
1<i<n.

In order to cope with non-uniform and dependent boundary matrices in our probabilistic analysis
of normal form computation, we propose to actively randomize a given non-uniform and dependent
(s,t)-sparse matrix. By active randomization, we mean the following:
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Definition 18 Consider a n x m (s,t)-sparse matriz A, that is non-uniform and dependent. We
define a new n X m matriz A’ as follows. We generate a random permutation o on n digits, and
initialize the o(i)"* row in matriz A’ to be equal to the ith row of matriz A foralli withl1 <i¢<n.
This is called a random row permutation.

Definition 19 A random column permutation is defined analogously. Active randomization is a
sequence of random row and column permutations.

We will derive the number 3 of random row and column permutations we need to perform during
active randomization in order to obtain a uniform and independent n x m (s, t)-sparse matrix. We
show that 3 is two, i.e., one random row permutation and one random column permutation. Because
of the (s,t)-sparseness of the matrix, each random permutation takes linear time (i.e., O(n)). So,
even a non-uniform and dependent (s,t)-sparse matrix can be diagonalized into normal form in
expected time O(n?) with very high probability, i.e., this probability is very close to 1 as n is large.

B.2 Active Randomization of a Non-uniform and Dependent (s,t)-sparse Ma-
trix

We first describe a pre-processing algorithm employing active randomization to convert a n x m
non-uniform and dependent (s,t)-sparse matrix into a uniform and independent one with two
random row and column permutations. In other words, we perform one random row permutation
and one random column permutation. Then we will show that these two operations suffice to
perform to actively randomize a non-uniform and dependent (s, t)-sparse matrix so that a uniform
and independent (s,t)-sparse matrix can be obtained.

Lemma 2 A random permutation on n digits can be generated in linear time (i.e. O(n)).

Proof: 4

We start out with a permutation o such that o(¢) = i for 1 < i < n. We loop n — 1 times.
At the i** iteration, we pick a random number j from Z(; ,) and interchange o(i) with o(j). At
the end, we obtain a new permutation 0. For any k € Z(;,,], the probability P(c(i) = k) = 1
and for ay,a,,...,a;_; € Z(, ) all distinct and different from k, P(o(i) = k | o(1) = a,0(2) =
az,...,0(i — 1) = aj_1) = n_f F1» 50 the newly obtained o is a random premutation. Clearly, the
above process of generating a random permutation takes linear time, i.e., O(n). 0O

B.2.1 The Algorithm for Active Randomization

We proceed as follows. Let A be the given non-uniform and dependent n x m (s, t)-sparse matrix
and A’, A” be dummy n X m matrices

Algorithm 1 (Active Randomization)

Step 1) We generate a random permutation o on n digits. We loop n times. At the itk iteration,
we replace the o(i)* row of matriz A’ with the i*h row of matriz A.

Step 2) We generate a random permutation T on m digits. We loop m times. At the ith
iteration, we replace the r(i)'" column of A" with the ith column of matriz A'.
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When diagonalizing a given non-uniform and dependent (s, t)-sparse matrix, we first apply the
active randomization algorithm as a pre-processing step to obtain a uniform and independent (s, t)-

sparse matrix. Then we apply the reduction algorithm to obtain the normal form of the original
non-uniform and dependent (s,t)-sparse matrix.

B.2.2 Probabilistic Analysis of Active Randomization

Clearly, the normal form of a matrix is unchanged under any permutations of rows and columns
since such permutations are part of the elementary row and column operations in the reduction
algorithm. So, the normal form of a matrix is preserved under random permutations of rows and
columns. More importantly, we are interested in the following question:

Question 8 Can we perform active randomization on a non-uniform and dependent (s,t)-sparse
matriz such that a finite number of random row and column permutations results in a uniform and

independent matriz? If so, what is the number of random row and column permutations we need
to perform?

For the purpose of this paper, we can wlog assume that the non-zero entries in the non-uniform
and dependent (s,t)-sparse matrix are taken from the set {—1,1}. We can easily generalize to
non-uniform and dependent (s, t)-sparse matrices with small algebraic complexity.

In order to answer the above question, let us first introduce some standard tools from probability
theory, namely, discrete random variables. Let X be a discrete random variable defined on Zyn) X
Z(;,m) and taking values from the set Zj_, - Let X; (resp. X;) be discrete random variable defined
on Zj, ;) (resp. Zpy m)) and taking values from 2, ) (resp. Zpy m)- Clearly, the composite of X
with X; and X is also a discrete random variable. In addition, we require that the discrete random
variables X have the following probability distribution,

P(X=0) = 1—%—-%-1-% (30)
PX#0) = S+ -2 (31)
P(X=-1) = P(X=1), (32)

Xi and X; have uniform probability distribution, and X, X;, X ; are independent discrete random
variables. For a given non-uniform and dependent matrix B, we want to know whether we can
actively randomize A to obtain a matrix A’ so that

P(A;; #0) = P(X(i,j) # 0) (33)

and the probabilities of its entries being non-zero are independent. Recall the probability distribu-
tion of entries being non-zero for a uniform and independent (s, t)-sparse matrix in section 2.1.1.
By requiring the above probability distribution (i.e., eq. (30), (31) & (32)) and independence for
the discrete random variables X, X; and X;, we see that the composite of X with X; and Xj,
i.e., X(X;, X;), in fact describes the independent probability distribution of an entry in a uniform
and independent (s, t)-sparse matrix. So, if the probabilities of entries in the matrix (after active
randomization) satisfy eq. (33), we obtain a uniform and independent (s,t)-sparse matrix. Also
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we will see later that X; and X; capture a random position to which an entry in the original non-
uniform and dependent n X m (s,t)-sparse matrix is moved after one random row permutation and
one random column permutation.

We know that after applying the active randomization algorithm, each entry in the original
matrix A is moved to somewhere. The following lemma will tell us that each entry of A is moved
to a random position.

Lemma 38 Let A be a non-uniform and dependent n X m (s,t)-sparse matriz and A’ the resulting
matriz. Then A'X‘(k)' X0 = Ay where X; and X; are discrete random variables defined above.

Proof:

We wlog assume A}, , = Ag;. Let O sit at the (k,!)-position and A at the (u,v)-position. we have
the following picture:

;
(34)
o

Setting X; (resp. X;) to some value u (resp. v) with probability 1 (resp. L) corresponds to
randomly permuting to a row (resp. column) which happens to be the ut* row (resp. v** column)
and moving O to the (u,v)-position. So, pair (X, X;) captures a random position to which an

entry in the original non-uniform and dependent (s, t)-sparse matrix is moved. 0

Theorem 3 After actively randomizing a given non-uniform and dependent n X m (s,t)-sparse
matriz by performing one random row permutation and one random column permutation, we obtain
an (s,t)-sparse matriz with uniform distribution on the probability of its entries being non-zero.

Proof:
Let A be a given non-uniform and dependent (s, t)-sparse matrix. We want to show that after one
random row permutation and one random column permutation, we can obtain a resulting matrix
A’ with

P(Ay,; # 0) = P(X(k,1)#0) (35)
where 1 < k < 1,1 <! < m. In order to achieve the equality in eq. (35), we certainly need to
assign

Ax (k) x;0) = Akl (36)

By lemma 3, eq. (36) is guaranteed to be achieved. O
Theorem 4 After actively randomizing a given non-uniform and dependent n x m (s,t)-sparse

matriz by performing one random row permutation and one random column permutation, we obtain
a (s,t)-sparse matriz with independent probabilities of its entries being non-zero.

Proof:
Let A be our given non-uniform and dependent (s, t)-sparse matrix. We want to show that after one
random row permutation and one random column permutation, we can obtain a resulting matrix
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A’ such that P(A}; # 0) and P(A,,, # 0) are independent with 1 < k,u < 7,1 < I,v < m and
k # uorl# v. In order to achieve these independent probabilities, we certainly need to have

Ay = Xk 1) (37)
A, = X(u,v). (38)

In order to achieve eq. (38) & (38), we need to assign
Axmx = Ak (39)
ACY.'(U),XJ'(U) = Au,u- (40)
By lemma 3, eq. (39) & (40) are guaranteed to be achieved. 0O

Theorems 3 & 4 prove the correctness of our active randomization algorithm. We have already
noticed that uniformness and independence are stable in the sense that performing any additional
active randomization on a uniform and independent (s,t)-sparse matrix will not destroy its uni-
formness and independence. Therefore, we conclude that performing active randomization by using
one random row permutation and one random column permutation on a n X m non-uniform and
dependent (s,)-sparse matrix will result in a uniform and independent (s,t)-sparse matrix.
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