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Abstract

Let f(z,y) be a real polynomial of degree d with isolated critical
points, and let 7 be the index of grad f around a large circle containing
the critical points. An elementary argument shows that |i| < d —
1. In this paper we show that i < maz{l,d — 3}. We also show
that if all the level sets of f are compact, then : = 1, and otherwise
|i{| < dp — 1 where dp is the sum of the multiplicities of all the real
linear factors in the homogeneous term of highest degree in f. The
technique of proof involves computing ¢ from information at infinity.
The index ¢ is broken up into a sum of components 3, . corresponding
to points p in the real line at infinity L and limiting values ¢ € RU
{oc} of the polynomial. We compute the numbers 4, . in three ways:
geometrically, from a resolution of f(z,y), and from a Morsification
of f(z,y). We also show that the i, . provide a lower bound for the
number of vanishing cycles of f(z,y) at the point p and value c.
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1 Introduction

Let f(z,y) be a real polynomial with isolated critical points. Let ¢ be the
index of the gradient vector field of f(z,y) around a large circle C containing
the critical points, oriented in the counterclockwise direction. (Recall that
the index is the topological degree of the map C — S! defined by t —
grad f(y(t))/|grad f(y(t))| where t — ~(t) is a parameterization of C.) If
the critical points of f are nondegenerate, then the index 7 is the number of .
local extrema minus the number of saddles.

What bounds can be placed on the index 7 in terms of the degree d of
the polynomial? It follows easily from Bezout’s theorem that [DKM*93,
Proposition 2.5]

il <d -1

It is easy to find polynomials satisfying the lower bound of this inequality;
for example if f = [...l; where the [; are equations of lines in general
position, then ¢ = 1 —d, as can be seen by looking at how the gradient vector
field turns on the circle C or by counting critical points [DKM*93, Section
4.

The upper bound is more mysterious. In the first place, polynomials
with ¢ > 1 are hard to find. (The dubious reader should try to do so!) A
simple example with two local extrema and no other critical points (z = 2)
is f(z,y) = y® + z%y® — y. A polynomial of degree five can have as many as
sixteen critical points in the complex plane and a generic polynomial of degree
five will have exactly this number. Note however that the above polynomial
has only four critical points in the plane (two real and two complex), so it is
not generic. In fact this behavior is typical for polynomials with z > 1.

There are polynomials of degree d with i arbitrarily large [DKM*93,
Section 2], but they have i =~ (1/3)d. So evidently there is a large gap
between the theoretical upper bound and examples. One of the goals of this
paper is to give a modest improvement of this upper bound. We will show

Theorem 6.7. If f(z,y) is a real polynomial of degree d with isolated
critical points, and ¢ is the index of grad f around a large circle containing
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the critical points, then
it < maz{l,d - 3}

In particular this result implies that the minimum degree for a polynomial
with ¢ > 1 is five, as in the example above. In fact, the bound of the theorem
can be improved in many cases, as we will see in the proof.

Let dp be the sum of the multiplicities of all the real linear factors in the
homogeneous term of highest degree in f. We will also show

Theorem 6.4. If all the level sets of the polynomial f(z,y) are compact,
then ¢ = 1. Otherwise
li]| < dp —1

The basic idea is to compute the index ¢ from “information at infinity”.

We write 7 as
=14 Y i
pEL
c€ERU{co}

The terms 1, . are defined as follows: The number +1/2 is assigned to a point
where the circle C is tangent to a level set of the polynomial according as
whether the level set is locally inside or outside C. The circle is then made
larger and larger. A point of tangency approaches a limiting point p on the
line at infinity, and the value of the polynomial f approaches a limiting value
c. The term i, is the sum of all the numbers £1/2 associated to p and ¢ in
this manner. We show that the family of circles can be replaced by the level
sets of any reasonable function, and the i, will remain the same.

The polynomial f extends to a function on projective space which is not
well-defined at certain points on the line at infinity. Blowing up these points
gives a well-defined function f. Using Morse theory, we show that the 7,
can be computed from the critical points of f and information about the
exceptional sets. The process of blowing up and computing the index is easy
to carry out in specific examples.

The polynomial f can also be deformed into one which is more generic,
and there is an simple formula relating the index of the original polynomial,
the index of the new polynomial, and the newly created critical points. If
the new polynomial is a “Morsification”, i.e. it has the maximum number
of critical points in the complex plane, then these formulas are particularly
easy.



The computations of these two sections are used to establish bounds on
the i, .. These local bounds are sharp. The global bounds on ¢ follow from
the local bounds and some delicate arguments. However, the global bounds
are not sharp and there still is a big gap between the global bounds and the
examples.

In the last section we show that i;b’ is a lower bound for the number of

[+

one-dimensional vanishing cycles of the (complex) function f — ¢ at p, where

7288 is the sum of the absolute values of the numbers summed in Ipce

i Throughout this paper the techniques are those of basic topology (Morse

Theory) and algebraic geometry (Bezout’s theorem, explicit computation of
intersection multiplicities, etc.) Computer algebra programs were used to
find countour plots and hence the i,.. They were also used to find critical
points and their type, and to compute Milnor numbers. Although many of
the results and techniques are valid in higher dimensions, the exposition is
in dimension two for reasons of clarity.

The author’s interest in these questions started in 1989 when he worked
with a group of undergraduates in the Mount Holyoke Summer Research In-
stitute in Mathematics [DKM*93]. Another group of students continued this
work in 1992; one of their results was the construction of polynomials with an
arbitrarily large number of local maxima and no other critical points [Rob92].
(These polynomials have i = d/4.) Shustin [Shu93] has studied polynomials
all of whose critical points lie in the complex plane. (These polynomials have
t =1 —dgp.) He finds polynomials of this type with arbitrarily prescribed
numbers of local maxima, minima and saddles.

This paper is part of a general study of the “critical points at infinity” of
a polynomial; see [Dur95] for further references.

Research on this paper was partially supported by NSF grant DMS-
8901903, and a grant from the International Research and Exchanges Board
(IREX), with funds provided by the National Endowment for the Humanities
and the United States Information Agency. None of these organizations is
responsible for the views expressed herein. The research was carried out over
the past five years at Martin-Luther University, Halle, the University of Ni-
jmegen, Warwick University and the Massachusetts Institute of Technology;
the author would like to thank them for their hospitality.

Some notation which will be used throughout the paper: We let

L = {[z,y,z] € P*: 2 = 0}



be the line at infinity in real projective space P?, and L¢ be the line at infinity
in complex projective space. :

We let d be the degree of the polynomial f(z,y). We let f; denote the
homogeneous term of degree d in f. If p = [a,b,0] € L¢, we let d, be the
multiplicity of the factor (b — ay) in f;. We define the real degree dg or
dr(f) of polynomial f by

dp=>_d,

pEL
We let
fanL = {[z,y,0] €L: fa(z,y) = 0}

This is the set of points where the zero locus of f; intersects the line at
infinity. We also let

fOL={p€L: thereisat € R such that p € {f = t}}

This is the set of points in L through which the closure of at least one real
level curve passes. We let ! be the number of points in f NLL. Note that

fALC fynL

This inclusion is proper, as is shown by the example f(z,y) = y* + z2.
We use P! and R U {co} interchangebly, depending on the context.
Occasionally we split a real branch of an algebraic curve at a point p into
two “half-branches” with common point p.

2 A zoo of polynomials

A number of polynomials with strange properties are used throughout the
paper. These are described in this section.

The polynomial y(zy — 1), which has no critical points in the plane, is
the standard example of a polynomial with a “critical point at infinity” (at
[1,0,0}).

The polynomial z(y? — 1) has saddles at (0,1) and (0, —1). The family of
level curves at [1,0,0] is equisingular; there is no “critical point” at [1,0,0].

The “max-min polynomial” y° + z%y® — y from [DKM*93] has a local
minimum at (0,—1/v/5) and a local maximum at (0,1/v/5) and no other



critical points. This polynomial can easily be generalized [DKM*93, Section
2.

The “two-min polynomial” (zy* —y — 1)% + (y? — 1)? from [Mat85] has
local minima at (2,1) and (0,~—1), and no other critical points. Note the
asymmetry of this polynomial compared with the previous one.

The polynomial z%(1 + y)? + y? has its sole critical point at the origin,
which is a local maximum. However this is not an absolute maximum [CV80].

The polynomial y — (zy — 1)? from [Kra] has a saddle at (—1/2,0) and
no other critical points. At [1,0,0] the level set f = 0 has one branch, but
the general level set has two branches.

The “two-parabola polynomial” f(z,y) = (z—y?)(z(y?+1)—y%(y*+1)-1)
has its zero locus along the parabola z = y? and the curve z = y2+1/(y%+1)
which is asymptotic to this parabola. Its only critical point is a minimum at
(1/2,0). The level curves intersect L only at [1,0,0], and they are tangent
to L at this point.

3 A formula for i from the geometry of grad f

Let f(z,y) be a real polynomial with isolated critical points. Choose a large
circle C centered at the origin which contains all the critical points. By
moving the center of C' we may assume that when the level curves of f are
tangent to C that this tangency is nondegenerate, and that this is true for
all larger circles with the same center. (See Lemma 3.4.) If u is a point on
C where a level curve of f is tangent to C, we call u a “point of tangency”.
We assign the number k, = £1/2 to each point of tangency. u according as
whether the level curve is inside or outside C, as in Figure 1. If u is not a
point of tangency, we let &k, = 0.

Since the index can be computed by counting the inverse images of a

regular value, clearly
1=1+ Z k.

ueC
Note that this sum is over points on the circle where grad f points both out
of and into the circle; the process of decomposing the index described below

does not work if the sum is just over those points where the gradient points
out, as can be seen in the example f(z,y) = y(z%y — 1).



Figure 1: Assigning k, = £1/2 to a point of tangency u

Now make this circle larger and larger (keeping the same center). A point
of tangency u will travel along a “curve of tangencies” and approach a point
p € L, and f(u) will approach a limiting value ¢ € RU {oo}. (These limits
exist by Lemma-3.1.) Under these conditions we “associate (p,c) to u ”.
This process for the polynomial y(zy — 1) is pictured in Figure 2.

For p € L and ¢ € RU {00}, let

z.p,c = Z ku.
where the sum is over all u € C with (p, ¢) associated to u. We let
ip = Z Ipe
c€ERU{co}
and

L0 = Z tp,00

PEL
The following lemma will be proved in the next section.



Figure 2: The index computation for the polynomial y(zy — 1)

Lemma 3.1. The numbers i, exist and are integers (not just half-
integers).

We thus have a formula for the index:

Formula 3.2. If f(z,y) is a real polynomial with isolated critical points,
then
i=14 ) ipe+tinco
pEL
cER

Lemma 3.3. IfceRandp ¢ fNL, then 1, = 0.

This lemma is a consequence of Lemma 4.2. However we can see now
that if c € R and p ¢ fy NL, then ¢,; = 0: Since f(u) — c as u — p, the
curve f = c¢ passes through p, so p must be a zero of f;.

The invariants of Formula 3.2 for some functions are given in Table 3;
all the nonzero i, . for ¢ € R are listed. Some of the reasons for combining
the 4, o intO i1 are the formula of Proposition 4.4, Part (3), the comment

about Lemma 3.4; part (3), and the fact that the estimates for i work better
this way.



[ f(z,y) [t [ PESFNL]CER e 4]
0

y(zy — 1) -2 1{1,0,0] 0 1

z(y® - 1) -3 -2

y -z -1 0

v+z4yP -y | -11[1,0,0 0 2 2

two-parabola | —1 | [1,0,0 0 1 1

y—(zy-1)*| —-211,0,0 0 0 | -1

two-min -1111,0,0 1 1 2
2 1

y(a?y — 1) -211[1,0,0] 0 1 0

Table 1: Index invariants of selected polynomials

A more detailed analysis can be done by compactifying the plane by the
circle {(a,b,0) € (R® — 0)/R*} (the two-fold cover of L) and seeing how the
points of tangency approach it. For example, for y — (zy — 1)? there are two
u’s associated to ([1,0,0],0), one with k, = +1/2 associated to ((1,0,0),0)
and another with k, = —1/2 associated to ((—1,0,0),0). The two cancel out
to give 21,000 = 0.

Fix a real polynomial f(z,y) with isolated critical points, and fix an even
integer e > 0. We let H be the set of polynomials h(z,y) of degree e whose
homogeneous term of highest degree has no real linear factors, and we let H;
be the set of h(z,y) € H such that the level curves of f and h do not have
degenerate tangencies outside some compact set in the plane. (A degenerate
tangency occurs at a point if the two curves have intersection number more
than two at that point. For example, the functions f = y*—z and h = z*+y*
have degenerate tangencies along the z-axis.)

Instead of using a family of concentric circles (the level curves of the
polynomial z% + y?) to define i, ., we could use instead the level curves of a
polynomial A € H;. We let i;‘,c be the decomposition of the index defined
this way. Thus i, = i}, for h(z,y) = 2% + y*.

Lemma 3.4. Let f be a polynomial with isolated critical points.
1. Hy is a dense, connected subset of H.

2. If h € Hy, then -i;’c =1,. forallp €L and c €ER.



Proof. A point p is a common tangent for f and h exactly when g(p) = 0,
where

g= thy - fyhz

It is a degenerate tangency if in addition
gradg(p) =0

Thus h ¢ H; exactly when g, = 0 and g, = 0 have a common unbounded
component. If b ¢ Hy and f, # 0, then A may be replaced by & + a, where
a is a function of = alone of degree < e and a” # 0, and similarly if f, # 0.
This proves the first assertion. The second will be proved in the next section.
O

Note that the second part of the above lemma, is not true for ¢ = oo and
p = [a,b,0] with fy(a,b) # 0, but that iy, o, remains the same by Formula 3.2.

Finally, is there an Eisenbud-Levine-type algebraic formula for ¢, i, or

pec!

4 A formula for 7 in terms of a resolution

The polynomial
f:R?=R

extends to a map of real projective spaces
f (PP P

which is undefined at a finite number of points on the line at infinity L. By
blowing up these points one gets a manifold M and a map

7: M — p?

such that the map

~

f:M—Pp

which is the lift of f 1s everywhere defined. We call the map f a resolution
of f.

For example, a resolution (the minimal resolution) of y(zy — 1) is given
in Figure 3. The symbol ¢!™ next to a divisor means that at each smooth
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£=0 (inf)*1

Figure 3: A resolution of y(zy — 1)

point of the divisor there are local coordinates (u,v) in a neighborhood of
the point such that the divisor is u = 0 and f(u,v) = (u — ¢)™. The symbol
(inf) means co. The proper transform of level curves of f have arrowheads
on them; the exceptional sets do not.
Proof of Lemma 3.1: The limiting point p of a curve of tangency is an
intersection of a branch of the curve yf; — zf, = 0 with L. Hence p exists.
Since each half-branch at p is a curve of tangencies and there are an even
number of half-branches, the i, . are integers, not just half-integers.

Let f : M — P be a resolution of f. The real branch can be lifted to
a curve on M; this curve intersects 7#~!(p) at a single point, say q. Then

¢ = f(q); taking f to be the minimal resolution shows that c is well-defined.
a

For p€ L and ¢ € RU {00}, let

. ip‘c(f) be the sum of the indices of f at points ¢ € M such that f(q) =c
and 7(q) = p.

L zL(f) = Ezcag& ip.c(.f)
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o &,.(f) be the number of exceptional sets E with 7(E) = p and f|E = c.

o &ne f) be the number of exceptional sets E with =(E) = p and f|E
nonconstant. (In the pictures, these exceptional sets are cross hatched
by curves with arrowheads.)

L4 €L.c(f) = Z:pGL €pie

L gll,,nc(j:) = ZpeL €p.nc

b &:(f) = ZPGL £p,c
cER

Lemma 4.1. Let f(z,y) be a polynomial with isolated critical points,
and let f be a resolution of f.

1. For all exceptional sets E and A > 0, (f = +AYU{f = —A} intersects
E if and only if f|E is nonconstant.

2. There is a two-to-one correspondence between connected components of
{f =+A}U {f = —A} in R? and non-constant ezxceptional sets.

Proof. If E is an exceptional set and f|E is not constant, there is an
z € E such that fl[{E — {z}} is a polynomial. For all exceptional sets E
and A > 0, the following is true: If f|E is constant then A > |(f|E)|, and
if f|E is nonconstant then f |E takes the value +A or —A. This proves the
first part.

In fact, in the latter case f |E either takes the value +A exactly twice,
the value — A exactly twice, or the values +A and —A each once. The level
sets f = +A for A > 0 are transverse to E and hence must be closures of
level sets of f. This proves the second part. O

Lemma 4.2. For p € L, the following statements are equivalent:
1. Epme(f) > 0 for some resolution f of f.
2. For A>»0,pe {f=+A}U{f=—-A}.
3. pefnL
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4. There is a sequence of points uy in R? such that ux — p and f(ug) is
bounded.

Corollary 4.3. [ <& e

Proof. (1 ) (2): This follows from Lemma 4.1, and the fact that the
level sets f =t are transverse to E, and hence must be closures of level sets
of f.

(2) = (3): By definition.

(3) => (1): The exceptional sets over p form a connected tree. If the closure
of some level set f = t intersects p, then it intersects this tree. Since the
value of f is t at this point on the tree, and is oo at the points where the
tree intersects the proper transform of L, there is a component E of the tree
such that f |E takes a continuum of values.

(3) = (4): Suppose t € R is such that p € {f = t}. Choose the sequence of
points on the curve f =t.

(4) = (1) or (3): By the curve selection lemma for pomts at infinity (see for
instance [NZ92| or [Ha91], Lemma 3.1), the sequence of points can be replaced
by an analytic curve. Suppose that the curve lifted to M approaches ¢ € E
for some exceptional set E in M. Then f(q) = t for some t € R. Then
either: (i) ¢ € {f = t}, so (3) is true; or (ii) fIE = ¢, in which case the same
argument as (3) implies (1) gives (1); or (iii) ¢ is an isolated real point of the
curve {f =t}, but then f|E is nonconstant and (1) is true. O

An example of the inequality | < £, is provided by the polynomial
(y(z?4+1)-1)(y(z*+2)-1) ... (y(z?+k)—1), which has | = 2 and £} g g,nc = &,
hence €, ne =k + 1.

Proposition 4.4. If f(z,y) is a real polynomial with isolated critical
points and f is a resolution of f, then

1i=1-4(f) - &(f)
2. tpe = —ipo(f) = &o(f) forp €L and c € R.
3. iL.oo = "{L,nc(f)

For example, the resolution f of the polynomial y(zy — 1) shown above
has two saddle points with critical value 0 over [1,0,0], so i o00 = —2,
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and one exceptional set E over [1,0,0] with f]E =0, 50 {no00 = 1. Thus
inooe=—-(-2)—1=1

Proof. Part (1) follows from a straight-forward application of Morse
theory, part (2) follows from Morse theory on a manifold with boundary, and
part (3) follows from the geometry of the large level curves. Any two parts
of this proposition imply the third, but proving each part separately is more
instructive.

Proof of (1): We will do Morse theory on the function f M — RU {o0}.
Suppose ¢; < ¢;... < ¢, in R are the critical values of f restricted to the
inverse image of R. We may assume (by a slight perturbation of the function
f) that each critical value corresponds to either a critical point in R? or a
critical point on the preimage of the line at infinity. Choose ¢ > 0 so that
ci+e<cy —eforl <i1<r. Choose A > 0 so that —A < ¢; and ¢, < A.
Since a level set of f corresponding to a regular value is a union of circles,

X(M) = x({f < -A U{F 2 AN+ Txlfa—e < fsa+e) (1)

where x(X) is the Euler characteristic of the set X. The set {f < —A}U{f >
A} is homotopy equivalent to the set f'l(oo). This is a connected set, and
is homotopy equivalent to a join of circles. These circles are the exceptional
sets where f = oo together with the proper transform of L. Thus

X({f < =AY U{f 2 A}) = &L f)

Next, M is a connected sum of copies of P, so

~ ~

X(M) =1 = (&(f) + &u.o(f))

At a critical value ¢;, x({c; — € < f < ¢; + €}) is the index of the critical
point by Morse theory. These indices can be summed, and the sum split
into the parts coming from critical points in the finite plane and the line at
infinity. Thus Equation (1) becomes

1-&(f) = ool f) = —broolf) + i +ia(f)

which proves (1).
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Figure 4: The region N’ (bounded by dotted lines) for the polynomial y(zy —
1) at p=[1,0,0] and ¢ = 0.

Proof of (2): (See Figures 4 and 5.) Choose € > 0 so that c is the only critical
value in (¢ — ¢,c + €). Let C’ be the (closed) exterior of the circle C in the
plane. Let N’ be the connected component of {(z,y) € R?: c—€ < f(z,y) <
¢+ €} N C’ containing p in its closure. Choose the circle C large enough so
that each boundary component of N’ consists of an arc of f = e followed
by an arc of C followed by an arc of f = *e.

Let

N==Y(N)YCM

We assume that N is connected; if it is disconnected the proof is similar.

We need a variant of the Poincaré-Hopf Theorem for vector fields on a
manifold, or more properly, a variant of Morse theory on manifolds with
boundary. (See, for instance, [Mil65], p. 35). For an oriented manifold X
with boundary, the Euler characteristic x(X) is given by

x(X) = {indices of internal critical points} + {index on boundary}
where the index of the vector field on the boundary is measured with respect

to the outward pointing normal vector. This result is true for a gradient
vector field on a nonorientable two-manifold X without boundary, provided
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(inf)A3

Figure 5: The region N

that the index is defined to be +1 at a local extremum and —1 at a saddle,
or more generally defined at an arbitrary critical point using the result of
Arnold [Arn78] the index of a polynomial f(z,y) at a point p is 1 —r, where
r is the number of real branches at p of the curve f(z,y) = f(p). If X has a
boundary with an orientable collar neighborhood, then the result is still true,
provided that the index on the boundary is measured according as Figure 1.
Finally, the form we will use for N is

X(N) =1+ {indices of internal critical points} + {index on boundary}

The term +1 comes from the fact that N has four corners (see Figure 5).
Choose a Riemannian metric on N so that it agrees on the boundary
components of N consisting of arcs of C' with the standard one on the plane.
We apply the above result to the gradient vector field of f. In the interior
of N there are the exceptional sets with f = ¢ and those critical points of f
which have critical value ¢. Since N retracts to the exceptional sets contained
in it, ) '
X(N)=1-=6,.(f)
The index of the internal critical points of f is ipo(f). Finally, the index of
the gradient vector field on the boundary of N is i, .. Combining these facts
proves the result.

Proof of (3): (See Figure 6.) If 4(t) is a point of tangency and f(v(t)) — oo,
then ~(¢) intersects either f = Aor f = —A for A >> 0. Let I be a

16



[0,1,0]

[1,0,0]

Figure 6: The level curves y(z%y — 1) = +A in Pz

connected component of f = +A in R% Since I begins and ends outside C,
clearly ¥ .1 ku = —1/2. By Lemma 4.1, there is a two-to-one correspondence

between connected components of f = +A and nonconstant exceptional sets.
a

Corollary 4.5. If the real linear factors of fq are irreducible, then
1=1-—dg.

Proof.  This is “geometrically obvious” but also easily follows from Part
(1) of Proposition 4.4, since the resolution at each p € f NL has exactly one
exceptional set where f is nonconstant. O

Proof of the second part of Proposition 3.4: Let f: M — P! be a
resolution of f. Since the homogeneous term of highest degree in & has no
real linear factors, h lifts to a well-defined function A on M. Let v(t) be
a parameterization of a curve of tangencies of f and h, and assume that
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v(t) = ¢ € M as t — co. By assumption, 7(q) = p and f(q) = c. If ¢ is
in an exceptional set locally defined by u = 0, but not an intersection point,
then the tangent to the level curve of A at v(t) approachs the tangent to the
exceptional set at ¢, since locally & has the form u® for some a. Thus the
level curve of f at +(t) also approaches the tangent to the exceptional set at
q. Thus either f is constant (= ¢) on the exceptional set, or f has a critical
point at q.

We have that i,. = 1% for b’ = (2% + y?)*/2. Choose a path from & to
k' in H;. The end point ¢ of the arc v(t) varies as h changes to A'. If ¢
is a critical point of f the end point stays fixed. Otherwise it varies in the
component of the exceptional set over p where f =c O

Is there a polynomial f with a resolution f and a point ¢ in the exceptional
set such that f has a local extremum at ¢?

5 A formula for 7 in terms of a deformation

Definition 5.1. A deformation of a real polynomial f(z,y) of degree d

with isolated critical points is a real polynomial h(z,y,s) of degree d in z
and y with h(z,y,0) = f(z,y). We let f*(z,y) = h(z,y,s).

For pe L and c € RU {o0} we let

e 1°(f°) be the index of the critical points of f* which go to p and whose
critical value goes to c as s — 0

® zgo(f’) = Ecemu{oo} l;?c(fs)
o 1°(f*) = Lperi5°(f?)

Proposition 5.2. If f*(z,y) is a deformation of a real polynomial
f(z,y) with isolated critical points, then

L= () = = (f)
2 iy = ip(f") —i(f*) forpE L.

There is no obvious formula for i, . (see below).
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level curves

of fAs - L
Figure 7: Computing ¢ using a deformation
Proof. (1): Summing the indices of all the critical points of f° gives

i(f*) = 1®(f°) + 4. (2): We may assume that p = [1,0,0]. There are two
segments of the circle C' containing the u’s whose tangencies approach p,
one on the right and the other on the left. The right segment of the circle
can be replaced by a clockwise-oriented region containing the critical points
of the deformation which are near p and a segment on its opposite side as
in Figure 7. Similarly the left segment can be replaced. The index of f*
about the two regions is i3°(f*), and along the new segments is i,(f*). Thus

(/%) = i) + iy O

Definition 5.3. A deformation f* of a polynomial f of degree d is a
Morsification if f* has (d — 1)? nondegenerate critical points in C?, for all

s #0.

This definition, appropriate for complex f, is actually stronger than we
need. If f* is a Morsification, then (f*)s has distinct linear factors.

Proposition 5.4. A polynomial of degree d has a Morsification. The set

of Morsifications is a dense open subset of the set of polynomials of degree
<d.

Proof. The partial derivatives of the homogenization of a deformation
f? of f are a deformation of the partial derivatives of the homogenization of
the original function f. If f* is chosen so that its term of highest degree for
s # 0 has no repeated complex factors, then both partials are of degree d — 1
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and their zero loci have all their intersections in the affine plane. Finally, f*
can be chosen so that its critical points are nondegenerate for s # 0. O

If f* is a Morsification of f and p € L, we let Jp( f?) be the number of
real linear factors in the homogeneous term of highest degree of f* which are
deformations of the factor corresponding to p in the homogeneous term of
highest degree of f. The number Jp( f?) is also the number of points on L
near p through which the level sets of the Morsification pass.

Corollary 4.5 implies that

i((f*) =1 —dr(f)

and similar argument shows that

ip(f) = 1 = dy(f*) (2)
These equations thus imply the following.
Corollary 5.5. Let f* be a Morsification of f.

1. 1=1—dgp(f*) —1=(f°)
2. 4y =1 —dy(f*) —iP(f*) forp € L.

For example the polynomial f(z,y) = y(zy — 1) has a Morsification
f*(z,y) = (y — sz)(zy — 1). The level sets of the original function are as in
Figure 2, and the level sets of the deformation are as in Figure 8. The index
computation is given on the first line of Table 5. The table shows some other
deformations of various polynomials.

There is no obvious formula for i, ., as can be seen from the deformation
zy(y — 1) + sz® of z(y* — 1). However in all the examples there are natural
numbers d, .(f*) with dp o (f*) > 0, for p € L and ¢ € RU {00}, such that

Jp(fs) = Z Jp,c(fs)

and ;
tpe = —lpe(f*) — dpe(f*)
for ¢ € R, and
ipoo = 1 = 00 (f*) = dp,oo(f?)
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0
—

Figure 8: Level sets of the deformation (y — sz)(zy — 1)

Lf | [P [ =& e —i(f*) [ine| in|

y(zy — 1) (y — sz)(zy — 1) (1,0,0] -2 o 0f 0} 1
0 2 1

z(y* 1) z(y + sz)(y — sx) (1,0,0] =21 o0 -1|-1}-1
0 1 0
ry(y— 1)+ sz’ (s >0) | [1,0,0 0 o -2 -1
zy(y — 1) +sz° (s < 0) | [1,0,0 -2 | oo 0f -1

v+ Pzt —y | (v +s)(y* + yic? 1,0,0 -3| oo 0| o 2
—y(1 + sz?)?) 0 41 2

y—(zy—1)2 | y—z(z+s)y(y +s) (1,0,0] -2 o0 0| 0] 0
+2zy — 1 -1 1 0
0 0 0

0,1,0 -2 | oo 1 0 0

y: —z y:+sz—z (s>0) 1,0,0 0] oo -1] 0] 0
y*+ sz’ —z (s <0) 1,0,0 -2 o0 1] 0

Table 2: The computation of i, using deformations
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However, it seems unlikely that this is true in general.
Finally, an odd property of deformations which will be used in the next
section.

Lemma 5.6. If &(f*) = dy, then i(f*) < 0. If dr(f*) = dg, then
i(f) <0.

Proof. The first equation follows from Equation (2) and Lemma 6.1. The
second follows from the first. O

For a deformation f* of f it is easy to find bounds on the number of local
maxima, minima and saddles near a point p € L. It would be interesting to

see what possible combinations of these can occur, similar to the investigation
in [DKM*93] or [Shu93].

6 Bounds on ?

Let f(z,y) be a real polynomial of degree d with isolated critical points. First
we give the local analogue of the estimate |i| < d — 1 from the Introduction.
For p € fyNL and ¢ € RU {0}, recall that

lpe= 9 ky
where the sum is over u associated with p and c, and that k, = +£1/2. We
let

.=k
where the sum is over those u with k, = +1/2, and

o= ky
where the sum is over those u with k, = —1/2, so that

lpe = i;:c +1,.
We let
i;?: = i:,c —lpe = Z K

These invariants can be computed from a resolution of f, and in particular
are integers (although this is not evident from the proof of 4.4): If f has only
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nondegenerate critical points, and these are e, f) local extrema and s,,( H
saddles at points ¢ with f(q) = ¢ and 7(q) = p, then

= sp.(f)

and : 3 3
i;,c = —ep,e(f) = &p,e(f)

The invariants iﬁ{ + and so forth later in this section can also be computed
from a resolution, but they apparently cannot be computed from a defor-
mation of f. Note also that the z“b’ are not related to the total number of

critical points of f in the plane; 1f f has nondegenerate critical points, and
these are e local extrema and s saddles, then in general

e+s#1+ Zz“b’—'
pEL
cER
For example, the “monkey saddle” has a deformation with s =3 and e =1,
and another deformation with s =2 and e = 0.

Lemma 6.1. Forpe faNL,

> id<d-1

c€ERU{co}

Proof. Without loss of generality we may assume that p = [1,0,0]. We
have that f = y%h(z,y) + {terms of lower order} where y does not divide
h(z,y) and d, > 1. Since the circle C is large and the points are approaching
p, we may replace the circle by the lines z = +c and z = —¢, for ¢ > 0. The
number z“b’ is one-half the number of points near p on these lines where
the gradlent Vector field is horizontal.

If X and Y are algebraic curves, we use the notation X .Y, for their
intersection number at a point p. In the following, the subscrlpt “ = p”
means the intersections which approach p as A — oo, and (X)g means the
real component of X.

We have that
Si = (1/2)({(n =0} (e = +4)op 4 (S =0} - 2 = 4},
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<W2({() =0} {o = +A)p +{() =0} {z = —A}-,)
={fy=0}-{z=0},

This intersection number can be computed as in [Ful69, IIL.3]; since f, in
local coordinates (y,z) at p is given by y**~'h(1,y) + {terms with z}, the
intersection number is d, — 1. (Alternatively, we can Morsify f.) O

This Proposition is sharp: The upper bound is realized by the polynomial
(y(=®+1) = 1)(y(=*+2) = 1)... (y(e® + k) - 1)

at p = [1,0,0], which has d, = k and i, = i, 0 = i}, = k—1. (This polynomial
has k — 1 local extrema and no other real critical points; for £ = 2 there is
a local minimum; for k = 3 there is a local minimum and a local maximum;
for k£ = 4 there are two local minima and a local maximum, and so forth
[DKM*93, Section 2].) The lower bound is realized by the polynomial

zy+ Dy +2)...(y+k) (3)

at p=[1,0,0], which has d, = kand i, = i,0 = i;o =1 —k.
Recall that [ = #{f NL}, and that | < &, .. by Corollary 4.3.

Lemma 6.2. If all the level sets of f are compact (1 =10), then i = 1.

Proof. No level sets of f intersect L. Let A be a large positive constant.
On the complement of a large compact set, either f > A or f < —A; let
us assume the former. If A is larger than the critical values of f, the level
set f = A is an embedded circle. The vector field grad f restricted to C is
homotopic to the vector field grad f restricted to f = A, which has index 1.
O

Lemma 6.3. If f(z,y) is a real polynomial with isolated critical points,
then

1<1+4+dp—-2I

Proof. We have that

Z=1+ Zip,c'*'iL,oo
pEL
ceR
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<14 ) (dp—-1)-1
pESNL
<1+ Y dy—2
pESFOL
where the first line follows from Formula 3.2, the second from Lemma 3.3

and Part (3) of Proposition 4.4, the third from Corollary 4.3, and the fourth
from Lemma 6.1. O

Theorem 6.4. Let f(z,y) be a real polynomial of real degree dp with isolated
critical points, and let i be the indez of grad f around a large circle containing
the critical points. If all the level sets of f are compact, then ¢ = 1. Otherwise

i < dp -1

Proof. If [ =0 the result follows from Lemma 6.2. The upper bound for
[ > 0 follows from Lemma 6.3. For the lower bound, choose a Morsification
f* of f with dr(f*) = dg. Then Corollary 5.5 and Lemma 5.6 give the result.
(Also see Corollary 4.5.) O

We now further decompose i,. and its refinements defined above. For
p € fsNL and ¢ € RU {oo}, recall from Section 3 that ¢, = 3" k., summed
over all points of tangency u. Each of the points is on a curve of tangencies
v(t). We let I, (respectively, 1].) be the sum of the k,’s such that the

corresponding curve v(t) is tangent (respectively, not tangent) to L at p.

Thus

T

. _:N .
lpe = Zp,c + 2p,c

We similarly decompose ¢}, i ., and z;f’c" . As before, these numbers are all
integers. For example, the polynomial y(zy — 1) has ¢[1 0,00 = za’g a0 = L.
The following lemma is a refinement of Lemma 6.1.
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Lemma 6.5. Forpe fyNL,

Z i;\{éaba+2( E g':ba) < dp -1

cERU{oo} c€ERU{c0}

Proof.  We let fT (respectively, fY) be the branches of f, tangent (re-
spectively, not tangent) to L at p, so that fy= fT fN near p. As in the proof
of Lemma 6.1, we have

3 iNeb = (1/2) ({(f,,”)n =0} {z=+A}, +{(f =0} {z = —A}~p)

< /(1) =0} {z =44} + {()) =0} - {2 = — A}, )
= () =0}z =0},
We also have
2 =(1/2) ({(f,,T =0} {z=+A}p +{(f; e =0} -{c= —A}qp)
For each real branch B of T at p we have
B-{x=+A}_p+B-{z=—-A}_,=2
For the complexification C of B we have
C-{z=+A}, 22

and
C-{z=-A}p22

since C is tangent to L. Thus the right side of the equation seven lines above
is

<(1/9({UN =0} {2 = +A) o + (D) = 0} - = = —A},)
= (1/21{f] =0} - {= =0},
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Thus

S e T de) (Y =00z =0+ =0} {2 =0},
cERU{c0} cERU{c0}
= {f,=0}.{z=0},
=d,—1
O

The following lemma will not be needed in the proof of the main theorem,
but is included to show another technique of making estimates. It seems
reasonable that i}, could somehow be included in this estimate, too.

Lemma 6.6. If ig:c > 0 for some p €L and c € R, then

T < (1/2)d, - 1

Proof. The curve of tangencies has at least 2:17" real half-branches
tangent to L at p. Suppose u is a point on one of these curves of tangencies.
Since k, = +1/2 and ¢ € R, the curves f(z,y) = f(u) converge to two half-
branches of f(z,y) = ¢ with common point p as u — p. Thus f = c has at
least 2:7F + 1 half-branches tangent to L at p, and hence at least |
branches. As in the proof of Lemma 6.5,

I 1< (1/2{f =0}- {2 =0}, = (1/2)d,
0

For example,» the two-parabola polynomial has (1,000 = i[I;’;o]'o =1 and
d, = 6.
Theorem 6.7. If f(z,y) is a real polynomial of degree d with isolated critical

points, and i is the indez of grad f around a large circle containing the critical
points, then

i < maz{l,d - 3}
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Proof. If! =0 then: =1 by Lemma 6.2. If / > 2 then ¢ < dp — 3 by
Lemma 6.3. Thus we must treat the case [ = 1. Suppose f NL = {p}, and

that p = [1,0,0]. Note that dgp = d, and &g nc = &p;nc. From Formula 3.2 and
Part (3) of Proposition 4.4 we have that

i=1+zip,c+iL,oo

cER

=1 + Z z.p,c - Ep,nc (4)

cER
Since €y nc > | = 1 by Corollary 4.3,

1<) ipe
ceER
If d, < d, then d, < d — 2 since the roots of fy other than p are complex
and hence conjugate. Thus by Lemma 6.1

Zzpc<z:z“b’<d —-1<d-3

ceR cER

Thus we may assume that d, = d, so that

flz,y) =y* + h(z,y)

where h has degree e < d. If h is a function of z alone, then 1 =1 — e: If h,
has distinct zeros then f has e — 1 saddles; the general f can be perturbed
to this case. Thus we may assume that A is a nonconstant function of both
z and y.

If iﬁc = 0 for all ¢ € R, then

S g =D il < S ilet < (1/2)(dp — 1) < maz {1,dr — 3}

ceR c€R ceER

where the second inequality follows from Lemma 6.5.

If T i1, = 0 for all ¢ € R, we proceed as follows: As before let fT (respec-
tively, fN ) be the branches of f, tangent (respectively, not tangent) to L at
p, SO that fy= fT fN at p. Since k is a nonconstant function of both z and
y, fT is not empty: We have that f,(z,y) = dy®~' + h,(z,y) where h, # 0,
and changmg to coordinates (y,z) at [1,0,0] shows that z divides the term
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of lowest degree. Thus the intersection number {fI = 0}.{z = 0}, > 2.

Thus
S ipe S T < (£ = 0} (=0,
={fy=0}.{z=0}, - {ff =0}.{z =0},
< (dp_l)—2

=d,—3
where the second inequality follows from the proof of Lemma 6.5, and the

third from the proof of Lemma 6.1.
If i)', > 0 for some a € R, and i1y > 0 for some b € R (or more generally,

iNabs 5 (0 and zT“b’ > 0), we claim that £, n. > 2. Assuming this, by

P,a
ZSZ’M—

Equation (4)

ceR
< E zabs _
ceR
= 3 ity 2(2 zTazm) ST _
cER cER ceR

<d-1)-1-1=d-3

where the last inequality follows from Lemma 6.5.

It remains to show that {,.. > 2 under these conditions. We suppose
for notational simplicity that the tangent cone to (f))g is y = 0, that the
branches of (fI)a at p lie on the positive-z side of L, and that ¢V abs = 0 for
¢ # a and that zT abs — 0 for ¢ # b. The graph (see Figure 9) of f(C Yy) ==z
in the yz-plane for C > 0 has critical points near (0,a) which converge
to (0,a) as C — oo, and other critical points near (+B,b) with B large
which converge to (+o00,b) as C — oo. The values of f(C,y) for y between
0 and +B converge to oo by [DKM*93, 1.3]. Thus (see Figure 10) for
A > 0, the set {f = +A} U {f = —A} has at least six ends coming into
p on the £ > 0 side of L, hence at least eight ends on both sides, and
hence at least four connected components in R% Since there is a two-to-
one correspondence between connected components of {f = +A} in R? and
nonconstant exceptional sets by Lemma 4.1, this shows that £, ,. 2> 2. O
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Figure 9: The graph of z = f(C,y), for C large

We finally remark on an inequality for i, and m,, where m, is the inter-
section multiplicity at p of the completions of the sets { f; = 0} and {f, = 0}.
The proof of Proposition 6.2 of [DKM*93] (due to Jeff Roy) gives:

21, <my
This estimate is not optimal; for example the function y® + y3z? — y at
p = [1,0,0] has ¢, = 2 and m, = 12. Proposition 6.2 from [DKM+93] easily
follows from the above and 3.2.
7 Vanishing cycles
Let f(z,y) be a complex polynomial with isolated critical points. Given p

in the complex line at infinity and ¢ € CU {00}, we define the number of
vanishing cycles of f at (p,c) by

Vpe = rankHl({(mvy) € C2 If(xa y) = t} n B)
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+A

Figure 10: Level sets of f near p
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where B is a small ball about p in complex projective space and ¢ is near to,
but not equal to, c. (If ¢ = oo, we take |t| large.) If p = [1,0,0] and

9:(y,2) = 2% f(1/2,y/z) — tz*

we have that
Vpe = Hp,c — Hp,gen

where y, . is equal to the Milnor number of g.(y,z) at (0,0) and pp gen is
equal to the ‘generic Milnor number’, which is the Milnor number of g;(y, 2)
at (0,0) for ¢ near c. ‘

Proposition 7.1. Let f(z,y) be a real polynomial with isolated critical
points. Forp € fyNL and c € RU {00},
Z;b: < Vpe

Proof. If u is a point of tangency associated to (p,c), then for large |u|
we have either f(u) > cor f(u) < c. For large u, let

z;bc’T = ) |ky| for f(u) <c
el = 3 [k for f(u) 2 ¢

Thus

cabs __ :abs,T -abs,} -abs,]
tpe = lpc + pc < 2zp,c

where we assume without loss of generality that 2% < 22! (replace f
by —f). We may assume that p = [1,0,0]. By deforming the circle C,
the number 2i;f’c”1 is equal to the number of real intersections of the curves
{f =t} and f, = 0 near p, where ¢ is near (but not equal to) ¢. This number
is less than or equal to the number b of complex intersections of these curves
near p.

The set {(z,y) € C?|f(z,y) =t} N B is a connected branched cover of
B. Two sheets come together at each branch point, and all the sheets come
together over p. Hurwitz’s formula then implies that b= v, .
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A similar argument gives the lower bound. (Of course, f, is a polar
curve.) O '

The inequality of the proposition is not an equality; for example the
polynomial y(z%y — 1) at p=[1,0,0] and ¢c=0 has ip. =1 and v, = a + 1.
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