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Preface

A lattice i1s a regular arrangement of points in space. In particular, for linearly independent
by,bs, ..., b, € R™, the lattice L = L(by,bs,... ,b,) is the set of all integer linear combinations
arby + -+ ayby, ay, a2, ... ,a, € Z, of the elments by, bs, ... ,b,. The vectors by,bs,...,b, form
a basis of the lattice. As we will see, there are many different bases for any given lattice. The
length of a basis is the length of the longest basis vector.

Prior to 1996, lattices, and in particular, the lattice basis reduction algorithm of Lenstra,
Lenstra, and Lovasz, were used in cryptography principally to prove cryptographic insecurity [Adel83,
Copper, CFJP, H, La0Od85, Shamir82]. We will cover several of these “negative” results; in par-
ticular,

1. breaking of knapsack-based cryptosystems
2. breaking the linear congruential pseudo-random generator

3. breaking the supposed semantic security of padded RSA.

Cryptographic constructions necessarily require random choices: if, for example, the choice of
a key were deterministic, then the key could not be secret. Thus, the security of the construction
relies on the intractability of a random instance of the problem on which the construction is based.
For example, in the case of the RSA public key cryptosystem, the public key contains a modulus
N = pg, where p and ¢ are large primes. If an adversary can factor IV then the system is insecure.
When a user picks a random N it is not enough that some two-prime moduli are hard to factor:
the user wants that a random instance should be hard to factor. No such result is known; in
particular, the relative difficulty of the hardest insances of factoring and random instances of
factoring is not known. Indeed, even if factoring were N'P-hard (it probably is not), and even if
P were known to be different from NP, this would say nothing about the hardness of random
instances of factoring.

It has therefore been a longstanding goal in cryptography to find a “hard” problem for which
one can establish an explicit connection between the hardness of random instances and the hardness
of the hardest, or worst-case, instances. Such a connection is the contribution of the celebrated
paper of Ajtai, “Generating Hard Instances of Lattice Problems” [Ajtai96] (1996). Specifically,
the paper presents a random problem involving a certain class of random lattices, whose solution
would imply the solution of three famous worst-case problems:

5
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1. Find the length of a shortest nonzero vector in an n-dimensional lattice approximately, up
to a polynomial factor.

2. Find the shortest nonzero vector in an n-dimensional lattice L where the shortest vector v
is unique in the sense than any other vector whose length is at most n° ||v|| is parallel to v,
where ¢ is a sufficiently large absolute constant.

3. Find a basis by, ..., b, in the n-dimensional lattice L whose length, defined as max?_; ||b;]|,
is the smallest possible up to a polynomial factor.

Motivated by Ajtai’s 1996 paper, people began to explore the possibility basing the construc-
tion of cryptographic primitives on the assumed hardness of solving the above-mentioned lattice
problems. This effort has been fruitful. We cover at least the following “positive” applications of
lattices to cryptography:

1. Ajtai’s proof shows that that certain cryptographic hash functions enjoy worst-case/average-
case equivalence.

2. There exists a public key cryptosystem with worst-case/average-case equivalence.

3. The construction of the cryptosystem yields a natural pseudo-random generator with worst-
case/average-case equivalence.

Rough Outline of the Course

We will begin with some classical motivation from the geometry of numbers, based on the material
in Chapter 1 of Lovasz’ monograph An Algorithmic Theory of Numbers, Graphs and Convex-
ity [Lovész86).

We then discuss the fundamentals of lattice theory, and the LLL lattice basis reduction al-
gorithm, following the Roger Fischlin’s compilation of the notes from Claus Schnorr’s Lectures
“Gittertheorie und algorithmische Geometrie, Reduktion von Gitterbasen und Polynomidealen”,
delivered at Johann Wolfgang Goethe University, Frankfurt/Main during the Summer semester of

1994 and the Winter semester of 1994/95. In particular, I have translated from these notes the
following material.

1. Introduction to Lattice Theory: terminology, basic properties of a lattice, length reduction,
weight reduction;

2. Successive Minima and Two Theorems of Minkowski
3. Gauss’ Basis Reduction Procedure (for 2-dimensional lattices)

4. LLL Lattice Basis Reduction

As mentioned earlier, the LLL lattice basis reduction algorithm is at the heart of several attacks

on proposed cryptographic primitives. Following our study of lattice theory, we will cover some
of these attacks.
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The last part of the course will discuss the positive applications of lattices to cryptography,
with the last day reserved for one or two outstanding newer results related to the material of the
course.
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Preliminaries

Notation

We let M,, ,,(S) denote the set of all m x n matrices with entries from the set S. For example,
M, o (Z) is the set of all integer m x n matrices. We may also use the alternate notation S™*",

For matrix B we let BT denote the transpose of B. Unless otherwise indicated, elements of
Z'", R™, etc., denote column vectors.

For real numbers 7 we let [r| := [r — ] denote the integer closest to 7. We write Rt =

{# € R |z > 0} for the set of positive real numbers.

Scalar Product

A scalar product (-,-) : R* x R* — R is a mapping with following properties: For all u,v,w € R®
and A € R:

o (-, ) is bilinear:

(u+w,v) = (u,v) + (w,v)
(Au,v) = A (u,v)

(u, v +w) = (u,v) + {u,w)
(u, W) = A{u,v)

e (-.-) is symmetric:
(u,v) = (v, u)
e (-.-) is positive definite:

(u,u) >0 for u #0
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For u = 0 it follows from the linearity in each component that (u,u) = 0. The standard scalar
product is defined as:

n
T T
<(u1,uz,... JUn) (U1, v2, .0 Up) > = Zuivi
i=1

Most applications use on the standard scalar product. Every scalar product {-,-) : R* x R* — R
can be written as:

(u,v) := u' Sv

for some a positive definite matrix S € M, ,(R). (An n x n matrix S is positive definite if and
only if S is symmetric and 7Sz > 0 for all z € R* \ {0}.) In the case of the standard scalar
product the matrix S is the identity matrix.

Norms
A mapping {|-|| : R* — R is called a norm, if for all u,v € R* and A € R:
Av|| = |A] - |lv]] (positive homogeneous)
Hu + v|| < ||u||l + |lvf] (triangle inequality)
[lul} > 0 for u #0 (positive definiteness)
The real number ||u|] is called the norm (or length) of the vector u = (uy,uz,... ,uy). For every

scalar product we obtain a corresponding Euclidean norm as follows:
[[ull := v/{u,u)

The ¢, norm is:

Ve
.
H(ul,u2,... i) Hl =5 Juil
i=1

The £ norm is obtained from the standard scalar product:

il

T
H(Ul,UQ,... ,’U,n) ”2 .

In general, the ¢, Norm is:

n P
T
H(ul,uQ, cee Ly Un) H = (Z |uilp)
=1

P

The sup norm, mazimum norm or £ norm is:

-
(u1,u2,... ,Un) H =
o0

!
=
NE
-
g
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Inequalities

For the sup-, #,- and £3-norm, of a vector u € R* we have:

lully < flully < v -[lull,
llullae < lully < V- llullg
[elloe < llufly <n-lully

Every scalar product and corresponding norm ||uf| := /{(u, u) satisfy the Cauchy-Schwarz Inequal-
ity (for u,v € R"):

|{u, 0] < ] - [Jv]]

Equality holds only when the two vectors are linearly independent.

Let by,bs,... b, € R* be the column vectors (or row vectors) of the matrix B € M, ,(R).
Hadamard’s Inequality says:

|det B| < T l1%all,
i=1

Equality holds when the vectors b1,bs,... ,b, are orthogonal.






Chapter 1

On Rounding Numbers

The material here follows Sections 1.0 and 1.1 of [Lovasz86] and Chapter 5 of [GLLS88]. We
discuss two natural hardware-independent models of numbers and a set of problems involving the
rounding, or approximation, of rationals.

1.1 Lengths of Rationals

We define the binary encoding length of finite objects as follows:
o ((0):=1

o /(n):= 1+ [logy(|n]+1)] forn € Z

£(2) = tp) + (q) where p,q € Z,q # 0, and ged(p,q) = 1

o ((A) =3, ; Uagy) for A = [aj;] € My (Q)

Lemma 1.1.1
1. For every rational number r, 1+ |r] < 24(r)—1

2. For cvery vector z € Q7, 1+ [lz|| < 1+ ||z, < ot(z)—n

3. For every matrix D € Q"™ |det D| < 2¢(D)—n* _

Proof. 1. follows directly from the definition. To prove 2., let x = (z1,z2, . .. ,mn)T. Since for
all u € R® we have ||ul|, < |Ju||;, in particular ||z||, < [[z]|,. Then from 1. we have:

n n n
=1 i=1 =1

13
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Let dy,ds,... ,d, be the rows of D. By Hadamard’s Inequality and 2. we have:

n n " o o
L+ |det D < 1+ [[lldilly < TT(@ + lldilly) < JT 244 = 24P)-n
i=1

=1 i=1

In contrast to the binary encoding, we could use the arithmetic encoding, in which each integer
contributes one to the length of the input. The binary encoding allows the inputs to “appear”
longer than they do in the arithmetic encoding, making algorithms appear to run faster (as a
function of the input length). For example, the Euclidean algorithm for computing the greatest
common divisor of two integers runs in time polynomial in the binary encoding length, but not in
the arithmetic encoding length (that is, it does not run in time polynomial in 2). Conversely, in the
arithmetic encoding the lengths of the arguments do not grow during execution of the algorithm.
For example, n repeated squarings of an n bit number only requires n arithmetic operations
but the length of the argument grows exponentially. An algorithm is strongly polynomial if it
takes polynomial time in the arithmetic sense while the length of the binary encoding remains
polynomial. Every strongly polynomial algorithm is polynomial.

1.2 Diophantine Approximation and Related Problems

In computations involving real numbers we replace the numbers by rational approximations. For
example, if we fix an integer ¢ then the best choice of p such that § approximates « is p = |[ag]
or p = [ayq]. The resulting error is bounded by

Suppose we allow the denominator g to vary, subject to the constraint ¢ < Q. We have:

Proposition 1.2.1 (Dirichelet)
For all o € R and integer Q > 1, there exist p,q € Z, 0 < q < Q, such that

The fraction f—; whose existence is guaranteed by the theorem, can be found by the continued
fraction expansion of o, which can be computed in polynomial time. We first give a pigeon hole
proof.

Proof. Consider the circle with circumference 1. Starting from a point ag on the circle, move
clockwise distances a, 2a, ..., Qa on the circle to get additional points aj,as, ... ,ag. (Note that
we may “wrap” several times around the circle during this process.) Since we have @ + 1 points,

two of these, sav, a, and a;, where i < j, have distance d < Qﬂrl, as measured on the circle. So
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p = ja —ia+xdis an integer. Then for ¢ = j — i we have |ga —p| = d < o < 5 and ¢ < Q.
]

An expression of the form

" 1
Lo
1
1 +
P 1
-
1
Th-1 + —
Lk
where wo, ...z, € Z are all positive except, possibly, zg, is a finite continued fraction, and may
be denoted {(xq,...,z4).
We may write:
+ 1
a = Ig
1
T+ ———
Ty + ...
where 79 = |a| and z1,%,,... are positive integers dfined by the recurrence:
Qp =«
zo = o
1
Q@ = —
k+1 P

Tr+1 = Lak+1J

(The a,’s are reals, the z;’s are integers.) The sequence stops if and when z; = a;; the expansion
is infinite when « is irrational.

To see that the x;, ¢ > 0, are positive:
T; = |_aiJ <o <zi+1
>0<ao; —z; <1

=1< = Q41

&; — I
=21 < |ait1] = 2=

By induction on i, a = (xg,21,22,... ,2;-1, ), so if the procedure terminates after i steps
(that is, if a; = x;), then o = (zo,z1,22,... , 7, ).
Conversely, suppose a = fl’-, where (p,q) = 1. Then ay, o, ... areall rationals. Fori =0,1,...,

let p;, ¢; be defined by a; = q . Assume inductively that (p;, ¢;) = 1 (by assumption this is true for
i =0). Fori > 0 we have already seen that 7; = |a;] # 0. If o = 0 then ay = 1/(ao—z0) = 1/ap,
and we have [a; | # 0. If |a;] # 0, then

{PiJ Lin + TiJ
ri=|—|=|——
qi qi
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where & > 0 is an integer and (r;,¢;) = 1. Then by definition

e = LG P
i+l = =—=—
Qy — Xy L qi+1

Thus, p; + ¢; > pit1 + ¢i+1 > 0, so eventually the procedure terminates.
To see how quickly it terminates, define two auxiliary sequences, gj, and hy, as follows.
® g.o= 0- g-1 = 17 h—2 = 17 h—l =0
® 9 =%igi—1 + gi—2, for i =0,1,...
o hy =aihiy + hyo, fori=0,1,...

Note that 1 = hg < hy < hy < ... and hy > Fy, the kth Fibonacci number.

The kth convergent is defined to be the rational number

To +

x1 +

Lemma 1.2.2
1. The kth convergent is .

2. grarhy — grhier = (=1)F

The proof is by induction on k. Note that the second assertion implies that g and hy, are relatively
prime.

;‘% converges to a as k — oo. Moreover,

o — gk < 1
hi hihiyy

where since hy > FJ, the convergence to o goes exponentially fast. If we let k = max {hy | hy < Q}
then hp41 > @ and so

1

Qhy,

oz—gi <

hy

which satisfies the promise of Dirichelet’s theorem.

Let ;‘% be the last convergent of @ with hy < Q. Let j be the maximum j > 0 such that
higr + jhi < Q. It is not hard to show (see [Khin35), [Lovdsz86]) that the solution to the

- . . X . . gk Gk—-1+7g%
following Best Approximation Problem is either hy O h i 3ihe:
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Definition 1.2.3 (Best Approximation Problem)
o Given: o € Q and integer Q > 0

e Find: rational p/q such that 0 < ¢ < Q and ’a — g‘ s as small as possible.

The problem is sometimes given in an equivalent but “reverse” form:

Definition 1.2.4 (Reverse Form of Best Approximation)
o Given: a,e €Q, € >0

e Find integers p,q such that ¢ > 0,

a — §' <€, and q is as small as possible.

To prove equivalence, we will prove that both forms are equivalent to the following General
Form:

Definition 1.2.5 (General Form of Best Approximation Problem)
o Given: a,e € Q, e>0,Q€Z,Q >0

o Decide if there exist p,q € Z such that 0 < ¢ < Q and ia - g‘ < ¢, and find p and q if they
exist.

Given an instance of the General Form we can take the solution p, q to the corresponding Best
Approximation Problem (original version), and simply check if | — g < ¢. Thus, an algorithm

for the Best Approximation Problem yields an algorithm for the General Form. Conversely, given
an algorithm for the General Form of the Best Approximation problem we can solve the original
form by binary search on the interval (0, 1) to find the minimum & for which there exists a solution,
and so we can find the best approximation to o with denominator at most Q.

Similarly, given an instance of the General Form we can take the solution p, ¢ to the corre-
sponding Reverse Form and check whether ¢ < Q. Conversely, given an algorithm for the General
Form of the Best Approximation problem we can solve the reverse form as follows. Given an
instance a, € of the Reverse Form, we find by repeated doubling the least @ that is a power of 2,
such that the instance a, €, Q) of the General Form has a solution. Then @ = 2¢ for some integer 1.
Assuming 4 # 0, perform binary search on the interval (2¢1,2%] to find the least Q (and hence, q)
for which the General Form has a solution.

Now suppose we wish to round several numbers a;,as,...,qa, in such a way that “simple
relations” among numbers are not lost. Suppose, for example that @ = 100 and o; = 0.1422,
o = 0.2213, and a3 = 0.6365. To approximate the «; individually with denominators at most Q
we get:

= 0.1428 ...

~i=

e o

o v~ =2 =10.2222...

D
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o (vy & % = 0.6363. ..

While a; +ay +ag =1, this is not true of the sum of the respective approximations. The trick will
be to find a rounding procedure resulting in approximations Pq—‘, %, cee Pq—" with a single common
denominator, g.

Definition 1.2.6 (Simultaneous Diophantine Approximation Problem)
e Given aj,az,...,an € Q, e>0€Q, and Q € Z, Q > 0, find integers p1,ps,...,pn and g
such that 0 < g < @ and

Di
&y — —

q

< 1=1,2,...,n

£
q

Dirichelet’s theorem, extended to the general case, asserts that there is a solution to the Simul-
taneous Diophantine Approximation problem if @ > £~ but no efficient algorithm is known
for the problem. Eventually we will view this as a problem involving lattices; we will see that
the Lenstra, Lenstra, and L. Lovész’ (LLL) lattice basis reduction algorithm provides an efficient
solution whenever @ > i,

Definition 1.2.7 (Small Integer Combination Problem)
o Given: ag,0,...,an,e € Q and integer Q > 0, find integers qo,q1,q2,--- ,qn, not all 0,
such that

<e

n
E qit;
i=0

and ¢; < @, i=1,...,n.

Note that there is no upper bound on go. An analogue of Dirichelet’s theorem asserts the existence
of a solution provided @ > ¢~ 1/". The LLL algorithm solves the problem efficiently provided
Q> 2nEv1/n_

Finally, we mention the problem of inhomogeneous diophantine approzimation.
Definition 1.2.8 (Inhomogeneous Diophantine Approximation)
o Given: ay,qo,... ,00,01,82,...,8n,6,Q >0
o [ind integers p1,pa, ..., Pn,q such that
loi —pi — Bil <€
and 0 < ¢ < Q.

The inhomogeneous problem may not have a solution. For example, if oy is an integer multiple

%, and therefore so is their difference.

of % and 8, = 1;, then ga; and p; are both multiples of
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Thus

|(gar —p1) = B1| >

=20

for any choice of p; and q.

Kronenecker gave a general condition for the solvability of this problem (see [Cassels71]):

Proposition 1.2.9
For any 2n real numbers ar,as,... ,an, 51,89, . .., O, either

1. For each € > 0 there exist integers py,pa, ... ,pn,q such that ¢ > 0 and
lga; — pi — Bi] < e.

2. There exist integers uy, us, ..., u, such that 2i—1 MU0y 15 an integer while Y. nuB; is
not.

We will return to this problem, and in particular the special case in which the a; and B; are
rationals, after we see the LLL lattice basis reduction algorithm.
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Chapter 2

Complexity, N'P-Completeness

We review the basic concepts of complexity theory relating to lattice theory, especially AP-
completeness.

2.1 NP-Completeness

Recall that we have defined the length of the binary encoding length of finite objects as follows:
e /(0):=1
o /(n) =1+ [logs(n|+1)] forneZ
o/ (%) = {(p) + {(q) where p,q € Z, q # 0, and ged (p,q) = 1
o U(A) =32, i Uaij) for A = [ay] € My n(Q)

We define the running time of an algorithm as a function of the lengths of the inputs. We are
interested in polynomial time:

Definition 2.1.1 (Polynomial Time)
An algorithm runs in polynomial time if the number of steps (Turing machine or number of bit
operations) is polynomially bounded in the length of the inputs:

Number of Steps(Inputs) = poly (£(Inputs))

In theoretical computer science polynomial time algorithms are sometimes referred to as efficient.

Definition 2.1.2 (Characteristic Function)
For a set A C {0,1}* the characteristic function x4 : {0,1}* = {0,1} is defined as: xala) =114f
and only if a € A.

21
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Using characteristic functions, we define the class of polynomial time lanuages:

Definition 2.1.3 (Class P of Polynomial Time Languages)
The class P of polynomial time languages is the set of languages A C {0,1}* for which the
characteristic function x4 is polynomial time computable.

The class AP contains the languages for which, for each word in the language there is a short,
efficiently verifiable proof of membership in the language.

Definition 2.1.4 (Class N'P)
The class NP of nondeterministic polynomial time languages A C {0,1}* is defined as:

3B € {0,1}* x {0,1}*, B P :
A= {z e {0,1}* | Ty € {0,1}PMED with (z,y) € B}

Let (w,y) € B. Then y is called a witness for x € A.

Ae NP

Cook’s thesis is that P # AP, that is, there exists a language in NP that is not recognizable in
deterministic polynomial time.

Definition 2.1.5 (Karp Reduction)
Let A, B C {0,1}*:

3 polynomial time transformation h with:
A< B =
Ve {0,1}*:z€ A= h(z) € B

If A <po0 B and B < C then A <po1 C. A <poi B then it is possible in polynomial time to
decide if © € A with a single query to an oracle for B.

A more general type of polynomial time reduction (a Cook reduction), allows multiple calls to
the oracle for B, provided that the total computation time, including the setting up of the calls

to the oracle (each oracle call itself has unit cost) and any subsequent analysis, is polynomially
bounded.

We will also be interested in randomized reductions, in which there is a probabilistic polynomial
time machine M that, using an oracle for B, can decide membership in A.

Definition 2.1.6 (MP-Complete)
A CH{0.1}* is said to be N'P-complete, if:

1. Ae NP
2.YBENP :B<,uA

If there is a polynomial time algorithm for any A/P-complete problem, then P = A"P. This would
contradict Cook’s Thesis. Hence, the A"P-complete problems are the hardest problems in A/P.
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2.2 Hard Algorithmic Lattice Problems

In this section we mention problems related to lattice theory that are either A'P-complete or for
which no efficient algorithm is known. One such problem is integer linear programming (Integer
Programming):

Definition 2.2.1 (Integer Linear Programming)
The problem of integer, linear programming is:

o Given: mn €N, A€ My, o(Z) andbe Z™

o Find x € ™ with Ax < b or show that no such vector exists.

Integer linerar programming is “hard”. We show in Proposition 2.2.5 that the corresponding
decision problem is N'P-complete:

Definition 2.2.2 (Decision Problem for Integer Linear Programming)
The decision problem for integer linear programming is:

o Given: mn €N, A€ My, ,(Z) and b€ Z™

o Decide if there exists x € 7™ with Az < b.

If P # AP, then no polynomial time algorithm solves this problem. In contrast, there is a
polynomial time algorithm for the analogous problem of rational linear programming:

Definition 2.2.3 (Rational Linear Programming)
The problem of rational linear programming is:

e Given: m,n €N, Ae M, ,(Z) and b€ Q™

o Find x € Q" with Az < b or show that no such vector exists.

The first polynomial time algorithm for rational linear programming is the ellipsoid method of
L.G. Khachiyan [Khach79, Khach80]. This method is, however, impractical. A provably polyno-
mial time algorithm that also appears to be practical was developed by M. Karmarkar [Karmag84],
whose starting point was the classical interior point method. Another polynomial time algorithm is
due to Y. Ye [Ye91]. A simple, practical procedure is the simplex algorithm [Dantzig63, Schrijver86]
of G.B. Dantzig, which has exponential running time in the worst case. The following problem
can be solved in polynomial time:

Proposition 2.2.4 (Sieveking 1976)
Given m,n € N. A€ M, ,(Z) and b € Z™, in polynomial time one can:
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a) Solve Az = b, x € Z™ or show that no solution exists.

b) Find a Z-Basis by, by,... by for {z € Z™ | Az =0}, the Z-kernel. A Z-Basis is a set of
linearly independent vectors by, by, ... , by, where:

{Z‘ ezZ" IA.I:O} = {Ztibi

i=1

t1,t2, ... 1k EZ}

Proof. Modification of Gaussian elimination (M. Sieveking in [SpStr76]). Alternate proof in
[KaBaT79]. ]

Proposition 2.2.5
The following languages are N'P-complete:

1. Integer-Programming:

IP := {(m,n,A,b)’ A€ Mnn(Z),be Z™, }

dJxreZ™: Az <b

2. Knapsack or Subset Sum.:

SubsetSum := {(n,al,ag, .o, Gy, b) € NVT2

dz € {0,1}”:Zaixi :b}

i=1

3. {0, 1}-Integer- Programming:

{0, 1}-IP := {(m,n,A,b)‘ A€ Mam(Z),beZ™, }

Jz € {0,1}": Az < b

4. Weak Dependence:

{(n,al,ag,... ,a,) € N*H!

I(z1,22,... ,2n) € {0,£1}" \ {07} : Zaizi =O}

Proof. TFor 1,2,3 see [GaJoT9, SpStr76], for 4 see [EmBoas81]. In Proposition 2.2.6 we prove
that integer programming has a polynomial length witness and hence IP € NP. |

Proposition 2.2.6 (von zur Gathen, Sieveking 1978)
IP € N'P.

Proof. The witness for (m,n, A4,b) € IP will be a suitable z € Z™ with Az < b. Obviously,
if such an x exists, then (m,n,A,b) € IP. We need only show that the witness has polynomial
length. Let 4 =: (a;;) and b =: (by,b,... ,by)’. Set M := max; ; {las;], |b;|}. Von zur Gathen
and Sieveking [GaSi78] prove:

(Fze2™: Az <b) <= (IweZ":Az<b, |z]|, < (n+1)nzM")
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The upper bound on |[jz]|, implies that the length of the witness x is polynomially bounded in
the length of A und b. Since ¢(m,n, 4,b) > nm + log, M we have:

(z) = O (n*(logn +log M) = O (£(m,n, A,b)*)

We make the following definitions, which will be needed in the next Chapter.

Definition 2.2.7 (Lattice, Basis, Dimension, Rank)
Let by, ba, ... by € R™ be linearly independent vectors. We call the additive subgroup

L(by, b, ... yhn) 1= isz = {itibi
i=1 i=1

of R™ a lattice with basis by, ba,... ,b,. When the sequence of the basis vectors is fized, speak of
an ordered basis. The rank or the dimension of the lattice is rank(L) := n.

t1,ta,... ,tmEZ}

We consider an example:

Example 2.2.8 (Lattice)

Z™ is a lattice of rank m, the standard unit vectors ey, ...,e,, form a basis. Given the matrix
A€ My, n(Z) the set {x € Z™ | Az =0} is a lattice of rank n — rank(A); by Proposition 2.2.4 we
can construct a basis in polynomial time. °

Through lattice reduction we search for a shortest, non-trivial, lattice vector. In the case of the
sup norm this cannot be done efficiently under the assumption that P # NP:

Corollary 2.2.9
The problem of finding the shortest lattice vector with respect to the ||-||_, norm:

LOQ—SVP:: {(m’n,bl’b27_._’bn) maneN,b17b27-..,bn€Z ’ }

3z € L(b,ba, .- ,bp) ¢ [lall, = 1

is N'P-complete.

Proof. The problem of finding the [|-||_ -shortest lattice vector is in AP: The witness of mem-
bership is a vector z € L(by,bs, ... ,bs) \ {0} with ||z]|, = 1. The AP-complete problem “weak
dependence” from Proposition 2.2.5 can be reduced in polynomial time to the ||-|| . -shortest lattice
vector. u

The problem of the shortest lattice vector in the £5 norm is, given a lattice basis by, bs,... , b, and
k. decide whether there is a lattice vector z € L(by, ba, ... ,bn) with z # 0 and ||z||, < Vk.
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Definition 2.2.10 (Shortest Vector Problem SVP)
The language of the shortest lattice vectors in the fy-norm is:

m
L,-SVP := {(k,m,n,bl,bz,... ) | Do € B be e € 2T }

3z € Lby,bo, ... ,by) \ {0} : |l]2 < k

The status of this problem is open. Efforts to show that Lo-SVP is N/ P-hard, in contrast to the
sup-norm-SVP (see Corollary 2.2.9) have failed (see [Kannan87)). However, Ajtai [Ajtai98] has
shown that this problem is AP-hard with respect to randomized reductions.

The problem of the shortest lattice vector is the homogeneous special case of the problem of
the closest lattice vector, which, however, is known to be NP-complete for any norm:

Proposition 2.2.11 (Closest Vector Problem CVP)
The problem of the €y-closest lattice vector

N, b1, bo, ... zm
LQ—CVP::{(k,m,n,bl,bg,...,bn,z) B, € Noby by, - by 2 € 2T, }

37 € L(b1,ba, ... ,by) ¢ Iz — 2l <k

is N'P-complete.
Proof. Sce [Kannan87, Theorem6.2). n

Later we will see an approximate solution due to Babai, based on the LLL algorithm, yielding
a vector in the lattice that is nearest within a factor of ¢, for a fixed constant c.

Summarizing: given a lattice basis b1, bs,... ,b, € Z™, the following tasks are thought to be
hard algorithmic lattice problems:

e Find a short non-trivial lattice vector.
» Find a basis comprised of short lattice vectors.

e Find for a given z € span(b;, bs, ... ,b,) the closest lattice vector.

In contrast, given a system of generators by, bs,... ,b, € Z™ for a lattice L, n > rank (L), it is
possible to construct a basis for L in polynomial time.



Chapter 3

Introduction to Lattice Theory

We define the Hermite normal form of a matrix and show that the Hermite normal form of an
integer matrix is unique. We characterize lattices as discrete, addititve, subgroups of R™. We
discuss the set of all bases of a lattice, primitive systems of lattice vectors, the lattice determinant,
and the Gram-Schmidt orthogonalization of a lattice. We define length reduction and weight
reduction of a lattice basis, and show that every lattice has a length reduced and a weight reduced
bases.

3.1 Terminology

Let (-,-) : R™ x R™ — R be an arbitrary scalar product on the vector space R™. Then ||z| =
v/ {z,2) is called the length of the vector z. For linearly independent vectors by, b, ... ,b, € R™

we let
n
L(bi by, ... by) = Y biZ
i=1
denote the lattice with basis by, ba,... ,b,. For arbitrary vectors by, bs,... , b, let
span(by, by, ... ,by) 1= Z b;R
i==1

be the space spanned by by,bs,... ,b, and let
span(by, by, ... by)T = {y e R™ |{y,b;) =0fori=1,2,...,n}

denote the orthogonal complement of this space in R™.

An integer matrix with determinant £1 is said to be unimodular. The set of all unimodular
matrices is denoted GL,(Z):

27
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Definition 3.1.1 (GL,(Z))
GL,(Z) is the group of integer n X n matrices with determinant +1:

GL,(Z) = {A € Mpn(Z) |det A= %1}

We argue that GL,(Z) is a group. The identity matrix is unimodular and from that fact that if
5.7 € GL,(Z) then det(ST) = det S - det T, we see that the product ST is a unimodular matrix.
Let T € GL,(Z). From

B 1
T detT

det (1)
we have that det (T~1) = £1, and by Cramer’s rule the (4, 5) entry in the matrix T~ is:

(—l)i—w -det T,'j

— +detT};,
det T det Ty

where T}; denotes T" with the ith row and j-th column deleted. Since Tj; is an integer matrix, it
follows that det T;; € Z. Thus, for T € GL,(Z) we have T~ € GL,(Z).

The following elementary column operations can be performed on a matrix by right-multiplication
with an appropriately chosen unimodular matrix:

¢ Exchange two columns
¢ Mulitiplication of a column by —1

o Addition of an integer multiple of one column to another
It can be shown that every unimodular matrix is the product of these three matrix types. So

multiplication by a unimodular matrix corresponds to carrying out a set of elementary column
operations.

3.2 Fundamentals and Properties
In this section we define the fundamentals of lattice theory and show some elmentary properties.

3.2.1 Discrete, Additive Subgroups of R™ and Lattices

Definition 3.2.1 (Discrete Set)
A set S CIR™ s called discrete, when S has no limit point in R™.

We have:

Lemma 3.2.2
Let G C R™ be an additive group. Then the following statements are equivalent:
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a) G is discrete.
b) O is is not a limit point of G.
c) {x € G : |lz|| <r} is finite for all 7 > 0.

d) inf{|lz —yl| : *#y,z,y € G} > 0; that is, there is a positive, real, § such that Vz,y € G,
llz —yll > 6.

Proposition 3.2.3
L CR™ is a lattice if and only if L is o discrete, additive, subgroup of R™.

Proof. We show both directions:

“=" We must show that every lattice L := L(b1, b, ... ,b,) C R™, where by, by, ... , b, are linearly
independent, is discrete. Let ¢ : R® — span(L) the linear mapping

n
pltita, o ta) = ) tibi
i=1

@ is an isomorphism with ¢(Z™) = L. Thus, intuitively, v and ¢! preserve local structure. Since
Z™ is discrete and ¢! is continuous on span(L), it follows that L is discrete.

“<=" Let L C R™ be a discrete, additive, subgroup. Let n be the maximum number of linearly
independent vectors in L. Then n < m. By induction on n we will show that L is a lattice of
rank n. Note that this implies that the rank of a lattice L is the maximal number of linearly
independent vectors in L.

e n=1

Let b € L be a shortest vector with b # 0 (such a vector exists, since 0 is not a limit point
of L). Then it is not hard to verify that L(b) = L.

en>1
Choose by € L \ {0} with + -b; & L for all k > 2. Then

(31) L(bl) = Lﬂspan(bl)

The orthogonal projection 7 : R™ — span(bl)J' is defined by:

i <b1’b)
<bl7b1>

The inductive step follows from the following assertions:

7(b) = b b

1. w(L) is discrete and is a lattice of rank n — 1.
2. For every basis w(b2), (b3), ..., m(by) for n(L) with by, bs3,...,b, € L we have:

L - L(bl,bg,... ,bn)
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The first assertion says that there exists a basis for 7(L) of n — 1 linearly independent
vectors. These vectors are necessarily the images of vectors in L, say, bs,...,b,. So let
m(b2),...,m(bn) be a basis for 7(L). The second assertion says that for every such basis for
w(L). if we add by to the set of pre-images, then L = L(by, by,. .. ,br) and so by definition
1s a lattice. Proof of the two assertions:

1. We show that 0 is not a limit point of 7(L). For the sake of contradiction, assume that
0 is a limit point of 7(L). Let (y(i))iEN be a sequence in L, so that the vectors 7 (y(¥)

are pairwise distinct and lim = (y(i)) = 0. For these vectors
100

) . (i)b>
u)_<n,@ 91
”@ )‘y (b1, 01) b

we compute 7% defined by:

(b1, b1)
N————
integer

} , O
ﬁ”:ym—[@——QJh

Then 79 € L« (y(“) =7 (y(i)), and:
|79 == (v < & 1eul
Since lim ||x ()| = 0, there are infinitely many vectors ) € L with:
100

Ww

<l

This contradicts the fact that L is discrete, and hence the assumption that 7 (y(¥) are
pairwise distinct and 7 (7)) = = (y¥). Thus 0 is not a limit point of (L), and by
Lemma 3.2.2 7(L) is discrete. The maximum number of linearly independent vectors
in 7(L) is n — 1. By the inductive hypothesis 7(L) is a lattice of rank n — 1.

2. Let m(by),w(bs),...,m(b,) be a basis for 7(L) with by, bs,...,b, € L. We will show
that L C L(by,ba,... ,b,). Let b € L. From

7(b) € n(L) = L (mw(be),w(b3),...,w(bn))

therc is a b € L(ba, bs, ..., b,) with 7(b) = 7 (). We have b—b € span(b;). By the
choice of by and from

b—b¢e (LNspan(by)) (42 L(b)

it follows that b — b € L(b;). Thus, b € L(b1, by, ... ,by).
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The above proof also shows that the rank of a lattice is the maximum number of linearly inde-
pendent lattice vectors. It follows from the next Proposition that every lattice has many different
bases. Let [b1,bs,... ,by] be the matrix with column vectors by, b, . . . ,bn. Recall that GL,,(Z) is
the group of integer n x n matrices with determinant +1.

Proposition 3.2.4
The vectors by, by, ... b, € R™ form a basis of the lattice L(by,b,,. .. ybn) if and only if there
exists a matriv T € GL,,(Z) such that:

[b1,b2, ... bn) = [b1,bay... ,by] - T
Proof. We prove both directions:
“=" Since by, by, ... by € L(bi,bs,... ,by) thereis a T € M, ,(Z) with:
[b1,b2,...,bn] = [b1,ba,... ,by]- T
Since by, by, ... by, are linearly independent, we have det T' # 0. It follows that
(50,52, \Ba] - T~1 = [bu, b . . ,by]

Since b; € L (51,52,... ,En) for i = 1,2,...,n, T~! has integer entries. Since detT -
det T7-! =1 and det T, det T~ are both integer, it follows that |detT| = 1.

<" Let us suppose for some T € GL,(Z) that
[b1,b2,... ,by] = [b1,ba,... ,by] - T
It follows that by, bs,... b, € L(by, b, ..., b,). Similarly, it follows from
[b1,b2, . ,bn) - T71 = [b1,b,... ,by),
that by, by.... b, € L (by,bs,...,b,). Thus,
L (51,85, .. ,by) = L(by,ba, ... ,by)

Since elementary column operations can be achieved by right multiplication of the basis matrix
by a unimodular matrix, this says that if we modify basis B = [by, by, . .. ,bn] by

1. reordering the columns
2. multiplying any number of columns by —1

3. adding integer multiples of some columns to other columns

then the resulting matrix is a basis matrix for the same lattices.
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3.2.2 Definition of Hermite Normal Form

We introduce the Hermite Normal Form of a matrix and prove its uniqueness. In Chapter 77 on
Page 77 we will show an algorithm for obtainng the Hermite Normal Form of an arbitrary matrix.

Definition 3.2.5 (Hermite Normal Form)

A matriz [a;j] € Mm o(R) with m <n is in Hermite Normal Form (HNF) when:
a) ajj =0 forj > i, ie., A is lower triangular.
b) ai; >0 fori=1,2,...,m.

c) 0< Qi < G fOTj < 1.

It is arbitrary to require that the Hermite Normal Form will be lower triangular rather than upper
triangular (see Corollary 3.2.8). Alternatives for Point c) appear in the literature. In [DKT87]
the authors require

a;; <0 and |a;;| < a;; forj <i

In [PaSchn87] the authors require that the elements to the left of the diagonal should be relatively
small:

[aij| < %|a“’| fOI“j <1

We can obtain the different variants of Point ¢) of Hermite Normal Form by addition of integer
multiples of one column to another column. Thus, for our purposes the different Hermite Normal
Forms are equivalent, since by Proposition 3.2.4 they yield the same lattice.

The following Proposition was first proved by C. Hermite [Hermite1850] for square matrices:

Proposition 3.2.6 (Hermite 1850)
For every matriv A € My (Q) with rank(A) = m < n, there is a matriz T € GL,(Z), so that
AT is in Hermite Normal Form. The Hermite Normal Form AT is unique.

Proof. Let a be the least common multiple of the denominators of the entries of matrix A. Then
ad € My, o(Z) and % (aA) T is its Hermite Normal Form. We can therefore restrict our attention
to the case that A € M, (7).

A polynomial algorithm for computing the Hermite Normal Form appears in [BaKa84]. (see
Algorithm 77, 77 77 of these notes). It remains to show uniqueness. Suppose for the sake of
contradiction that there exist two normal forms, B,C € M,, ,(Z) for A.

b1q 0 ce 0 0 0 c11 o - 0 0 0

B = [)21 bQQ . 0 0 0 o C21 Coo 0 0 0
: 0 0 0 0 0 0

b1 bma - brm 0O 0 Cm1  Cm2 Cmm 0O 0
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Let By, By, ..., B, and Cy,Cs, ... ,C, be the column vectors for B and C, respectively. Since both
Hermite Normal Forms for A can be obtained from each other by multiplication with unimodular
matrices, we have by Proposition 3.2.4 that L(B) = L(C). In particular, B,, € L(C) and Cy, €
L(B). Since the diagonal elements are all non-zero, B,, must be an integer multiple of C,, and
conversely, 80 ¢,nm = bym.-

Let j be the maximal index with B; # C;. Since ¢mm = bmm, we have j +1 < m. Since
L(B) = L(C) there exist integer coefficients t;,¢;11,...,tn € Z, so that for every i withj<i<m
we have (note: c;x = 0 for k > i):

i

(3.2) bij =) trcik
k=j
As in the case of the mth column vectors, we obtain b;; = ¢j;, so t; = 1. For i = j + 1 we have
(3.3) bjt1,j =t Ciprg + it - G js1 = Gty + bi c Gt
and we obtain
(3.4) Gt | e g1 = (bjray — ¢ y)
Since B is in Hermite Normal Form, we have by the choice of j the maximum index with B; #£Cj:
0<bj1j <bjt1je1 = G541
Since C' is also in Hermite Normal Form, we have 0 < Cj+1,5 < €j4+1,5+1, and we obtain:
bj41,5 — Cit14] < €jtij

i ¥rom (3.4) it follows that bjy; j = ¢;11,; and from (3.3) we have t;11 = 0. One shows inductively
that likewise

tire =tjp3 = =tp =0
and thus obtain by (3.2) the contradiction B; = 0. ]

We will compute the Hermite Normal Form for a special case:

Example 3.2.7 (Hermite Normal Form)
We consider the case that the matrix A has one row

A= [a1 as - an]

and the minimum entry is non-zero. Note that the operations of the Euclidean Algorithm on
the values ay,a2,... ,a, can be expressed by right-multiplication with unimodular matrices. This
vields g := ged(aq, az,. .. ,a,) in the leftmost position, the remaining values being 0. We obtain
the Hermite Normal Form of 4

HNF(A)=[g 0 --- 0]
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Note that the column vectors of A and HNF(A) yield the same lattice, namely

ZZa,— =1Z-ged(a1,az,... ,an)

i=1

In Proposition 3.2.4 we will see that this is not a coincidence. The Euclidean Algorithm is the

basis for the procedure in Chapter ?? to obtain the Hermite Normal Form of an arbitrary matrix
Ae M, o (7).

Up to this point, we have been careful to stipulate that the basis vectors bi,ba, ... b, € R™
for L = L(by,b,... ,b,) are linearly independent. Clearly, when m < n the “basis” vectors
cannot all be linearly independent. When this occurs, the vectors impose a ged-like structure; the

we have Y70 b, Z = Y e, 7, where ¢y, ¢, ... ¢ are the first m columns of the HNF form of
[bl,bg,... .bn]. (o]

We have formulated Proposition 3.2.6 only for rational and in particular for integer matrices.
For real matrices the proposition does not generally hold. For example, for

A= B ‘f] € M3 2(R)

there is no matrix T' € GLz(Z), so that AT is in Hermite Normal Form (proof by contradiction).

Corollary 3.2.8
For every matriz A € My, »(Q) with rank (A) = m < n there is a matriz T € GLn(Z), so that AT
s upper triangular.

Proof. We define matrix U := [u;;] € GL,(Z) by Ui 1= 0j ny1—;. U is obtained from the identity
matrix by reversing the order of the column vectors. It is obvious that U = U~!. Multiplication
of a matrix by U

e on the left reverses the order of the row vectors and

e on the right reverses the order of the column vectors.

We obtain for UAU by Proposition 3.2.6 the Hermite Normal Form (UAU) - S with S € GL,(Z).
(UAU) - S is lower triangular. We define the matrix T := USU ¢ GLn(Z). By reversing the
order of the row and column vectors we obtain the of the matrix (UAU) - S, we obtain the upper
triangular matrix:

U - (UAUS)-U = AUSU = AT
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3.2.3 Determinant and Basic Block

We define the determinant of a lattice:

Definition 3.2.9 (Determinant)
The determinant det L of lattice L = (b1, ba,... ,b,) C R™ is defined by:

det L = (det [(b;, bj)]lgi,jgn) i

For the scalar product (u,v) = u"Sv we have: det L = det(BT-S-B)%, where B := (b1,b2, ... ,bp).

Proposition 3.2.10
The determinant of a lattice is independent of the choice of basis bi,bay ... b, € R™.

Proof. Let B, B be basis matrices of the lattice and let T € GL,(Z) satisfy B = B-T (the proof
holds in general for T € GL,,(R)). Let S € My, »(R) be the symmetric matrix with (u,v) = u7 Sv.
JFrom det T' = 1 we have:

det L = (det [(bi, bj)]lgi,jﬁn) 2
1
2

=det (BT-S- B)

Bl

=det(T"-B"-S-B-T)
= det ((BT)" - S - (BT))*

Since B = B - T it follows that:

[

detL:det<I§T~s.‘B‘)

The parallelepiped determined by the basis vectors of the lattice is the basic block of the lattice
with respect to the given basis. Figure 3.2.1 shows the basic block of the lattice determined by
a,bin R2.

Definition 3.2.11 (Basic Block)
Let by, by, ... b, be a basis of the lattice L. The parallelepiped

n
{Ztibi
i=1

Ogtl,tg,...,tn<1}
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[ [/

Figure 3.2.1: Basic Block of the Lattice L(a,b)

is the basic block with respect to basis by,bs,... ,b,. We are mostly interested in the case that
the dimension of the lattice L. C R™ is equal to m.

Definition 3.2.12 (Full Dimensional Lattice)
A lattice L C R™ is full dimensional when rank(L) = m.

The following lemma relates the standard scalar product to the determinant of a lattice:

Lemma 3.2.13

For every lattice L = L(b1,by,...,by) C R™ and the standard scalar product we have (note:
volume implicitly relies on the scalar product):
Ostl,tg,... yin < 1})

det L = vol,, ({Z tib;
i=1

In words: The n-dimensional volume of the basic block equals the lattice determinant. For a full
dimensional lattice the lattice determinant is equal to the determinant of the basis matriz.

Proof. We first consider full dimensional lattices. In this case, for basis matrix B := [b1, ba, . .. , by],
we have:

1

det L = |det B| = (det BTB)? = (det [(bi,bj)]lgi)jsn)a

In the general case, where rank(L) = n < m, we will later show that there is an isometric
mapping 7' : span(L) — R™, such that for all u,v € span(L), (u,v) = (T(u),T(v)). We apply
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the lemma to the full dimensional lattice 7'(L) and use the fact that T preserves the volume and
scalar product:

[N

1
2

det L = det (L) = (det [(T(b:), T(b;))], <, o) = (det[(bib)] o, <)

|

As in the proof of Lemma 3.2.13 we can always restrict our attention to the case of full di-
mensional lattices when considering geometric invariants. This is because the invariants remain
unchanged by isometric mappings. Examples of geometric invariants are volumes, determinants,
scalar products, and vector lengths. The principle that full dimensional lattices suffice for geo-
metric considerations depends on the fact that for every lattice L of rank n there is an isometric
mapping from span (L) to R". This isometric mapping does not in general maintain the integrality

of vectors. Combinatoric and algorithmic investigation should thus not be restricted to the case
of full dimensional lattices.

3.2.4 Sub-Lattices

We define a sub-lattice as a subset of lattice points that form a lattice of the same rank:

Definition 3.2.14 (Sub-Lattice)
Let Ly, Lo be lattices of the same rank with Ly C Ly. Then we say that Ly is a sub-lattice of Lo.

Example 3.2.15 (Sub-Lattice)
We consider a sub-lattice of the lattice Z™ (which has basis matrix the 2 x 2 identity matrix D).

Let
2 0
A= [0 2]

L(A) C Z? is a sub-lattice of Z? with rank(L(A4)) = 2 (see Figure 3.2.2). There is a matrix

T € Mys(Z) with A= I, - T:
2 0] _[1 0] [20
0 27 lo 1] |0 2

~——
=T

We will see in Proposition 3.2.16 that such a T always exists, and moreover (Lemma 3.2.18), that
det Ly = det Ly - |det T'|.

Proposition 3.2.16
Let Ly be a sub-lattice of Lo C R™.

a) For every basis ai,aa,... ,an of Ly there exists a basis by, ba,... by for Ly with
(35) [al,az,...,an]:[bl,bg,...,bn]-T
for an upper triangular matriz T € M, ,(Z).
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(0,6) (2,6) (4,6) (6,6)
(0,4) (2,4) (4,4) (6.,4)
(0,2) (2,2) (4,2) (6,2)
(0,0) (2,0) (4,0) (6,0)

Figure 3.2.2: Sub-Lattice L(A) of Z?>

b) Conversely, for every basis by, by, ... b, for Ly there is a basis a;,as,...,a, for L, with
property (3.5).

Remark 3.2.17

sFrom Property (3.5) with upper triangular matriz T, we have that:

span(a;,asy, ... ,a;) =span(by, bz, ..., b;) fori=1,2,...,n
Proof (of Proposition 3.2.16). We show both statements:

a) Let by, ba,...,b, be an arbitrary basis for L. Then since L; C Lo each element of L, can
be expressed as an integer linear combination of the basis elements of Ly. Thus, there exists
a matrix S € M, ,(Z) with det S # 0 and:

(36) [al,ag,...,an]:[51752,...,5n]-5
The HNF-Proposition 3.2.6 ensures that for ST there exists a U € GL,,(%Z),such that STUT =

(U'S)T is lower triangular. Define T := US (an upper triangular matrix) and basis matrix
for Ls:

[bl,bg,... ,bn] = [51,52,... ,En] N U—_1
By (3.6) we obtain:

[al,(lg,... ,an]: [51752,... ,l_)n] 'S:[bl,bz,... ,bn]US
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b) Leta;,as,...,d, be an arbitrary basis for L;. There is a matrix S € M, ,(Z) with det S # 0
and:

[@1,T2,...,8n) = [b1,b2,...,bs] - S

By Corollary 3.2.8 there is a U € GL,(Z) such that SU is upper triangular. The statement
follows for the basis

[al,ag,... ,an] = [61,62,... ,En] U

and T := SU.

Contintuing our previous example, the factor group Z?/L(A) consists of the four equivalence
classes

o rze. g+ o vz, [} <o

Thus [22 : L(A)] = 4. In Lemma 3.2.18 we show that in general the index (i.e., the number of
distinct cosets) is equal to |det T'|. We represent the equivalence classes through their respective
representatives, which lie in the basic block. o

Lemma 3.2.18
Let Ly = L(by,ba,...,b,) be a lattice and L1 = L(ay,as,... ,a,) a sub-lattice of Lo. Let T €
My (Z) with A= B T for A:=|aj,as,...,a,] and B :=[by,bs,... ,b,]). Then:

det Ly = det Ly - |det T'|

Proof. Let S € My, m(R) be the symmetric matrix with (u,v) = u"Sv. Then:

[T

det L; = det (AT - A)
— det (BT)T- S - (BT))%
= det (TTBT S - BT)

1
2

= det (TTT)* - (det BT - S - B)

1
=|detT|- (det BT - S - B)?
= |detT| - det Ly

Definition 3.2.19 (Index of a Sub-Lattice)
The integer |det T'| = % from Lemma 3.2.18 is called the index of the sublattice Ly in Ly.
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The index is independent of the choice of lattice basis. In particular, L; is a subgroup of the
additive group Lo of index |det T'|.

Let Ly = L(ay,ay, ... ,ay,) be asub-lattice of Ly = L(by, b, ... ,by,), so that bases a1, as, . .. ,Qn
and by, by, ... b, satisfy equation (3.5) with T' = [tij]. Then L;/L, is a finite group, the index
[Lo : L1] of Ly in Ly satisfies:

o = . _ detLl . _ - »
(3.7) [Ly: Ly] = doiL, ~detT = H|t“|

In particular, Ly = Ly if and only if |detT| = 1. This relation can be used to prove that

ar,az,...,a, form a basis for L,. Let L; be the lattice defined by a1,as,...,a,. Then we

know SLIP and a basis by, b, ... ,b, for Ly. Further, the system of vectors ay, as, ... ,a, satisfies

Property (3.5). Thus:

det L
Ly = L{ay,az,... ,a,) < H't”l - detL; -

It follows from (3.7) that:

Corollary 3.2.20

Let a = (a1, ao, ... ,an)T € Z" \ {0} and b € N. If L, is the integer lattice
Loy ={z€Z"|(x,a)=0 (mod b)}

(where (-,-) is the standard scalar product), then

b
ged(ai,ag,... ,an,b)

det La,b =

Proof. We first show that L, ; is a sub-lattice of Z™, that is, the lattice Loy C Z™ has full rank.
Let v, = (1,..., 1) € Z". Choose n—1 integer vectors vy, vs, ... ,Un_1, S0 that buy, bva, ... ,bu, €
Z" are linearly independent (for example, the first n — 1 identity vectors). Since

(bvg,a) = b-(v;,a) =0 (mod b) fori=1,2,...,n

it follows that buy,bvg,... ,bv, € Z™ are in the lattice Lo and form a basis. Thus L,y is a
sub-lattice of Z". ;From det Z™ = 1 it follows from (3.7) that:

(3.8) det Lap = [Z" : Lay)

The factor group Z"/ L, s has at most b residue classes, namely Ro, R1, ..., Ry with:
R,:={z€Z"|{z,a) =i (modb)}

We show that the factor group has exactly these b residue classes. We first consider the case

{3.9) ged(ay, az,... ,an,b) =1
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Then there exist integer coefficients t1,ts,... ,tny1 € Z with:
n
Zt]‘ -aj+tn+1 b=1
j=1
For the vector t := (t1,t2,... ,t,) € Z" we have:
(t,a)=1—tyy1-b=1 (mod b)
For the vectors ¢; ;=i -t € Z™ with 7 =0,1,... ,b — 1 we obtain:
(ci,a) =i-(t,a) =i (mod b)

The residue classes R, Ry, ..., Ry—1 are thus non-empty. From (3.9) we obtain by (3.8):

b b
tLap=[Z": Loy = = =
de ? [ La,b] 1 ng(a17a27--' 7an)b)

We also consider the case
d = ged(ar,a9,... ,a,,0) > 1

Then for all z € Z" we have

(r,a) =0 (modd) < b|{(z,a)
= (=9
— (2,2)=0 (mod %),
80 Loy = La . Since ged (%, %, ..., %, %) = 1 we obtain:

b
~ ged(ag,az, ..., an,b)

aul o

3.2.5 Primitive System

In Proposition 3.2.22 we characterize systems of lattice vectors, which can be completed to obtain
a basis for the lattice. These criteria are useful for the construction of special lattice bases.

Definition 3.2.21 (Primitive System)
Let L C R™ be a lattice. The vectors by, ba,... by € L form a primitive system for L if

1. by, bo, ... by are linearly independent.

2 span(bi,bs,... ,bpg) N L = L(by,ba,... by)
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Since the inclusion span (by, ba, ... , b )NL C L(by, by, ... ,by) for arbitrary lattice vectors b1,b,...
what is significant is that span (by,by,... ,bx) N L D L(by, by, ... ,bs). A single vector b € L forms
a primitive system when %b ¢ L for all k € Z with |k] > 2, so the greatest common divisor of the
vector entries is 1.

Proposition 3.2.22
Let L C R" be a lattice with rank(L) = n and by, ba,... by € L. The vectors by, bs,... b form
a primitive system for L if and only if they can be completed for form a basis for L.

Proof. We show both directions:

“=" Let by, by, ..., bk, bgs1,...,by be a basis of the lattice L. The vectors by, bo,... by are
linearly independent. Each vector b € L can be uniquely described as b = Z?:l t;b; with
ti,ta.... ,ty € Z. We have,

bEspan(bl,bg,...,bk) — g1 =l ==t, =0
So span(bi, by, ... ,bx) N L C L(b1,ba, ... ,by).

“=" Let by, b2, ... , by be a primitive system and let 7 be the orthogonal projection 7 : span (L) —

span{by, by, ... ,bk)L. By the proof of Proposition 3.2.3, 7(L) is a lattice of dimension n — k.
The lattice w(L) has basis 7(bgy1), 7(brt2), ..., 7(bn) with byry,besa,..., b, € L.

We show that L = L(by,b2,...,b,). Let b€ L. From
w(b) € L(W(bk+1),ﬂ(bk+2), .. ,W(bn))

there is a b € L(bgy1,bkta, - - - ,bn) with (D) = «(b). Let

n n

m(b) = Z tim(b;) und b= tibs
i=k+1 i=k+1
Then b—b € span (by, by, ... , by). Since by, by, ... , by form by assumption a primitive system,

we have b — b € L(b1,ba,... ,by). Thus b€ L(by,bs, ..., by,).
[

The following notion, of a Minkowski-reduced basis, is not algorithmically motivated and is men-

tioned here only for completeness (for a procedure to obtaine a Minkowski-reduced basis see
B. Helfrichs Arbeit [Helfrich85]):

Definition 3.2.23 (Minkowski-Reduced)
Let by,ba, ... by € R™ be an ordered basis for attice L; that is, the order of the vectors is fized.
The ordered basis is said to be Minkowski-reduced if for i =1,2,... ,n:

. be L and (br,by, ... bi1,b
||bz-||:mm{||b||] and (b1, by 1) }

18 a primitive system for L

7bka
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Definition 3.2.24 (Isometric Lattices)
Two lattices L C R™ and L C R™ are isometric, when there is an isometric mapping T : R™ — R®
with T(L) = L.

Let L and L be isometric lattices and let T be an isometric mapping with T'(L) = L so that
bi,ba.... b, is a basis for L. Then for the basis b; :=T(b;),1=1,2,... ,n:

(b, b;) = ( bi, b;) for1<4,57<n

We say that two such bases are isometric. For the scalar product (u,v) = u'Sv we have: The
isometry class of a lattice basis B = [by, bs,. .., by] is characterized by the matrix BT - S - B. In
particular, two lattices are isometric if and only if they have isometric bases. For example, in the
case of the standard scalar product:

v=[3

o
|
= o O
o
h}
S}
I
ol
_.l
o]
Il
[N]

3.2.6 Orthogonal Systems

The goal of lattice basis reduction is, given an arbitrary lattice basis, obtain a basis of shortest
possible vectors; that is, vectors as close as possible to mutually orthogonal.

Definition 3.2.25 (Orthogonal System, Orthogonal Projection ;)
Let by, by, ... b, € R™ be an ordered lattice basis where L = L(by, by, ... ,b,) is of rank n. Define

7« R™ — span(by, b, ... ,bi_l)L
to be the orthogonal projection, that is, for all b € R™:

mi(b) € span(by, by, ... bi_1)*
b-—ﬂ'i(b) [S span(bl,bz,... 7bi—1)

We write T)i = 7;(b;).

We can obtain Bl,gg, e ,Zn by the Gram-Schmidt procedure:

(310) b1 = bl

i—1
(311) bi = Wi(bi):bi"zui,jgj fOI“i:2,3,...,TL
j=1
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where the Gram-Schmidt coefficients y; ; are defined by:
(3)_(u3)
Mi,j = o = —
<bj, b]> Hb]H2

In particular, u; ; = 1 and for j > 4, u; j = 0. By definition (3.10) and (3.11) we can express the
vector b; in terms of the orthogonal system:

i—1
(3.12) b; =b; + Z,ui)]’bj

=1
Then ij:l ui,jgj is the projection of b; onto span (b, bs, ... , b) and Zj’:k—f-l ,ui,ﬁj the projection
of b; onto span(by,bs,. .. ,bk)l. Moreover, for 1 = 1,2,... ,n we have

span(by, by, ... ,b;) = span (51,32, e ,Ei)
The description (3.12) of the basis vectors by, ba, ... , b, can be expressed in matrix form:
[b1,b2,... ,by] = {31,52, o ,gn] . [Hi,j]-{gi,jgn

Note that if m = n then B is square with non-zero determinant and we have
n -~
det B = det B - det [ 3] <; j<n = det B = [ Ilbsll
i=1

because det [Hi,j]1T<i,j<n = 1 (upper triangular with 1’s on the diagonal). The last equality holds

because the columns of B are mutually orthogonal. If m > n, then consider the mapping T :
span(L) — R" with

~ ~ ~ T
T = [pallsll, palboll, sl ]

T is easily shown to be is isometric, so the matrix

-~ 1 w21 p31 - pmn
b o --- 0 ' ' '
il N 0 1 H3,2 Hn 2
(T(h1), T(bs)...., T(by)] = 0 llba] 01 '
: . - f O
0 o0 [fBall 0 . ... o 1
is a basis for a lattice in R" that is isometric to L(by,bs,...,b,). We can now proceed as in the

case m = n: Since det[y; ;]]<; ;<. = 1, we have from the proof of Proposition 3.2.10:
Hij 1<4,5<n

(3.13) det L(b, by,... ,by) = [ Iibill
i=1
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Proposition 3.2.26 o R
Let L = L(by,by,...,b,) and let by, by, ... b, denote the Gram-Schmidt orthogonalization of
bi,bay ... by, Let A(L) denote the length, using the fy norm, of the shortest non-zero lattice

vector in L. Then A(L) > min, ||b;

2
Proof. In the proof, we let ||| denote the £, norm. Let a € L be a minimum length lattice
vector in L. Since a € L we can write a = > | \;b;, where \; € Zfori=1,2,... ,n. Expressing

each b; in terms of the Gram-Schmidt orthogonalization we get:

n i
a = Z )\i Z ,uiﬂ;j
i=1 j=1

Let k be the last index for which Ay # 0, so Aj =0for all j > k. Let us define Ajfor 1 <j<nby
A= A
i=j

(Note that by choice of k, A; = A\¢.) Then a = 2?21 A;Ej. Since the Zj are mutually orthogonal,
we have

Jal = 002 [ 2 o2 [
j=1

Thus, [|al] > [Af]

!&H = | Ag] ”3’“” Since A € Z \ {0} we have |Ax| > 1, and the proof is complete.
|

We define the orthogonality defect, a measure of how far the basis vectors are from being
mutually orthogonal:

Definition 3.2.27 (Orthogonality Defect)
The orthogonality defect of a basis by, bs, ... b, of the lattice L is:

T b,
OrthDefect(L) := %’

Since ||bs]| > ||gz||, the orthogonality defect is greater than or equal to 1. It is 1 precisely when the
basis vectors are mutually orthogonal, and thus b; = b; for i =1,2,... ,n (see (3.13)).

3.2.7 Quadratic Forms

In this section the scalar product always denotes the standard scalar product. A basis matrix
B = [by,by,. .., b,] yields the following quadratic form QFp in the real variables z1,z2,... ,Tx:

QFg(x1,12,... ,2p) := Z (b, bj) T

1<i,j<n
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This quadratic form QF g is positive definite, that is, QF g(z1, 22, ... ,2,) > 0and QF g(z1, 29, ... ,2,) =
0if and only if 2, =z, = ...z, = 0. QFp is positive definit implies:
n 2
QFB(.Z‘l,IQ, . 7:L‘n) = inbi
i=1
and 377", x;b; is the null vector exactly when 21 = 23 = ...z, = 0. For integer 1, 2o, ... ,2,QF g
takes the value of the square of the length of the corresponding lattice vector in L(by, b2, ... ,by).

Conversely, for every positive definite, symmetrische, quadratic form

QF = Z Qij T

1<4,j<n
there is a lattice basis b1, by, ... , by, so that (b;,b;) = g;; for 1 < 4,5 < n. Then every positive
definit, symmetric matrix (g;;) € My »(R) can be written as (¢;;) = B'B with B € M,, ,(R).

Two lattice bases B, B yield the same quadratic form QF 5 = QFpg, precisely when there is
an isometric mapping that transforms B into B. The quadratic, positive definite forms express
uniquely the isometry classes of the lattice basis. The theory of lattice bases and positive definite
forms is in this sense equivalent. The older contributions, of J.L. Lagrange, C.F. Gau8, C. Hermite,
A. Korkine, G. Zolotareff und H. Minkowski, were expressed in terms of quadratic forms. Two
quadratic forms

QFg = Z Qi TiT; and QFa: Z q;;TiTj

1<i,j<n 1<ij<n

are congruent, when they can be transformed into one another through unimodular transforma-
tions, that is, there exists a matrix U € GL,(Z) with:

e
[@iili<ij<n = U [@ii) 1< j<n U

For example, for two bases B and B of the same lattice, the corresponding quadratic forms QF 5
and QF+4 are congruent.

3.2.8 Dual and Whole Lattice

In this section the scalar product is the standard scalar product. We define the dual lattice:
Definition 3.2.28 (Dual (polar, reciprocal) Lattice)
Let L be o lattice. The dual (polar, reciprocal) lattice id defined as:
L* :={z €span(L) |[Vbe L: (z,b) € Z}
Proposition 3.2.29

Let L C R"™ be a lattice of full rank with basis matriz B := [by, by,... ,by). Then (B™!) T is a basis
matriz of the dual lattice L*. In particular, (L*)* = L.
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Proof. Let
* * £ * -— T
B :=[b],b3,...,0} ] := (B 1)

We must show that L* = L(B*). We show both inclusions:

e L(B*) C L*: For the identity matrix /

(b1,b1)  (b,b) - (b1, bn)
e ((B_I)T)T.B S <b2,:b1> <b2,:b2> <b2,:bn>
(ba,b) (boaba) o (b b

Thus (b7, 0;) € {0,1} foré,j = 1,2,... ,n. Forz = 3 | t;b} € L(B*) with t;,ts,... ,t, € Z

we have:
(2,b) =Y ti-(b},bj)€Z  forj=1,2,....n
=1

Since b} € R" = span(L) for i = 1,2,... ,n, it follows for all z € L(B*), that = € L*.

e L(B*) 2 L*: For every a € L* we must show that a € L(B*). Since by, bs,... by € L, we
obtain from the definition of the dual lattice:
% (b1, a)
B am || az | ez
b (b, )
Further,

a=E-a=(B-B™) -a=(B™")"-BT.a=B* (BT .q)

————
ez

Let ¢; :=(b;,a) € Z for i = 1,2,... ;n. Then a can be expressed as

n

a = Z tib;

i=1

and a € L(B*).
Moreover, (L*)* = L, since the operations of inverting and transposition commute. ]

Definition 3.2.30 (Self-Dual Lattice)
A lattice L is called self-dual when L = L*.

For example, Z™ is a self-dual lattice. To conlcude this section, we define a whole lattice:
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Definition 3.2.31 (Whole Lattice)
A lattice L is called whole when (a,b) € Z for all a,b € L.

Proposition 3.2.32

3 . . * 1
For every whole lattice L, L C L™ C Tz L

Proof. The proof is left to the reader. a

3.3 Length- and Weight- Reduced Lattice Bases

In this section we define two algorithmically motivated types of reducedness: length reduced and
weight reduced lattice bases.

Definition 3.3.1 (Length Reduced Basis)
The ordered basis by, ba, ... by is length reduced when |y; ;| < % forl<j<i<n,

Proposition 3.3.2
For every ordered, length reduced basis by, by,... , by:

i-1
PN e .
Il < IR+ 5 SO fori=1,2,...,n

=1

Proof. ;IFrom Equation (3.12) on Page 44 we have for i = 1,2,... ,n:
b; = b; + Z,ui,jbj
=1

The vectors by ,Zz, e ,En of the orthogonal system are mutually orthogonal, so it follows that:

161> = {|b:

2 it N
+ 2 b1
i=1

Since the basis is by assumption length reduced, we have | 5] < %, whence the Proposition
follows. ]

Algorithm 3.3.1 transforms a given lattice basis into a length reduced basis for the same lattice.
‘To prove correctness of the length reduction algorithm we consider the basis vectors expressed in
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Algorithm 3.3.1 Length Reduction

INPUT: Ordered Lattice Basis b1,bs,... ,b, € R

1. FORi=2.3,...,n DO
FORj=i—1,i—2,....1DO0
bi = b; — [pij] - b
END for j
END for i

OUTPUT: Length Reduced Basis by,bs,... ,b,

terms of their coordinates in the orthogonal system:

/61 32 63 ,l;n—l
b= (1 0 0 0
bg = ( H21 1 0 0
by = (31 43,2 1 0
o= (0 .0
bt = ( Pn-11 HBn-12 Mn-13 1
by, = ( Hn,1 Hn,2 Hn,3 Hnon—1

We observe that:

o The step b; := b; — [pi;]b; causes pfo¥ := p2it —1- [pd].

coof

—_ D e

¢ In particular, |,u“e-w| < %, and the p;, remain unchanged for v > j.

2%}

This is a weak form of reduction.

Definition 3.3.3 (Weight Reduced Basis)

The ordered basis by,bs, ... b, is weight reduced when:
[(bi, b _ 1 o
a) < = for1<ji<i<n
o;1* 2

h) HblH S Hbi+1“ fOT"l: = 1727' S, = 1

Note that the first requirement does not refer to the Gram-Schmidt coefficients

()

Hij = — =
116511
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Property b) of weight reducedness says that the basis vectors are in ascending order of length:
ou]] < Ml < flbs]] < -+ < {Jba—1 ] < {[ba]l
Property a) is equivalent to
Ibill < M1bi £ b5 for1<j<i<n

From

Il

s = b1 = (bs £ by, bi & by) = [1Bal|” £ 2- (i, by) + [1byl ]

it follows that,
bll* <o £b;0° <= £@ib) <3017 = | b)| < Loyl

In Chapter 5 we will consider the special case n = 2, in which the basis consists of two lattice
VeCtors.

Algorithm 3.3.2 Weight Reduction

INPUT: Lattice Basis by,bs,... ,b, € R™

1. F :=true
2. WHILE (¥) DO

2.1. Order by, ba,... b, so that ||by|] < ||b2]] < -+ < |bnl|
2.2. F :=false
2.3. FORi=1,2,... ,n DO
FOR j=1,2,...,i—1DO /x reduction step */
r = (b, by) - byl
IF |r| > § THEN b; := b; — [r]b; and F :=true
END for j
END for i
END while

OUTPUT: Weight Reduced Basis b1,bs,...,b,

Proposition 3.3.4
Every lattice has a weight reduced basis.

The proof of the Proposition is immediate from the correctness of Algorithm 3.3.2, which trans-
forms an arbitrary lattice basis into a weight reduced basis for the same lattice. The correctness
of the algorithm follows from the two observations:
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e It is clear by inspection that the ouptut is a weight reduced basis.

¢ The algorithm terminates, since every reduction step reduces the length of one basis vector
while leaving the remaining basis vectors unchanged, and every lattice is discrete.

In contrast with Algorithm 3.3.1 for length reduction, the weight reduction procedure exchanges
the sequence of the vectors, and in particular the shortest basis vector is the first one. However,
the algorithm is not efficient. In the following chapters we will study stronger notions of reduction:
LLL reduction in chapter 6 and HKZ- and S-reduction in Chapter ?7.

3.4 Examples

In this section we describe some lattices and their respective bases. The scalar product is the
standard one. The first successive minimum A; is the length of the shortest non-zero lattice vector
(a formal definition follows later).

For the lattice

n
An::{(mo,zl,...,xn)eZ”+1 in=0}
=0
the following row vectors form a basis:
by -1 +1 0 0 --- 0
by 6 -1 41 0 --- O
bp—1 0 0 -1 +1 0
by, o - 0 0 -1 +1

Clearly, L(b1,bs,...,b,) is a sub-lattice of A,,, since by, bs,..
independent. Conversely, let ¢ = (2¢,21,...,Z,) € A, be an arbitrary element of A,. For
i =n,n —1,...,2, subtract the vector b; from , until the (i + 1)th component is zero. Only the
first two entries of the vector 2’ are non-zero, and it is in A,. Moreover, zj, = —z}, and the vector
is an integer multiple of by.

The lattice

.,bn € A, and they are linearly

n
D, ::{(1‘1,1‘2,...,1‘”)62" inEO (modZ)}
i=0
has a basis comprised of the following row vectors:
[ by ] [+2 0 0 0 0
by +1 -1 0 O 0
bs 0 +1 -1 O 0
b1 0 0 +41 -1 O
L bn | 0 0O 0 +1 -1
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Alternatively, b} = (=1,—1,0,...,0). Since by = —b{ + ba one obtains the same lattice. Clearly
L{by,bs.... ,by) is a sublattice of D, since by, ba,... ,b, € D,, and they are linearly independent.
Conversely, let © = (z1,22,... ,2,) € D, be an arbitrary vector in D,,. Fori =n,n —-1,...,2,
remove from z the vector b; until the ith component is 0. The only non-zero entry in the vector
is the first one, and the vector lies in D,,. Thus z; = 0 (mod 2), and the vector is an integer
multiple of b;. Note that det D,, = 2. Clearly there is no lattice vector shorter than the basis
vectors, so A1 (D) = V2.

Let n = 0 mod 4. The lattice

— nl| Yoz =0 (mod4) and
En = {(301,332,.-- »¥n) €2 z; =i+ (mod2)for1<j<n

has a basis comprised of the following row vectors:

[ by ] [+4 0 0 0 -+ 0
b +2 -2 0 0O -+ 0
b3 60 +2 -2 0 --- 0
b1 6 -~ 0 +2 -2 0
| bn [+1 - 41 41 41 41
Clearly L(by,ba, ... ,by) is a sub-lattice of E,, since by,bs,... ,b, € E, and they are linearly
independent. Conversely, let z = (z1,z2,... ,2,) € E, be an arbitrary vector in E,. Consider
' =z —x,b, € E,, whose last component is 0. Since z’ € E,, and the last component is 0, all its
entries are even. Fori=n —1,n—2,...,2, remove from z' the vector b; until the ith component

is 0. The only non-zero entry of the resulting vector is the first one, and the vector is in E,,. Thus
z; =0 (mod 4), and the vector is an integer multiple of b;. Since det E,, = 2" we have:

4 ifn=4
8 else

Ay (En)2 = {

For n = 4, w:= (1,1,1,1) is a vector in E; with [jul|® = 4; for n > 4, v := (2,-2,0,...,0) is a
vector in E, with ||v||> = 8. Are there shorter lattice vectors? (Note that for all lattice vectors
r € By, rp1 =2z, (mod 2)).

Let a = (a1, az,... ,a,) € Z™ \ {0}. Consider the lattice of integer vectors orthognal to a:

L, :=span(a)" NZ" = {t € Z" | (a,t) =0}

We show:
llal]
det L, =
* " ged(ay,ag,... ,an)
The lattice L, clearly has dimension n — 1. Let ¢3,¢3,..., ¢, be a basis for L,. Since

span(L,) NZ"™ = L,
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the vectors of the basis form a primitive system for the lattice Z™ and by Proposition 3.2.22 there
exists a vector ¢; € Z with:

L(Cl,CQ,... ,Cn) =Z"

The entries of the vector ¢; are relatively prime, since ¢; is a primitive vector with respect to Z".
The part of ¢; orthogonal to L, is

<cl’a> .
lal®

and has length

1

<<cl,a) <cl)a> _a> _ <cl7a> <a’a>% — (Clva'>

o2 T = 7"
[lall llal] llall llal]

We obtain from the geometric interpretation of the lattice determinant as the volume of the basic

block (“surface area det L, times height J%H’ITM”):

detZ" = 1 = det L, - K12

llall
that [(cy, a)| is the least positive whole number in the principal ideal Yori Za; = Z-ged(ay, ag, . . . ,ay),
for which there exists a & € Z" with
(€1,a) = ged(ay,az,... ,a,)

and ¢; = k- ¢; for some k € Z. Since the entries of the vector ¢; are relatively prime, it follows
that |k] = 1. We thus obtain

(e1,a) = ged(ag,ag,... ,a,),

and the claim follows.
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Chapter 4

Sucessive Minima, Minkowski’s
Theorems, and the Hermite
Constant

In this chapter we define the successive minima, of a lattice. We present two well known theorems
of Minkowski. We define the Hermite constant v, and present lower and upper bounds for this
value. Unless otherwise state, the scalar product is the standard one: (-,-) and ||z|| = \/(z,z)
denotes the Euclidean norm.

4.1 Successive Minima and the First Minkowski Theorem

In chapter 3.4 we informally introduced the first successive minimum. In general, the successive
minima are defined by:

Definition 4.1.1 (Successive Minima X, Az,...,Ap)
Let ||| be an arbitrary norm. For every lattice L C R™ of rank n the successive minima
Al, A2y L Ap with respect to the norm ||-|| are defined as:

There are i linearly independent
Ai=AN(L):=inf {r >0 | vectorscy,ca,...,c; €L fori=1,2,...,n
with ||c;l| < r forj=1,2,... 4

The definition of successive minima is due to H. Minkowski. Figure 4.1.1 illustrates the concept
for a lattice L{a.b): The first successive minimum with respect to the Euclidean norm is the vector
£

A1 < A < --- < Ay The successive minima with respect to a Euclidean norm ||u|| :=
v/ (1, u) are geometric lattice invariants; that is, these values remain unchanged under isometric

55
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T/
/
/ / / / / /

Figure 4.1.1: Example of the first successive minimum A; (L(a, b))

transformations of the lattice. For every lattice basis by, bs, ... , by, for i = 1L2,...,n:

bjll > Ai
jmmax lbill > A

3 Dyeany

The successive minima yield a measure of the reducedness of a lattice basis. A basis is “reduced”,
when the values ﬂ/f\'_ﬂ fori=1,2,...,n are “small” (“close” to 1). The vectors of a reduced basis
are nearly orthogonal. In general there is no basis by, ba, ... , b, with ||bs]l = X; fori = 1,2,... ,n.
Consider for example the lattice

L=2"+7Z(,..., )"
N —’

n

and the Euclidean norm. For n > 5, \; = Ay = --- = X\, = 1 and the canonical unit vectors (the
only vectors with length 1) do not form a bass.

The successive minima depend on the underlying norm. In particular, consider the first suc-
cessive minimum in the Euclidean norm

ILIF:= A (L) = min{|jb]| : b€ L\ {0}}
and in the sup-norm:
1l := A0 (L) = min {||bl], : b€ L\ {0}}
For lattice L C R™ it follows from [|z||, < ||z|| < v/7n - (|z||., for all z € R™, that:
ALoo(L) < A(L) VN A eo(L)
The quantity [|L]| , is not a geometric invariant. However, we have the following tight bound:

Proposition 4.1.2 (Minkowski 1896)
Let L CR™ be a lattice of rank n. Then ||L||, < (det L)w.
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This bound is tight since [|Z"| = 1 = (det Z")=.

We first give the proof sketch appearing in [Lovész86] for the case n = m. Let Q denote the
cube

Q= {x €R® : ||zfl, < L(det L)l/"}

Then () has n-dimensional volume det L. Consider the cubes Q + b, where b € L. If all these
cubes were pairwise disjoint, then the density of their union would be less than 1; however, a
simple counting argument shows that it is exactly one. Thus, there exist by,bs € L such that
(@+0)N(Q+b2) #0. Let y € Q + b NQ+by. Then |ly — byl b2 — yll, < L(det L)/, Tt
follows from the triangle inequality that

12 = bille < lly = bull + llb2 — yllo, < (det L)'/™

Since by — by € L we are done. As a simple corollary, since bll, < v/nlbll,,, we have that for
every full dimensional lattice L, there exists b € L with [|b]l, < /n(det L)}/ (The same follows
from Proposition 4.1.2 for the general case n < m.)

Following the proof sketch, we can find b € L with ||b]|_, < (det L)*/™ by searching for ¥’ € L
such that @ + V' intersects Q. For simplicity, let us assume det A = 1. If L = L(ay,aq,... ,a,),
then we “only” need to consider vectors b = A\jaj; + -+ + Ana, where

l/\1| = |det [al,ag,... ,ai_l,b,ai+1,...,an]| S QZ(A).

(The equality comes from Cramer’s rule. The inequality requires proof. The key points are that,
assuming {|b]|, < |lail|, (since otherwise there is no need to search), 1], < nljasl,; and

n
detfar,az,.. ,ais,byair, .. anll < (blly [T llaglly < 180l T el < [T llasl,

The rest of the proof follows from arguments similar to those in the proof of Lemma 1.1.1.) This
is exponential even if the entries of A are restricted to {0,£1}. If the dimension n is fixed then
a shortest vector can be found in polynomial time ([Lenstra83]). Later, we will see that we can
find an exponential approximation to the shortest vector using the LLL algorithm when n is not
fixed. In contrast, recall that finding the shortest vector with respect to the co-norm is N'P-
hard; and that finding the shortest vector with respect to the £o-norm is AP-hard with respect
to randomized reductions [Ajtai98].

Before proving Proposition 4.1.2, we present a result of H.F. Blichfeldt [Blich14]:

Lemma 4.1.3 (Blichfeldt 1914)
Let L CR™ be a lattice of full rank and let Q C R™ be compact with vol(Q) > det L. Then there
exists b € L \ {0} with Q N (Q + b) # 0, that is, there exists x,y € Q with x — y €L\ {0}.

Proof. Fori € Nthesets (1+ %) Q and (1 + 1) Q+b; with b; € L\ {0} are not pairwise disjoint,
since the volume of (1 + 1) @ exceeds that of the basic block. For every i there is a b; € L \ {0},
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so that the following intersection is non-empty and we can therfore choose from the intersection
Yit

€(1+3)QN[(1+1)Q+b] i=12,...
Since @} is compact, the sequence (i) sen has a limit point y € Q. Let y € Q be a boundary

point of a subsequence (yq(i)). - The sequence (by).. .. C L converges to y. The sequence
(0) /) ieN (i) ieN

(batiy), ey © L is bounded and runs through only finitely many lattice points. At least one lattice
point b € L \ {0} appears infinitely often. It follows that y € Q N (Q + b). ]

Proof (of Proposition 4.1.2). We first consider the case in which L is full dimensional, that
is. n = m. We apply Lemma 4.1.3 to the set

Q= {x ER™ : ||z]l, < %(detL)%}

() is an m-dimensional cube with side length (det L)=. Then vol(Q)) = det L. By Lemma 4.1.3
there exists a b€ L \ {0} and y € Q N (Q +b). Since y,y — b € Q we have:
Wl < §(det L)%
ly = blly, < 3(det L)
It follows from the triangle inequality that:

1Blle < Myl + lly = bllo, < (det L)=

The case n < m reduces to the case n = m. For I = (iy,y,... yin) With 1 <41 <ig < ++- <
iy < let:

o1, T2, ., Bm) 1= (Tiy, Tig, - -, T4, )

For some choice of I span(¢;(span(L)) = R".

Claim 4.1.4
det (L) < det L.

Proof. Let B be the m x n matrix with columns by,b,, ... ,b,, and let B be the m x n matrix
with columns b] , bz, . ,b Then there exists an n x n matrix 7 with determinant +1 such that
B = BT. Then

det BTB = det BB
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We conclude the proof of the claim by showing that det goI(E)TapI(ﬁ) = det ¢;(B)Tp1(B). Let
/i R™ — R™ be defined as follows. For b € R™ the value of f(b) is the vector in R™ that
agrees with b on all the coordinates in the index set I {so wr(f(b)) = (b)) and is zero on all the
coordinates not in I. Then ||f(b)|| = ||l¢r(b)|| for all b € R™, and in general, for all z,y € R™,
(f(x), f(y)) = (p1(x), p1(y)). Thus,

det or(B)Tor(B) = det f(B)" f(B)

det 1 (B)Tr(B) = det f(B)" f(B)

and it remains to prove that
det f(B)"f(B) = det f(B)" f(B)

Now, since B = BT, we have f(B) = f(BT) = f(B)T (we can zero out a given row before or
after right-multiplication by T and obtain the same result). Thus,

det f(B)T f(B) = det((f(B)T)" f(B)T)

= det(T" f(B)" f(B)T)
= det f(B)" f(B)
and the proof of the claim is complete. |
Let r € L have sup-norm Ay (L). Write x = (z1,22,... ,xn)T, and let j be such that

|2;] = ||z|| . Then there exists a choice for I such that j € I and ¢;(L) is of full rank. For this
choice of I:

1
n

LIl = 2l = llpr (Bl < (detor(L)) ™ < (det L)=

We define:

Definition 4.1.5 (Convex, Null-Symmetric Set)
S C R™ is conver, if when z,y € S and £ € [0,1] it is also the case that éx + (1 - &y € S. S is
called null-symmetric, or simply, symmetric, if —x is in S whenever z is in S.

Proposition 4.1.2 with n = m is a special case of the following theorem, commonly known as
“Minkowski’s Theorem for Convex Bodies.”

Proposition 4.1.6 (Minkowski’s First Theorem 1893)
Let L C R™ be a full dimensional lattice and S C R™ a conver, symmetric, compact set with
vol(S) > 2™ -det L. Then |SN L| > 3, that is, S contains at least two non-zero vectors £y € L.
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Proof. We take:
Q=3S={j -z |zecS}CR™
Then vol(Q) = 27 vol(S) > det L. By Blichfeldt’s Lemma 4.1.3, there exists b € L \ {0} with:
(25)N (35 +0b) #0

Let y be in this intersection. Then y € $S and y =z + b with z € 35. Let w = 2z and 2 = —2y.
Then w, z € S. Moreover, since S is convex, %w—k (1- %)z € S. Thus, b =z—y € S. In particular,
{0,£b} C SN L. n

Proposition 4.1.6 applied to S = {z € R™ : ||z||,, < (det L)}/™} yields Proposition 4.1.2 for n =
m, since vol(S) = 2™ -det L. A further consequence of Proposition 4.1.6 is a proof G.L. Dirichlet’s
[Di1842] theorem regarding simultaneous approximation of real numbers by rationals discussed in
Chapter 1:

Proposition 4.1.7 (Dirichlet 1842)

Let ay,az,... ,an be real numbers and e € (0,3). Then there ezist integers p1,pa,...,pn and g
with 0 < g <€, so that:

Proof. By Proposition 4.1.6 with L = Z™*! and
S = {(pl,pz,... s Pn,q) € R . lg| <€, |pi—qayl <efori=1,2,... ,n}
S is a rectangle with side length 2¢ in the first n dimensions and 2¢~" in the last, so

vol(S) = (2€)"2¢™™ = 2"*t1 . det Z™H!

S is convex, symmetric, and compact. By Proposition 4.1.6 there exists non-null (py, p2, ... ,Pn,q) €
SNZ™1 Moreover, ¢ # 0 since if lp:| < e< %— and p; € Z we would have (p1,p2,... ,Pn,q) = 0.
|

Following [Lovédsz86], we may cast the problem of finding a good simultaneous diophantine ap-
proximation as an instance of the problem of finding a short vector in a lattice. Suppose we are

given aq, o, ... ,0n,€ € Q and Q € Z, Q@ > 0. Consider the matrix
1 0 0 (o]
1 0 Q3
A=
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and the lattice L(A) generated by the columns of A. Every vector b € L(A) can be written as
b = Ap, where p = p1,ps,... ,ph € Z™. Let b € L(A) be non-zero with ||b]|l, < e. Then
Pn+1 # 0. Assume without loss of generality that p,+1 < 0 and let ¢ = —pp+1. Then

b;| = [pi — asql < e fori=1,2,...,n
and
€
[br1] = L <e
=q¢<Q

So if b = Ap € L(A) is non-zero with ||b|| < &, then the coordinates of p provide a solution to
the given simultaneous diophantine approximation problem: [{b]|,, < [|b]], < €. Recall that by
Dirichelet’s Theorem there exists a solution if @ > £~". The LLL algorithm will permit us to find
a solution in polynomial time provided Q > 2n(n+1)/4g—n,

4.2 Hermite Constant and Critical Lattice

In this section we define the Hermite constant v, for which we obtain upper and lower bounds.
We study critical lattices. The Hermite constant =, is defined for the Euclidean norm:

Definition 4.2.1 (Hermite Constant ~,)
Forn € N, the Hermite constant v, is defined as:

A (L)? n ——— :
Yo = sup 4 ——— | L C R" full dimensional lattice
(det L)»

The first successive minimum in the definition is with respect to the Euclidean norm.

{(For historical reasons the definition of «, is given inters of the sqare.) It suffices to consider
the supremum, over all full dimensional lattices L C R™, where A\ (L) and det L are geometric
invariants. Since

Al(L)2 _ )\1(0[[/)2
(detL)>  (detalL)=

for a € R \ {0}

it suffices to consider the supremum over all full dimensional lattices 2L C R™ for which det L = 1.
Since the reduced bases of this lattice vary over a compact space of R variables, the suprememum
is achieved. that is, we can define the Hermite constant as the maximum of the set. Thus v, = 1.

Remark 4.2.2
Since A (L) < y/n - (det L)% it follows from Proposition 4.1.2 that v, < n.
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In the following we improve this upper bound. We denote by
Sn(r) ={z e R : |jz|| < r}

the n dimensional ball with rRadius 7 centered at the origin. The volume of the n dimensional
ball with radius 1 is

n n
Tz 2-72

T(1+2) n-T(in)

(4.1) vol(Sp(1)) =

The Gamma function is defined by I' (3) = /7, ['(n+1) = n! for n € N and in general for z € R*:
MNz+1)==z -T(x)

We obtain from this an upper bound for the Hermit constant «,:

Proposition 4.2.3

2
< — é-r(1+ﬁ)" <2 L 00)~0,2342n+ 0(1)
vol(S,(1))= 7 2 em

Proof. Let L C R™ be a full dimensional lattice with v, = (—;‘;f%)f%- and det L = 1. We apply
Proposition 4.1.6 to the ball S, (r). We choose radius:

2
vol(S, (1))~

Then vol(S,(r)) = 2". By Proposition 4.1.6 there exists b € S,(r) N L with b # 0. We obtain
with (4.1):

7=

2 2 *
M <l sr=—2 = 2 (147
vol(S, (1)) VT 2
By Stirling’s approximation [Knuth71, 1.2.11.2,Aufgabe 5]:
T\ 1 +
(4.2) [(z+1) = 27m:-(—) 1+0(= for z € RY,
e x
and x = § follows from the fact that det L = 1:
_ (L)?
" (det L)%

IN
SN
3

3
~~
S
(SRS
TN

—

+
S
TN
3=
3 N
SN—”’

El
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Since lim nw =1, that is, n= = 1 + O(1), we obtain:
I—0C

Figure 4.2.1: THustration for the Proof of Proposition 4.2.3

The proof of Proposition 4.2.3 can be illustrated as follows (see Figure 4.2.1): Place a ball of
radius r := %/\1 on every point of the full dimenional lattice L C R™ This yields the gittertige???
sphere packing of L, defined as follows.

Definition 4.2.4 (Gitterartige Sphere Packing)
Let M C R" be a non-empty discrete set and r > 0. The sphere packing for M and r is:

{m +Sn(r) |m e M}

The sphere packing is called gitterartig, when for every pair of neighboring points mi,ms € M the
balls m + Sp(r) and ma + S, (r) share no interior point.

Let us consider the gitterartige sphere packing for L and %)\1. The 2™ partial balls in a basic block
of the lattice yield together one ball of radius %)\1. It follows that:

(4.3) det L > vol (S, (£)) = Y05 (D)

Definition 4.2.5 (Width of a Lattice)
The width of a full dimensional lattice L C R"™ is the width of the gitterartige sphere packing for
L, that is, the volume—volumenanteil??? of the ball of the gitterartige sphere packing in R™.

The width of the sphere packing of lattice L is:

vol(Sn (3M)) _ AR vol(Sa(1))
det L T detL 2n
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For fixed n, the width is maximal when the factor ﬁ& is as large as possible. By the definition
of the Hermite constant

L' C R™ full dimensional lattice}

we obtain that the width of the lattice L C R" is maximal exactly when

/\111 1 . )\l(Ll)n
e~ )T = max{ det L'

L' C R™ full dimensional lattice}

We define the globally extreme, or critical lattice:

Definition 4.2.6 (Globally Extreme (or Critical) Lattice)
A full dimensional lattice L C R" is called globally extreme, or critical, when

A (L)?

(det L)= =

that s, (ML—)‘Z is the absolute mazimum for lattices of rank n.

det L)

A lattice is critical exactly when the ball of radius %)\1 around the lattice points forms the widest
gitterartige sphere packing of R™.

Definition 4.2.7 (Locally Extreme Lattice)
A full dimensional lattice L = L(by,bo,... ,b,) CR" is said to be locally extreme when

Ai(L)?
(det L)~

does not increase with infinitesimally small changes to the basis vectors.

This property does not depend on the choice of basis for L. Every critical lattice is locally ex-
treme, but the converseis not true. Die der Basis by, bs, . .. , b, zugeordnete Form F'(z;, zo, .. . , Tp) =
>t (bi,b;) r;z; nennt man dann Extremform?7??.

The upper bound 7, < j—: + O(1) for the Hermite constant from Proposition 4.2.3 on page 62
was improved by H.F. Blichfeldt [Blich14]:

2
(4.4) m<=T(1+2)" <= +oln).
T 2 em

This bound takes into consideration that in the proof of Proposition 4.2.3 only a very small portion
of the space of the ball with radius %/\1 overlaps and estimates this portion by (\/§ +0(1)) " form
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above. For example, 710 < 2(6!)%? &~ 2,373. G.A. Kabatiansky und V.I. Levenshtein [KaLe78]
showed in 1978, that:

1,744
er

Yo < n+o(n) ~0,1021n + o(n)

These improvements show that the first Minkowski Theorem for convex bodies (Proposition 4.1.6,
page 59) is not optimal for balls. For a lower bound for the Hermit constant v, we have:

1 n n
7,12%—(1+—)——7r+0(n)

This lower bound is obtained by application of the following theorem of H. Minkowski und
E. Hlawka [Hlawka44] for balls S := S,(r). The proof is, however, not constructive, it shows
only the existence of certain lattices; explicit constructions are not known.

Proposition 4.2.8 (Minkowski, Hlawka)
Let S C R* have Jordan volume less than 1. Then there is a full dimensional lattice L C R™ with
det L =1 and (LN S) \ {0} #0.

Proof. See [GrLek87, Theorem 1,Paragraph 19, Chapter 3]. n
Taken together, we have for the Hermite constant the following estimates:
n n
_ < < =
Sor +o(n) <y, < p +o(n)

It is conjectured that 7, grows monotonically as a function of n. In [GrLek87] (Paragraph 38,
Chapter 6) the following estimates appear:

1 1
— < liminfjﬁ— < limsup:)/ﬁ < —
2em n—oo n n—oo N em

It is not known if lim, o, 1= exists.

The Hermite constants v2, s, 4, s were obtained in the second half of the 1900’s by A. Korkine
und G. Zolotareff [KoZ01872, KoZ01873, KoZ01877]. In 1935, H.F. Blichfeldt [Blich35] obtained
Y6, Y1, 7Y8t

n 2 | 3 | 4 | 5 | 6 | 7| s
(7)™ 3 2 4 8 2| 2| o8
o /2T (1+2)7 0,907 | 0,887 | 0,907 | 0,892 | 0,907 | 0,918 | 0,949

The last row shows the relation +, divided by Blichfeldt’s estimate (4.4). Blichfeldt’s proof is
complicated and was improved by G.L. Watson [Watson66] and N.M. Vetchinkin [Vetchin82]. For
n = 9,10 only the upper bounds (v)? < 2% and (710)'° < + 219 are known.
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For n = 2,3,...,8 the critical lattice of rank n with A; = 1 is uniquely determined up to
isometry (without the requirement A\; = 1 they are uniquely determined up to isometry and scaling,
hence similarity). This was shown by E.S. Barnes [Barnes59] and N.M. Vetchinkin [Vetchin82].

We show that these lattices have a basis by, by, ... ,b, wih the property that:
1 fori=3j
(1.5) (bisbj) =<3 for|i—j|<2undi#j
0 forl|i—j|>2
The scalar products (b;, b;) determine the corresponding lattice basis by, ba, . .. , by up to isometry.
In the isometry class of lattice bases with the scalar products (b;,b;) described above, there is
exactly one upper triangular matrix [by, ba, ... , bs] with positive diagonal elements. The corresd-
ponding lower triangular matrix [by, s, ... ,b,]" has the following row vectors:
1 0 0 0 0 0 0 0]
(5] : 3.0 0 O 0 0 0
b 1 1 2
| P Eoo0 0 0o
by| O 5 X% & 0 0 0 O
= 3 1 1
6 1 1 3
AEREETEE
2 1 3
0 0 0 0 0 /2 & 3

Let LU := (by,by,... ,by) for n < 8. Since ||b1|| = 1 we have A\; < 1. Let b := o tib; with
t1,...,tn € Z be an arbitrary non-zero lattice vector in L(™. We wish to show that ||b|| > 1. From

n

b = (3"t j:ltjbj>=iti<bi,zj: 1) = Zt > )

i=

it follws from (4.5) that (b;,b;) € {0,1,1} and ||b;]|* = 1, so that we obtain

ol* = Z( (bi bi) +Zt bz,b> Z( (birbi) + 2t bl,b>

=1 i=1 i<t
J;tz -
ez\{0}
Since for every vector b € L \ {0} we have ||b|| > 1, the vektor b, with [|bi|| = 1 is one of the
shortest, non-trivial lattice vectors. It follows that A\; = 1.

In particular, one sees from the construction of the vectors by, bs,. .., that the widest sphere
packing in R”, n < 8, extends the widest sphere packing in R*~!. The above scheme cannot be
extended to n > 9, since [by, by, ..., bg] is singular. The lattice v/2L(®) is self-dual, that is,

VaL® = (Var® )’

We describe the construction of the above-mentioned critical lattice. First two definitions:



4.2. HERMITE CONSTANT AND CRITICAL LATTICE 67

Definition 4.2.9 (Deep Hole)
Let L be a lattice. The point x € span(L) is called a deep hole of the lattice L, when

min{[|z —y|| : y€ L} = max (min{|lp—yl| : y € L})
pEspan(L)

Definition 4.2.10 (Laminated Lattice)
The lattice L(by,ba,... ,byy1) is laminated with respect to L(by,ba,... ,by), when

bn+1 - 7Tn+1(bn+1) € Spa’n(bla b2a BRI 7bn)
is a deep hole of the lattice L(by,bs,... ,by,).
To construct the lattice L(™, we choose (1,0, .. .,0) € R® and b, b3, ..., b, so that, respectively

L(by, bz, ... .b;) is laminated with respect to L(by,bs,... ,b;i—1) and ||b;]| = 1 for i = 2,3,...,n.
Figure 4.2.2 shows this construction for the two lattices L(?) and L®).

VAAVAYAVANY

' L(by)
tiefes Loch \ W y

tiefe L” ocher

Figure 4.2.2: Construction of L(?) and L®3)

2
n

The following inequality of H. Minkowski sharpens the inequaltiy A? < Yn(det L)
for all lattices L of rank n.

, and holds

Proposition 4.2.11 (Minkowski’s Inequality)
For every lattice L of rank n,

[N < () -det L

Remark 4.2.12
Since for a critical lattice (v,)* det L = AT and in general [}, \i > A}, for a critical lattice
/\1 :)\2 :"':/\n-

Proof (of Proposition 4.2.11). Let a;,as,...,a, € L be linearly independent vectors such
that:

llail] = A; fori=1,2,...,n
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Ly = L(a1,as,... ,a,) is a sub-lattice of L. Choose basis by, b, ... , by, for L, so that for Ly := L
Proposition 3.2.16 (page 37) yields: there exists an upper triangular matrix T € My, o (Z) with:

[blaan"' 7b"]‘T: [al’a2"" ’am]
Forall b € L(by,ba,... b)) and s =1,2,... ,n
(46) b ¢ L(bl,bz,... ,bshl) - ||b|| > As

Thus, from b ¢ L(b1,bz,... ,bs—1) and b € L it follows that b ¢ span(by, b, ... ,bs—1), and since
T is upper triangular we have from Remark 3.2.17 on page 38:

span(by, bs,... ,bs_1) = span(ai,as,... ,as_1),
so that a1,as,... ,a,-1,b are linearly independent. For i =1,2,...,n we let
P : '“i,j/l;j
b; = ]Z:; v
and consider the lattice L := L (by,bs,... ,b,). Claim:
(4.7) M(L)>1

Let b:= 37" t;b; be an arbitrary vector in L \ {0} and s := max; {i | t; # 0}. Then,

2 ~
T _ b
S, z(z) (z) g
i=1 s

j=1
so that from (4.6) and ts # 0 it follows that:

., —z(zww i, u)

j=1

>1

_— 2
From det . = Holﬁet L)\J inequality (4.7) and the definition of the Hermite constant (d—;\JLTZ < Yn
i=1 " e n

we get:

2o
=|n

1< M (2) <yn-(detT)" =

(det L) (HA)

By raising to the power % and multiplying by [T, X we get the assertion:

H)\ (L) < (yn)F det L
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The lattice determinant yields a lower bound on the product of the successive minima:

Proposition 4.2.13 (Minkowski’s Second Theorem)
For every lattice L of rank n:

ﬂ /\z > det L
=1

Proof. Letay,as,...,a, belinearly independent lattice vectors with [|a;|| = A; fori =1,2,. ..
Since L(ay,as,... ,a,) is a sub-lattice of L:
(4.8) det L(a1,a9,... ,a,) > det L

Moreover, by Hadamard’s inequality:
(4.9) HHaiH > det L(a1,a0,... ,a,)
=1

;From the estimates (4.8) and (4.9) we get the claimed bound [];-_; A; > det L.

4.3 Gauge Functions and Minkowski’s Theorems

We introduce the guage function (see for example [GrLek87, Siegel89]) and formulate both of

69

Minkowski’s theorems for the lattice Z™ and generalize them. We first define the notion of a

convex body.

Definition 4.3.1 (Convex Body)
A convex body B C R"™ is a bounded, convex, open set.

The set OB for a convex body is the set of all points p € R™ \ B, so that every neighborhood of p

contains a point outside of B.

y € 0B T = py

Figure 4.3.1: Illustration of the Gauge Function
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Definition 4.3.2 (Gauge Function)
Let B C R™ be a convex body with 0 € B. The guage function f : R* — [0,00) is defined as
follows:

0 fz=0
flz):=<¢1 ifredB
poifr#0,x¢ 0B, x=py withy € 0B and pn > 0

A guage function f is symmetric if for all z € R* f(—z) = f(z).

We obtain the £,-norm with
B = {(21,22,... ,2,) €R"* : 2} + 2} +...23 <1}
and the sup-Norm with

Bi={(z1,20,...,2,) € R* : || <1lfori=1,2,...,n}

Proposition 4.3.3
Let f be the guage function of a convez body B C R™ where 0 € B. Then for z,y € R*:

a) flp-x)=p- f(z) for p>0
b) f(z) >0 forz#0 and f(0) =0
¢) flz+y) < fla)+ fy).

Proof. See [Siegel89, Theorems 4, 5 and 6]. [ ]

Proposition 4.3.4
Let f:R* — R be a function with:

a) flpu-z)=pn-f(z) for p >0 and z € R?
b) f(x) >0 forz#£0
¢) flz+y) < flz)+ fy).

Then there ezists a convex body B C R™ with guage function f.
Proof. Sec [Siegel89, Theorem 7] mit B := {z € R™ | f(z) < 1}. ]

Let B C R be a convex body. The point 0 is the center of B if:

r€8B <= —-z€0B
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Proposition 4.3.5
Let f be a guage function of a convex body B. Then 0 is the center of B, if and only if f symmetric.

Proof. See [Siegel89, Theorems 8 and 9]. ]

Symmetric guage functions correspond to norms. The first Minkowski theorem can be expressed
in terms of guage function as follows (see Proposition 4.1.6 on page 59):

Proposition 4.3.6 (First Minkowski Theorem)
Let f:R" — [0,00) be a symmetric guage function for the convex body B C R™. If vol(B) > 2",
then there exists g € Z™ \ {0} with f(g) < 1.

Proof. See [Siegel89, Theorems 10 and 11]. ]

Corollary 4.3.7
Let f : R* — [0, 00) be a symmetric guage function for the convez body B C R*, p:= min _f(z)

zeZ"\{0}
and V :=vol(B). Then pu"V <27,

Proof. Forv >0let B, := {z € R* | f(z) <v}. Then vol(B,) = v"*V and for 0 < v; < v, we
have B,, C B,,. Let

vo:=sup{r>0|B,NZ"={0}}
B, is open and contains no integer point other than 0. By the first Minkowski Theorem 4.3.6:
(vo)"V < 27

We show that u < vg: Suppose for the sake of contradiction that p > v, that is, there is an € > 0
with vy + € = u. By the definition of vy it follows that there exists a point g € Z™ \ {0} with
g € By, 4. exists. This yields a contradiction:

fl@g) <vote=p= xe%‘f{l{o}f@) < f(g)

Remark: It follows from the definition of v that since g < vp it is not possible that vo = . W

One can sharpen the bound of Proposition 4.3.7 and obtain the Second Minkowski theorem:

Proposition 4.3.8 (Second Minkowski Theorem 1907)

Let A1, Aq,..., A, be the successive minima of the lattice Z™ according to the symmetric guage
function f : R* — [0,00). Let V be the volume of the convez body B := {x € R | f(z) < 1}.
Then:
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Proof. See Paragraph 9.1 in Chapter 2 of [GrLek87]. For the upper bound see also Theorem 16
of [Siegel89] with proof, in Lecture IV. [ ]

Proposition 4.3.9 (Second Minkowski Theorem for General Lattice)
Let Ay, g, ..., An be the successive minima of the full dimensional lattice L C R according

to the symmelric guage function f : R — [0,00). Let V be the volume of the convex body
B:i={2eR" | f(z) <1}. Then

det L
n!

V n
< — [N <detL
<o E < de

For the case that f is the sup-norm, we have
B = {(z1,22,... ,2n) €R" : |zi| < lfori=1,2,...,n},
and V = 2" For every full dimensional lattice L C R® we obtain from the second Minkowski

theorem:

n

[T Mo < detZ

i=1



Chapter 5

(Gauss’ Basis Reduction Procedure

In this chapter we present Gauss’ basis reduction procedure for two dimensional lattices. The
procedure is a generalization of the Euclidean Algorithm. We will study the reduction procedure
for the special case of the Euclidean norm and then consider the general case of an arbitrary norm.

While in Chapter 4.1 we saw by an example that in the general case there is no basis whose
vectors have the lengths, respectively, of the successive mimima; however, in the two dimensional
case such a basis always exists.

5.1 Reduced Basis

We introduce a notion of reducedness for two-vector bases:

Definition 5.1.1 (Gaufl Reduced Basis)
An ordered lattice basis a,b € R" is (Gauf) reduced with respect to norm ||-||, when:

llall < lll] < lla = bl < [la +b]]

We consider the case that the norm is given by the scalar product ||z|| = /(z,z). For the
Gram-Schmidt coefficients us ; = ﬁ‘;—li’% we have:

3 = ol < lla — b
0 = lla-bll <lla+bd

Thus the basis a, b is reduced if and only if:
a) llajl < [b]]
b) 0< oy <3

73
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In contrast with a weight reduced basis, we require that not only does the absolute value of us ;
lie between 0 and %, but p2 1 itself does. This can be ensured by replacing b with —b. Figure 5.1.1
shows the Gauss reducedness condition in the case of the standard scalar product. The angle ¢

p2y =0

.

™~

-1
M2,1—2

_—llall = 1ja]

Figure 5.1.1: Reduced Basis for Standard Scalar Product

between the two lattice vectors of the reduced basis is between 60° and 90°:

{a,b) llall

OO = Tall - Tol P2 Tl

Since 0 < pipy < 1 and [ja]| < |}b]):

1
0<cos¢p <35

It a,b is reduced with py1 = 0, then —a, b is also a reduced basis. Similarly, if a,b is reduced
with ps, = 1, then a,a — b is also reduced. If a,b is reduced with [lal]] = ||B]|, then b,a is also
reduced. In the remaining cases we have only the reduced basis +a, +b.

Proposition 5.1.2
For a reduced basis a,b € R™, ||a|| and ||b]| are the two successive minima of the lattice L = Za+7Zb.
Proof. Without loss of generality, assume ||a]| < ||b]|. The claim says:

llall < llra + sbl| V(r,s) € Z* \ {(0,0)}
16]] < |lra + sbl| Vr € Zand s € Z \ {0}
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These inequalities follow together from the following properties, which we prove below.

llall < 1o
(5.1) [lal] < [Irall vreZ \ {0}
[1bl] < [[§a + bl vén € R with [¢],|n} > 1

We now prove inequalities (5.1). Consider Figure 5.1.2: In the union of the four “quadrants”

Figure 5.1.2: Reduced Basis a,b

indicated by small dots, the norm takes its minimum on some subset of the four points +a + b.
Of the lattice points lying on the thicker lines, the norm is minimized in the middle points. That
is, from the Gauss reducedness conditions it is easy (but tedious) to verify that

[|+a — bl l|+all

> l|£a + ]|
l—a£dl| > [£bl]

<
< llaxdb
By the convexity of the norm, for [£] > 1:

[+a£ &bl > (|lxaxb] > |+a
l£ga 0l > |lfaLbll = |l£b]|

Thus the points +a + b have the minimal norm on the thick lines. By convexity, the norm is
minimized on the boundary, hence on the thick lines. |
Definition 5.1.3 (Well Ordered, Reduced Basis)

An ordered lattice basis a,b € R™ is well ordered reduced according to norm ||-|| when:

llall < fla — bl < jbl|
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5.2 Algorithms

We present two algorithms for obtaining a reduced basis for a two dimensional lattice: one for
general norms and one for the special case of the Euclidean norm.

5.2.1 Reduction Algorithm for the Euclidean Norm

Algorithm 5.2.1 Gaul’ Reduction Procedure for the Euclidean Norm

INPUT: Lattice Basis a,b € R* with ||a|] < ||0]|
1. WHILE |p2:] > 1 DO

1.1, [0,8] := [a, 1] [_“{m (1)]

1.2, IF |{|a|| > ||b]| THEN exchange a and b
END while
2. b:=b-sign(pe1) /% po1 >0%/

OUTPUT: Reduced Basis a, b

Algorithm 5.2.1 produces a reduced basis according to the Euclidean norm. An iteration of
Algorithm 5.2.1 reduces b by b := b — [us,1]a and then exchanges a und b. The output is clearly
correct.

Proposition 5.2.1
On input a,b with |ja|] < ||b]|, Algorithm 5.2.1 terminates in at most

llall
’710g1+\/§ (—;\-2— +3

Proof. See Proposition 4.4 of [Schnorr94b). u

iterations.

5.2.2 Reduction Algorithm for Arbitrary Norm

Gaufl’ Reduction Procedure for the Euclidean Norm can be generalized (Algorithm 5.2.2). A
detailed analysis appears in [KaSchn96] by M. Kaib und C.P. Schnorr in M. Kaib’s Dissertation
[Kaib94], which describes efficient implementations of Step 1.1 in the l;- and sup- norms.
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Algorithm 5.2.2 Gaufl’ Reduction Procedure for Arbitrary Norm

INPUT: Lattice Basis a,b € R® with |la]] < |||

1. WHILE []b]] > |la — ]| DO
1.1. b:=b — pa, u € Z chosen so that ||b — pal| is minimal
1.2. IF |la+ b]| < |Ja — b|]]| THEN b:= —b
1.3. exchange a und b

END while

OUTPUT: Reduced Basis a, b
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Chapter 6

LLL Reduced Lattice Basis

The following notion of reducedness for ordered lattice basis by, bo, ... , b, € R™ of arbitrary rank
n was proposed in 1982 by A.K. Lenstra, H.-W. Lenstra und L. Lovész [LLL82]. Tt uses the
Fuclidean norm.

6.1 Definition and Properties

We introduce the notion of LLL reduced basis and show properties of an LLL reduced basis; in
particular we consider how well the length of the first reduced basis vector approximates the first
successive minimum of the lattice. Let by, b, ... ,b, be the Gram-Schmidt orthogonalization of
the basis b1,bs, ... , by, and let p; ; (1 <4, < n) be the corresponding Gram-Schmidt coefficients.

Definition 6.1.1 (LLL Reduced Basis)
An ordered lattice basis by, bs, ... b, € R™ is called LLL reduced (L3 -reduced) with parameter §,
% <4 <1, when:

o lwijl <% fori<j<i<n

b) & Mbrer I < 1Bl + 124y - Beal® fork=2,3,...,n

The first property is the criterion for length reducedness (see Definition 3.3.1 on page 48). The
parameter 4 describes how well reduced the basis is: a larger value for § implies a more strongly
reduced basis. A.K. Lenstra, H-W. Lenstra und L. Lovdsz [LLL82] originally defined LLL reduced-
ness for the value § = %. With the orthogonal projection

7y R™ — span(by, b, ... ,bk_l)J‘

the second condition can be written as:

8 lmk—1 (eI < llmer (B))° for k=2,3,...,n

79
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If the basis consists of two vectors, then when § = 1 we obtain a GauBl reduced basis. Let
T :span(by, by, ..., b,) = R™ be the isometric mapping with

T(b;) = |[bl| - e; fori=1,2,...,n,

where ¢; is the 7th unit vector in R™. The basis matrix [T(b1),T(be),...,T(b,)] for the lattice
T(L), isometric to L, is an upper triangular matrix:

[T, T = | ° 102 . g _
: oo || |
Lo o ]y
[/oa]] - * " . .
* * "
= ol pua e [IBra )
0 [[b]
. *
) Bl

The basis by,bs, ... ,b, € R™ is LLL reduced with é if and only if:
a) the basis by, ba,... b, is length reduced;

b) the 2 x 2 matrices on the diagonal

[y ey Yy
0 bl

for k =2,3,...,n, are LLL reduced with parameter 4.

Let b1,b2,... ,b, be LLL reduced with §. Then my(br), 7k (bk+1), - - -, 7 (b;) is LLL reduced with
0 for 1 <k < j < n. We now examine other properties of LLL reduced lattice bases.

Lemma 6.1.2
Let by, ba, ... by be LLL reduced with parameter §. Then for a = (—5-_11-:
4

[Bil> < @70 b2 Jor1<i<j<n

In particular, if § = 3, then a = 2 and ||b;])* < 27-' - |Ib;112, and in general the length of b; for
large 7 can’t be arbitrarily small with respect to the lengths of b; for smaller <.
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Proof. ;From Properties a) und b) of LLL reducedness it follows that:
P S S T RIS AT P
8- 11Bal1 < Mbapall” + s a s l10all™ < Nbigal]” + 1Bl

and thus:

(6 = §) -I0Ball” < 1bisall”

N——

=1/a

The claim follows by induction over j — i. N

Corollary 6.1.3
Let by, bs,... b, be LLL reduced with parameter 6. Then for a = 2, ||bil, < o™= D/2)(L).

Proof. By Proposition 3.2.26, we have A (L) > min{||31||, ce ||3n|]} Let the minimum length
basis vector be b;. Then

151]1> < o*~Y|[bk||> by Lemma 6.1.2
< " Y[bx||> because @ >1and k< n

< a" (D))

By taking square roots we obtain the statement of the Corollary. n

The next lemma is a generalization of Proposition 3.2.26.

Lemma 6.1.4
Let by, bo, ... b, be a basis of the lattice L. Then fori=1,2,... ,n:
N> min |fbl
i=j,j+1,...,n
Proof. There are linearly independent vectors ai,as,...,a, € L, so that |jaj|| = A;(L) for

j=1,2,... ,n. Let
n n =
g :Ztikbi :Zzikbi fork=1,2,...,n
=1 i=1

Hence the coefficients t;; are integers and the %;; are reals. Let
wu(k) := max {% : t; # 0}

Since the vectors b1, ba, ... , b,k are linearly independent, Z#(k),k = tuk),x € Z. ;From the linear
independence of the vectors ay,asg,. .. ,a;, for each j there is a k < j with p(k) > j. Assume the
contrary. Then by the assumption that u(k) < j for k =1,2,...,j it follows that

ay,az,...,a; € span(bl,bz,... ,bj_l),
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so that ay,as,. .. ,a; are linearly dependent, which yields a contradiction. We therefore obtain

. 2 -2 T T : 7
A5 2 M= llarll™ 2 B wlbua 1”2 b I” > min bl

While the lower bound on A; in Lemma 6.1.4 applies to arbitrary bases, the following theorem
shows that the lengths ||b;]| in an LLL reduced basis are “rough” approximations to the successive
minima Aj;.

Proposition 6.1.5 (Lenstra, Lenstra, Lovasz 1982)

Let by, by, ..., b, be an LLL reduced lattice basis with parameter §. Then for o = 5711'"
4
L—j < ||bJ||2 L 1 2
a) « <2 forj=1,2,...,n
J
billF
b) H);ZH <™ forj=1,2,...,n

J

) okll” < o=V Bil12 fork < j

Proof. 3k, 1 <k <j, such that A; < ||bx|]. It follows that:

; 2
AT < o]
< lbel® + 1 Z I[B:]]? (by the LLL reducedness properties)
=1
R k-1
< |Ib,11? (oﬂ“k +1y° a]"> (by Lemma 6.1.2)
i=1
R k-1
< ib)2a? " <al-k +i Za1_2>
=1
We show:
k-1
at k4 }1 Zal”’ <1
=1
For k = 1 the inequality is obvious. For k > 2, since a™ =6 — 3 < &:
k—1 k-1 3y k-1
RTINS B PR R S NS O Sl ¢ ) RN NS SR
4 & ~ \4 4 1-32 4 1-3

——

geo m. series
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Thus,
X3 < [lbwl]® < [[by]2ad

and so we have proved the first and third assertions. By Lemma 6.1.4 there is a k > 7, so that
Aj > ||bk [I. It follows from Lemma 6.1.2 that:

A2 > lbxi?

> a” |2

(from Lemma 6.1.4)
(from Lemma 6.1.2)

> kL. ]|bj||2 (from Assertion (¢) with k = j)
(

> gt |ij||2 since kK < n and o > 1)

Corollary 6.1.6

Let by, ba, ..., b, be an LLL reduced basis of the lattice L. Then for a = JTI"
4

a) Iy < a7 (det L)#

o) TTIbill* < a3 (det L)?
i=1

Proof. We have [, |[bil|? = (det L)2. By the third Assertion of Theorem 6.1.5:
[Bull* < 1folf? - o

It follows that:

1P < ata? .- an” 1H||b 12 = a(®) . (det L)?

Thus we obtain part (a): ||b1]]> < a"=" (det Lyx

Part (b) follows from [/, |[b;]|> = (det L)? and ||b||* < |[b;|[2ai~!, the third Assertion of
Theorem 6.1.5. |

Remark 6.1.7

The proof of Corollary 6.1.8 uses only the fact that the lttig1,4] < é, and not the full power
of weak-reducedness. Moreover, since the proof of Corollary 6.1. 3(a) only uses case k = 1 of
Proposition 6.1.5, the same is true there. However, the proof of Corollary 6.1.3(b) uses the full
strength of weak reducedness. Lovdsz remarks that to guarantee that the numbers occurring in the
procedure do not grow too big the full power of weak reducedness seems to be necessary [Lovds286].
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6.1.1 Two Applications of LLL Reducedness

We return briefly to the Simultaneous Diophantine Approximation and Small Integer Combination
Problems described in Chapter 1. Let us assume the existence of an algorithm that efficiently
obtains an LLL reduced basis with § = 2 (the “LLL algorithm,” described in Section 6.2, has
this property). At the end of Section 4.1 we cast the SDA in terms of finding a short vector in the
lattice defined by the columns of the matrix A:

1 0 ... 0 (03]
01 ... 0 ay
A= : :
0 0 ... 1 a
0 0 ... 0 €¢/Q

det L(A4) = €/Q. Let Q = 2Mn*+1/4c=n Using the LLL algorithm, we can obtain a vector
b € L(A) such that

. T
I, < 2/ der Ly =2 (5)7 =

Since b € L(A) there exist integers p1,p, ... ,pn,q such that
p1—qm
D2 — qa,
b= :
Pn — qan
9
Since {|b]], < [|b]l, it follows that
lpi —qos| <e

and moreover

q%‘ < g, or in other words, |¢| < Q. Thus we obtain an approximate solution to
the simultaneous diophantine approximation problem, in which the denominator g is at most a
factor of 2("+1)/4 greater than optimal.

We may cast the Small Integer Combination problem in terms of a lattice problem as follows.
Recall that the problem is, given rationals ag,a1,as,... oy, and rationals €, Q > 0, to find
qo,q1-92, ... ,qn € Z, not all 0, such that

<e

n
E qig
i=0

and ¢; < @) for 1 <i <n. Traditionally, ag = 1, so we will make that assumption here. We define

(874} (03] Gy
0 @ ... 0
B=). .

6 0‘ E/Q
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Then det B = ag(e/Q)™, or, since we are assuming ag = 1, we have simply det B = (¢/Q)™. Let
b= Bq, q € Z""", satisfy ||b]|, <&, b # 0. Then |[b]|., < ¢ and so

lgocg + -+ + gran| <€

and

q,-é' < e, or in other words |¢;| < Q.

Choosing & = 2"/4(det B)"¥7 ie., Q = 2"+ D/4=1/n e have by Corollary 6.1.6(b) that the
LLL algorithm will find such a vector b € L(B) in polynomial time.

6.2 The LLL Reduction Algorithm

Given an arbitrary lattice basis, we present a procedure to obtain an LLL reduced basis for the
same lattice. We analyze the running time and size of the coefficients in the calculations. We
generalize the procedure to systems Erzeugendensysteme??? — systems of generators, in which the
vectors need not be linearly independent.

6.2.1 Algorithm

Algorithm 6.2.1, transforms, for a given §, % < § < 1, an integer lattice basis into a basis for the
same lattice that is LLL reduced with parameter . For each exchange by_; ¢ by, the values of
HEkHQ, HBk_lHQ and pip, poi, for v =%k —1,kand i = 1,2,... ,n, must be recalculated (see the
proof of Lemma 6.2.3). Correctness follows from the invariant: Upon entry to stage k, the basis
by, by, ... bg—1 is LLL reduced with 4. At the end of the algorithm, k¥ = n + 1, so the whole basis
b1,ba, ..., b, is reduced.

We analyze the running time of Algorithm 6.2.1. Consider the determinants:

i
(6.1) Dy = det L(by, b, - . ,b:)* = det [(bs, b))y < o = [ [ 05117
j=1
Note that we are working with the squares of the lattice determinants. We set
n—1
(6.2) D:= ][ b,
7j=1

Lemma 6.2.1
For integer inputs by, ba, ... b, € Z™ the algorithm stops after at most

tlogl/(g (DStart) J

erchanges by__1 <> by. For M := max; Hbftartuz-'

# Exchanges < <Z> log; /s M
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Algorithm 6.2.1 LLL Reduction Algorithm

INPUT: > Lattice Basis by,b2,... ,b, € Z™
> Parameter § with i <d<«l1

1. k:=2 /% kis the stage x/
2. Calculate p; j for 1 < j<i<nand|b|2fori=1,2,...,n
3. WHILE k£ < n DO
/* Invariant: by, bs,...,be_1 is LLL reduced */
3.1. Length reduce by and correct py ; for j =1,2,..., k-1
3.2 IF 6 - |[bg—1 [ > 1[Ball? + i3 4 lbx—1 |[> THEN
3.2.1. by_1 & by, i.e. exchange br_1 and by
3.2.2. k:=max(k-1,2)
ELSE k:=k+1
END while

OUTPUT: LLL Reduced Basis With 4 b1,b6,... ,b,

Proof. For j =1,2,... n, D; is always a positive integer. We show that every exchange results
in D"¥ < §- D, Since D" ¢ N this implies:
1 #Exchanges 1 #Exchanges
(6.3) pStart pEnd (= > [z
- ) —\4
Thus we obtain the first part of the Lemma. The lattice L(b1,bs,... ,b;) with j # k — 1 remains

unchanged by the exchange by_; <+ by. Thus the determinants D; with j # k — 1, remain
unchanged. By the pre-condition for the exchange:

o~ o~ 2 —~ —~ w
8 IBRAE > NBRIP + (ukoa)” - IR I1P > (R

~

=[bgex |12

Since Dy_; = Hf:_f |E,||2 the exchange b1 < by ensures that
Dy <6 DRt

It follows from (6.2), that D"®" < §-D°4. We obtain the first claim from (6.3). The second claim
follows from D$'a™t < M for i =1,2,... ,n — 1 and DS*t < MG), |

What is the running time of the algorithm for real (rather than integer) lattice bases? For
0 < 1 the algorithm terminates; moreover it is known to stop in polynomial time if § < 1. The
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proof of the following lemma is similar to that of Lemma 6.2.1, but we use Minkowski’s inequality
to bound d®2¢ from below, together with the simple bound v; < j.

Lemma 6.2.2 R
Let by, by, ... b, € R™ be a real input basis and M := max; ||b;||*. Then for 6 < 1 the algorithm
terminates after at most

- ~ 2(n—j
A S R MY (n
log, /s H BVE ()| < 9 log, /5 )t log,/sn

j:l ") 1

exchanges by—1 < by, (y; is the Hermite constant for dimension J)

Proof.
n—1 .
pStart _ H [16;12(n=9) < MG)
j=1

and DFnd = H;;ll Dj, where we bound D; from below using Minkowski’s inquality:
i o
D =[] Ib:ll* > (v~ [T 22
i=1 i=1
With M = max; HEHz and the simple bound 7; < j from Remark 4.2.2 on Page 61 it follows that:

Start
# Exchanges < 108;1/5 ( DEnd >

We obtain:

Having analyzed the number of exchanges by_1 < b in the LLL algorithm, we will next
analyze the number of arithmetic steps in a single exchange, to obtain a bound on the complexity
of the algorithm.
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Lemma 6.2.3
The exchange by_1 < by results in p:= pp x—1 and p"*" = Biere1, such that:
a) 1RSI = [1ball® + 2 (|be—1 |12
- ‘ IRIEE
b) Hbr};ewuz — || k”’\ || k 1”
(sl
(&
¢) fhnew = M- m——
o7 12
new] T _ | Hnew 1- Hlnew 1T 0 1
d) [”ij ]k~1§i,jgk - 1 - | iu]k—lsi,jsk' [1 0

Proof. We show the four claims together (note that /l;k und by_; are mutually orthogonal).

a) This follows from g;“i“]’ = Zk + ,Uk,k—l/b\k—l-

b) This follows because the product ||bg|- ||’I;k_1 || remains unchanged by the exchange by_1 ¢ by.
¢) Since

(o By (oo, B+ e )

B e =

Hnew =

we obtain:

<bk—173k> + <bk—1a,ugk—l> B ,UHEk—lHQ

Hnew = = =
= P

d) Z‘;‘"_“l = Ek + uzk_l and according to the backwards exchange Ek_l = 329“’ + unewA’,;"_V{. From
these two equalities it follows that:

N 7| _ {Znew Znew]| . |Mnew 1 — pltnew
[bk—hbk] = [bk—u k ] [ 1 S
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One thus obtains (on the diagonal dots are 1’s; the other entries are all 0):

[bl 3 b27 ety bk—27 brl;e_v‘iab;cl,ewa bk+27 LR bm]
. ~ 01
= |:b1, A ,bm] [;u/i,j]-lrgi,jgn l:l 0:|
Tnew Tnew ,Ufn w 1 - H,Un 0 1
= [ble e ] { r t ew} (il <i j<n [1 0
= [b’l‘ew, . .,b?new} [,u?jew]}—gi,jgn

The claim follows.

We bound from above the number of arithmetic operations for an exchange by:

Proposition 6.2.4
An exchange by_y < by, requires at most O (k) arithmetic operations. The length reduction of by
requires at most O(nk) arithmetic operations.

Proof. The first claim follows from Lemma 6.2.3. The second claim is follows from the fact that
the operation by, = by — ub; alters the Gram-Schmidt coefficients by:

Bki i= Hbg — - [y fori=1,2,...,5
[ |
We have analyzed the number of arithmetic steps in the LLL Algorithm. How large can the

numbers grow? We study this question and obtain an upper bound on how large the coefficients
can grow during the calculation.

Lemma 6.2.5
For an integer input basis by, by, ... b, € Z™:

a) Di b, e™
b) Dj “lig € Z

(%

Moreover, D; = det L(by, bo, ... ,b;)2 = [] |[bil|? is an integer.
1=1

k3

[
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Proof. The second claim will follow from the first.

a)

From [by, b, ... ,b,] = [’51,32, . ,En] . [ui,j]T it follows for [vi;] = [us ;]

[31,32,... ,En] = [b1,ba,... ,ba) - [vy]"

Moreover, [v;;]7 like [g; ;] is an upper triangular matrix with 1's on the diagonal. Since
<Z, bj> =0forj=1,2,...,7i—1 it follows from /l;z =b; + Zz;} vieby and v;; = 1 that:

i—1
_<biabj>:ZVit<bt7bj> for j=1,2,...,i—1
=1
These 7 — 1 inequalities define v;1, v49, . .., v;,;—1. The determinant of the system of equations

18:
Di-y = det [(b;, b)), < iy
Since D;_; # 0, it follows from Cramer’s rule that:
Di_v;; €7 forj=1,2,...,1—-1
Since b; = b; + Y""7] vi;b; and by, by, ... , by € Z™, the claim D;_; - b; € Z™ follows.

By definition (6.1) of the determinants D; = Hi:l [16s]|? we have:

=0 (0 (1)
J

From the first claim, Ej -D;_y € Z™, it follows that <b,', D;_, ZJ> € Z. We thus obtain the
claim Dj - p; ; € Z.

The value max; ]|/I;Z||2 does not grow, and the value min; ng||2 does not shrink during the
execution of the LLL Algorithm. The first claim holds, since for each exchange by_1 > by:

a)

b)

1R 117 < - [1Bgd, |12

IR 11 < 1169, 117

The second claim follows from:

a)

b)

B 1 > B

BRI = o=t - [
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We give bounds for the coefficients y; ; that occur in the LLL Algorithm. For an integer input
basis by, by, ... .b, € Z™ let

M:= max |b
i=1,2,...,n

in the following.

Lemma 6.2.6
In the LLL Algorithm, at the beginning of Stage k with o := 1—i—5 fori=1,2,... ,n:

o 7 3
o) bl < 22
4
b) pi l° < 1 -M -’ forj <k

Proof. We show both claims:

1. Since b; is length reduced, for i < k:

1 .
2 _ 2 172 12 i—1 T2
10 = 372 B0 < Il + 250 mase ()

=1
With M = max;=1 2, . ||b1-||2 it follows that:

I < M+ 2= br = 2

For i > k one can show by induction on the number of iterations that the inequality ||b;||*> <
2 M remains unchanged:

e For k = i, the inequality holds, since by_1,b; by the exchange by_; ¢ by, are length
reduced.

e For i > k the inequality holds by the inductive claim, since the vector b; does not
change.

2. In general, it follows from the definition of the Gram-Schmidt coefficients and the Cauchy-
Schwarz Inequality that:

Py
B 2 7 2

(8:5;) L 7
[l;11* l1b;1]* l1B;112

From the first claim, Lemma 6.1.2 (b1, b, ..., bx_; is LLL reduced), and b; € Z™, we obtain:

2
il =

2 ) 3 7
iy |? < l: M- |jb,) 2 (from Claim 1: [|b;||> < 22 M)
< ¢ ZS Mo |[by)) 2 (from Lemma 6.1.2)
Ly | ~
<2y (since |[bs | = [[b1| € Z)

e~
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Lemma 6.2.7
During execution of Stage k, for j =1,2,...  k — 1, it is always the case that:

k+3 90\ F1
ot < 22y (%)

Proof. In stage k the length reduction step
b = by — [kl - bi
vields, for 7 =1,2,... k- 1:
(6.4) fg o= kg = [kl pig
—~
b, 51<1/2

Each of the k—1 operations (6.4) changes My := maxj=12, . k—1 |t ;| S0 that from [ ;| < Mi+3
we can bound the new My from above by:

(()5> Mlsew < Mold (Mold ) < % . M/?]d _}_%

By Lemma 6.2.6 at the beginning of Stage k

M, < wc+3 1

.From the bound (6.5) the value M}, grows by at most the factor (%)k_1 (the summand } becomes
negligible}. Thus:

o _ (3\?*Y k43 k43 90\ ¥
lk,;1” < (§> 4 “M - =71 M 1

during Stage k. The claim follows. |

At the start of Stage k the values y; ; with j > k can be very large, in which case the procedure
is no longer stable. For j > k, from the two claims of Lemma 6.2.6 we can only get the bound

n+3 ;
|51 M.
. From the inequality
l[bs ||2
ll‘w| < =
11512
from D; = [J/_, ||b;||%, and from Lemma 6.2.6 on Page 91 we have:
D; n+3 n+3
il < Nl J =L < M- Dj < :

D; — 4
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The LLL Algorithm with iterative orthogonalization (Algorithm 6.2.2) avoids the values y, ; with
J > k, and calculates in Stage k only with the values p; ; where 1 < j <4 < k. The formulas for

Step 2 of Algorithm 6.2.2 are relevant when y; ; and ||i;l||2 are floating point numbers. Since the
basis b1,b2,... ,bg—1 is already LLL-reduced, it follows from Lemma 6.1.2, page 80, and by = by:

b2 > Pt forj=1,2,... .k
J

The divisors ¢; = ||3]||2 in the calculation of yj ; in Step 2 are thus not arbitrarily small. This is
important for limiting errors in floating point computations.

Algorithm 6.2.2 LLL Algorithm with Iterative Orthogonalization

INPUT: > Lattice Basis by, bs,... ,b, € Z™
> émit § <d<1

1. ¢ = }|b1||2, k:=2 /% kis the stage x/
/* On entry to stage k we have obtained:
o i for 1 <j<i<k
o ci=bPfor1<i<k
*/
2. WHILE k£ < n DO
2.1. IF k = 2 THEN ¢; := ||by|]*
2.2. FORj=1,2,... ,k—1DO

(bi, b) = Y121 jibth,iCi
¢j

fk.j =

END for
2.3. ¢ = (b, by) — Zf;ll u%,jcj
2.4. Length reduce b; und correct pig 1, pk,2,- - -5tk k—1
2.5. IF dcp 1 > ¢ + pi 1 ck—1 THEN
2.5.1. by_1 ¢ by, i.e. exchange by_; und by,
2.5.2. k:=max(k - 1,2)
ELSE k:=k+1
END while

OUTPUT: 4 LLL-reduced Basis b;,bs,... b,
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Proposition 6.2.8

On input an integer lattice basis by, by,... b, € Z™ with M := ma,Xizl,Q,”_’n”biHZ, Algorithm
6.2.2 performs

(’)(nzm (1 + nlog, s M))

arithmetic steps on rationals |u; ;| < /282 - M7 and |py;| < /282 - M (g—f—)k_l, 16,112 < M,

and vectors b; with ||b]|* < B3 . M. The absolute values of these numerators and denominators
of these rationals are bounded by

n+3 [9a\"
M3 N s
W (5)

Proof. By Lemma 6.2.1:

#Exchanges < (g) -logy s M =0 (n?log, M)

Since the stage k is 2 at the beginning of the algorithm and n + 1 at the end, it is clear that
#lterations < n — 1 + 2 - #Exchanges

Every iteration with an exchange and stage reduction yields at most one iteration without an
exchange. Every iteration requies at most O (nm) arithmetic steps. The upper bound on the
number of steps follows.

By Lemma 6.2.5 the denominators of the numbers y;; for j < n are bounded by D; < M™ L
By the second claim of Lemma 6.2.6 and by Lemma 6.2.7 we have:

2 _n+3 9a\" !
lpijl” < 1 M(j{)

Thus the numerators of the y; ; are bounded in absolute value by

n—1
n+3 1 9a 2
Y At el
4 2 <4)

The numerators and denominators of ]|3J||2 = Dl?jl are bounded by MJ. The coefficients of the
im

vectors b; are bounded by [|b;]] and so by Lemma 6.2.6 on Page 91 they are bounded by v/nh.
Thus the algorithm need only manipulate integers bounded in absolute value by

TL-I—3Mn4% 92 R
V 4 4



Chapter 7

Babai’s Approximation to CVP

In this chapter we present Babai’s application of the LLL algorithm to the problem of approximat-
ing the closest lattice vector to a given point in R". We show an application to the inhomogeneous
Diophantine approximation problem. All the material in this chapter appears in [Babaig6].

7.1 Approximate CVP

Consider the following “inhomogeneous” version of the shortest vector problem:

Definition 7.1.1
Closest Vector Problem (CVP)

o Given: L C R* of full rank and z € R*

o Find: v € R* such that ||z — b|| is minimized.

CVP can be solved in O(n") arithmetic operations; moreover, given an oracle for the shortest
vector problem, CVP can be approximated to within a factor of n in polynomial time [Kannan83).

CVP is N'P-hard for any norm; indeed, approximating CVP within a factor of 218 ~°" is A/P-
hard [DKS98]. In this chapter we consider only the 2-norm.

Definition 7.1.2
Approxzimate CVP

e Given: basis (by,ba,... ,by,) for lattice L of full rank and z € R®

® Find: w € L such that ||z — wi| < ¢, ||z — u||, where u is a nearest neighbor of x in L and
cn, depends only on n.

95
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Let 6 = 2. An LLL-reduced basis with 6 = 3 satisfies
o Jpiil < 5
%H&q“ <llbell, k=2,...,n

Babai [Babai86] presents two simple procedures for solving the approximate CVP yielding, respec-
tively, ¢, = 2% and ¢, = 1 + 2n(9/2)/2.
Procedure 1: Rounding Off

Solve t},lle equation z = 37" | B;b;, for reals 81, B2, ... , Bn. Fori = 1,...,n,set a; = [B;]. Output
w = Zi:] aibi.

Procedure 2: Nearest Plane

1. Let U = Z?z_ll Rb; denote the linear subspace of R™ equal to span(by,bs,... ,by_1). Let
L"= Lnspan(by,bs,... ,b,_1) be the (n — 1)-dimensional sublattice of L contained in U:
L'=LnU.

2. Find (details explained below) v € L such that the distance from z to U + v is minimal. Let
x' be the orthogonal projection of z onto U + v.

3. Recursively find y € L' near 2’ — v.

4. Output w =y + v.

For Step 2, write z as a real linear combination of the orthogonalized vectors z = 2?21 'yigi, where
Yis720- - Y € R*. Let § = [v,]. Let 2’ = Z?z_ll 7ib; + 6by,. Note that although U + v is the
coset of U intersecting L nearest to z, it is not necessarily the case that the nearest neighbor of z

in Lisin U +v. In this way the algorithm “makes a mistake” and so we only get an approximate
solution.

Proposition 7.1.3
If B is LLL-reduced with § = %, then Procedure Rounding Off finds a lattice point w nearest to x
within o factor of 1+ 2n(9/2)/2.

Proof. The proof of the Proposition uses the following result regarding the shape of LLL-reduced
lattice parallelepipeds, which is of independent interest.

Proposition 7.1.4
Let by by, ..., b, be LLL-reduced. For k =1,...,n, let Uy = Zj#k Rb;, and let ©y be the angle
between by and Uy. Then sin ©f > (\/5/3)"

Proof. See [Babai86]. |
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Since
sin @ = min —Hm — el
meUy ”ka

an equivalent statement of Proposition 7.1.4 is that, for all m € Uy,
(7.1) el < (9/2)"/% [lm. — by
Let d, = (9/2)"/2. Let w be the output of Procedure Rounding Off. Let us write

n
(72) w—-Tr= zézbz

i=1
where for + = 1,...,n, |8;| < § because we rounded the real coefficients in = = 3~ a;b; to get w.

Let u be a nearest lattice point to z. Write w —w = Y .- ¢;b;. Since u and w are both lattice

points, ¢1, ¢, ... ,¢n € Z.

Lemma 7.1.5
[ — w]| < 2nd, ||lu — ||

Proof. Assume u # w. Let k satisfy

lowbell = max {llesbs)

Then
n

(7.3) llu = wll < 3~ [lsbsll < nllpxbyll

Jj=1
But

u—z=(u-w)+(w-rz) :Z(‘Pi+5i)bi
i=1

Letting

1
m=— D (w5 +8;)b;
Pr + 0k

we have m € Uy, and we can write

u—z =3 (pi+6)bi = (px + 6;)(by —m)

i=1
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Thus, by Inequality 7.1, and the fact that the §;’s are all bounded in absolute value by %, and
¢r € Z\ {0} we have:

Ibz]

=2l = ke + 6l e = mil 2 g + 84| L5 2 28
Thus,
(7.4) llu — 2l 2dn > |eox | {[bx]|
From inequalities 7.3 and 7.4 we have
(7.5) lu— w]] < nlgl 156l < n2dn |u— 2]
This completes the proof of the Lemma. u

By the triangle inequality and Lemma 7.1.5 we have:
Iz —wll < lz —ulf + [Ju — wl| < llz - ul| (1 + 2nd,,).

This completes the proof of Proposition 7.1.3. |

7.2 Inhomogeneous Diophantine Approximation

Recall the definition of the inhomogeneous Diophantine approximation problem from Chapter 1:

Inhomogeneous Diophantine Approximation
e Given: ay.a,...,an,81,02,--.,8n, £,Q >0
¢ Find integers p1,pa, ..., pn, g such that
lo; —pi — Bi| <
and 0 < ¢ < @, or show no such solution exists.

Recall also that Kronecker gave a general condition for the solvability of this problem (see
[Cassels71]):

For any 2n real numbers aq, @2, ... ,an, 51,82, .. , By, either
1. For each € > 0 there exist integers p1,pa, ..., Pn, g such that ¢ > 0 and

lga; — p; — Bi] <e.

. . . . . n .
2. Therc exist integers uy,ug, ... ,uy such that " | u;q; is an integer while > uif; is not.
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Suppose ay, g, ... ,a, and By, Ba,. .. , B, are all rationals. Then the first choice in Kronecker’s
theorem says that there exist pi,ps,...,pn,q such that gay — p; = B; for i = 1,...,i. This
is a special kind of linear diophantine equation which, without a bound on ¢, can be solved in
polynomial time (see, e.g., [Frumkin76]). To find a least common denominator ¢ = g(¢) is NP-
hard [EmBoas81]. We next describe a poylnomial time algorithm due to Babai for obtaining a
denominator ¢ at most 3" times larger than optimal, yielding an error of at most 3" [Babai86).

Proposition 7.2.1

Given ay,az, ... ,an, B1,02,...,Bn, and € >0, all in Q, in time polynomial in the lengths of the
mputs one can find either

1. integers py,p2,... ,0n,q S.t.

lgoi — pi — B3] < cne
lg] < engle)

where ¢, = 4/n2"/?, or:

2. a proof that q = g(g) is infinite (no solution exists).

Proof. Replace € by ¢ such that ¢ € (§/2,6] and § = 2° for i € Z, so that £(§) < |log, ] + 2.
Define ) to be the product of the denominators of the a;, 7 = 1,2, ... ,n (without loss of generality
we can assume these are all positive).

Note that if ¢(e) is finite, then g(¢) < @Q. To see this, suppose we have a solution to
lga; —p; — Bs| < . Let us write ¢ = kQ + ¢', where k € Z and 0 < ¢' < Q. Then we can
replace ¢ with ¢’ and replace each p; with p; — kQa; (kQa; € Z because the denominator of a;
divides (). In Procedure Approximate, described below, we will use a guessed value s for the
unknown ¢(6). Ultimately, we will find a value for s within /2 of ¢(d) by starting with s = 1 and
repeatedly doubling s, ending with s = 2/108 @1,

Procedure Approximate(s,ai, ;... ,an,51,02,-..,081)
1. Choose a lattice: For i = 1,2,... ,n, let e; € R*! denote the ith standard basis vector and
let b,' = —€;. Let bn+1 = Z?:l ;€ + %€n+1.

2. Let z = Z?:l Bie;.

3. Apply the LLL algorithm to L = L(by, b, ... , by41) to obtain a reduced basis ¢y, ca, . .. ,Cny1
for L.

4. Apply the Nearest Plane procedure within inputs ¢1,¢s, ... ,Cny1, T to obtain w = 2?21 pibi+
qbni1 € L near to z.

5. Output py,ps,... ,Pn,q.

Clearly, the log () executions of Procedure Approximate require together at most time polyno-
mial in the lengths of the inputs. Let s¢ be the least choice for s for which the output of Procedure
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Approximate satisfies Inequality 7.6, if any. If no such s exists then g(d) is infinite. Moreover,
since if there is a solution with error at most € then there is a solution with error at most § > £,
if no such s exists then g(¢) is infinite.

Assume now that g(e) is finite. Then we have just argued that so is ¢(d). Let s = 2i €
(%, V2¢(8)]. Let u = Yoi1 Dibi + Gibiya, where py, P, ... ,Pn,q satisfy the constraints in In-
equalities 7.6 with ¢ replaced by §. Then

_ _ q|é
lu = o1l = mase{lgas i — ], 12
<0 -max{1, ELI}

Now, s > ﬂ\/%l and |g| < ¢(8), so

Thus |ju — z|| < §v/2, whence

lu = zll, < V2né

The Nearest Plane procedure is shown in [Babai86] to obtain an approximation to within 24/2 of
the closest vector in lattices of dimension d. Thus,

(7.6) lw = all, < 2°F |Ju - 2|,
(7.7) < 2" /n2%s
(7.8) = 2v/n2"?§
Moreover,
)
79) I =l > llw = 2], = maxc{lgas —pi — 4, 192

S50

lga; — pi — Bi] < 2¢/n2V%5 < 4y/n2™ %
lal < 2vn2™2s < /2t 2q(6) < /2l 2g(e)

Finally, since sg is “at least as good” as s, the proof is complete. ]
¥ 123



Chapter 8

Breaking the Linear Congruential
Generator

We present a general technique of Frieze, Hastad, Kannan, Lagarias, and Shamir for reconstructing
truncated integer variables satisfying given linear congruences, and the application of this tech-
nique to breaking pseudo-random generators based on linear congruential sequences. The material
for this chapter appears in [FHKLS88].

8.1 Linear Congruential Sequences

Knuth [Knuth80] attributes the idea of using a linear congruential sequence as a pseudo-random
sequence generator to D.H. Lehmer in 1948. The generator has four parameters:

1. the seed xy > 0;
2. the multiplier a > 0;
3. the increment ¢ > 0;

4. the modulus M > z4,4a,c.
The corresponding linear congruential sequence is:
Tnt1 = (azy, + ¢) mod M
The sequence always cycles (we want cycles to be long). If ¢ = 0 then the period is generally
shorter, but the computational cost is lower. Other restrictions on the choice of parameters
are studied extensively in [Knuth80], where there is also a long and interesting discussion of the

“right” definition of a pseudorandom sequence. This discussion motivated Yao’s modern definition
of pseudo-random sequences in terms of polynomial time statistical tests [Yao82]. An alternative
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definition, involving unpredictability, had previously been proposed by Blum and Micali [BluMi].
For completeness, these two definitions, proved equivalent by Yao [Ya082], are stated in Section 8.4.

As usual, we assume that the method for generating the sequence is known; the values of (some
of} the parameters are secret.

If a,c, and M are unknown, but all of the bits of z;, 1 < ¢ < k are known, then Boyar showed
predictability of the sequence with high accuracy even for relatively small values of k [Boyar82].
In particular, she finds @, ¢, and M , consistent with the available data, and extrapolates. If the
extrapolated sequence differs from the actual sequence, then the guessed values are corrected
accordingly. Boyar shows that at most O(log M) disagreements can ever occur.

If a and ¢ are unknown, M = 2" is known, and the n — ¢ high order bits y; of each z; are
known, 1 < ¢ < k, then Knuth gives an attack which usually reconstructs a, ¢, and the seed in
O(n?2% /k?) steps [Knuth80).

If ¢ is unknown, M and a are known, and the high order bits y; of each x;, 1 < i < k, are given
as data, then an attack due to Frieze, Hastad, Kannan, Lagarias, and Shamir [FHKLS88] yields:

¢ apolynomial time reconstruction or prediction procedure (see below), proved to be successful
on nearly all problems in which sufficiently many bits of data are known to permit unique
reconstruction information-theoretically, provided M is square-free;

* a nearly always polynomial time reconstruction procedure for all M provided %z—% > %,

given only three samples (i.e., k = 3).

While unique reconstruction of zo may be possible if ¢ = 0, the case ¢ # 0 is different. If we set
x; = i) — x; and ¥} = y;41 — y;, then z; satisfies the recurrence

Ty, = az;(mod M)

and y; is essentially a truncated version of z{. This is because z; and z; +d yield the same sequence
a; for any d yet both are linear congruential sequences; indeed, for small d the sequences {z;} and
{zi + d} will usually have the same high order bits. In this case future values of the generator
may be predicted with great accuracy, even if exact reconstruction is not possible.

Joux and Stern [JoSt94] extend the results of [FHKLS88] to the case in which @ and M are
unknown, in that in polynomial time they obtain a value M and a heuristic argument that M
decreases quickly to M, together with a technique that, given M, finds a.

8.2 A General Reconstruction Result

Frieze et al. give a general result, of which the reconstruction of the congruential generator is a
simple special case. The general problem is:
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Definition 8.2.1 (Reconstruction Problem)
o Given: a;; for 1 <i<fand1<j<k, ¢ forl<i<{ M, and{ modular equations

k
(8.1) Zaij:vj =c¢;mod M 1<i</?

J=1

where 0 < z; < M are unknown, and given also some “side information” about some of the
bits of the x;, specifically, blocks of consecutive binary digits:

(8.2) yi = [;TJQ] mod 2% 1< <k

o Find: the sequence of integer variables x1,x5,... 2y

The interesting case is when £, the number of equations, is strictly less than k, the number of
unknowns.

We first consider the question of how much side information is needed to make unique recon-
struction possible. Suppose 2"71 < M < 2", so that ¢(z;) = n. Each y; reveals a d-fraction of
the bits of z;, where § = £;/log, M, whenever ¢; + ¢, < [log, M]. Suppose we know a block
of dn successive bits of each z;. Usually, £ modular equations with side conditions 1 < z; < M
can be used to eliminate ¢ of the variables. This leaves k — ¢ remaining variables, which to-
gether contain (k — £)n unknown bits. Thus, the kén bits of information given by y1,ys,... ,yx
must contain enough information to determine (k — £)n unknown bits. Hence, we obtain the
information-theoretic lower bound: kén > (k — £)n, or in other words, § > 1 — f

[FHKLS88] shows that for § = 1 — £ + ¢, where ¢ = O(k/log M), given dn of the highest
order bits of each z; it is possible to efficiently reconstruct z,,z2,. ..,z in “most” instances (see
Remark 8.2.3 below). A similar result holds for the case in which we are given the én lowest order
bits of each z;. For arbitrarily placed windows of consecutive bits, the authors require twice as
many bits.

Assume we are given the matrix A = [a;;] € Z*** and the vector C € Z* satisfying Az =
C(modM). We define the matrix B € Z{+¥) Xk to be

ail aio N alx
az1 Q422 ... G2k
ag g2 N Aok
M 0 ... 0
0o M ... 0

L 0 M-

Let the lattice L(A, M) be the set of all integer linear combinations of the rows of B. (Recall
that we can find a basis for L(A4, M) by putting B into Hermite Normal Form.) Let C € Z¢**
be the vector that agrees with C in positions 1 through £ and is 0 in the last k positions. Let
r={(xy,29,... ,xk)T. Since z; € Z, we have z; M = 0(mod M), and so

Bz =C mod M
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Proposition 8.2.2 (Frieze, Hastad, Kannan, Lagarias, and Shamir)
The system

k
Zai]-sz-cimodM 1SZS[
j=1
has at most one solution x € Z* satisfying ||z|l, < MAg(L(4, M))"12=*/D=1 (¢ at most one
“small solution). If the a;j, c¢;, and M are known, then there exists a polynomial time algorithm
that either finds x or proves that no such x exists.

Remark 8.2.3

Let us give some intuition for the application of Proposition 8.2.2. If the z; are large but we
know the most significant bits, then we can rewrite the modular relations in such a way that
the new unknowns are “small.” Assume this has already been done. If L(A, M) has very small
kth successive minimum Ay, then the claimed polynomial time algorithm can find relatively larger
unknowns % is larger when Ay, is smaller). If, however, Ay (L(A, M)) is large, then the z; must be
smaller in order for the algorithm to be sure to find them. Intuitively, this means that we need more
bits of the original z;’s, so that when we rewrite the equations the unknowns are smaller. The bulk
of the proof of applicability of the theorem is in analyzing the expected value of Ax(L(A, M)) when
A is chosen at random (as in most cryptographic applications). Much depends on the structure of
M. See [FHKLS88] for details.

Proof. (Sketch) The upper bound Ay is found via the following result of Lenstra, Lenstra, and
Schnorr [LLS90]:

AT A < k?
That 1s, for full dimensional lattices in R¥ | the product of the first successive minimum of the dual

and the kth successive minimum of the primal is bounded above by 2.

The structure of the proof of Proposition 8.2.2 is as follows:

1. Reduce the basis for L = L(A, M) using the LLL algorithm to get modular relations wth
small coefficients.

2. Use the (assumed) size constraints on the z;’s to transform these modular equations to
equations over the integers.

3. Solve these equations over the integers to recover the exact values of T1,&2y ... , Tk-

We now explain these steps in more detail.

For the first step, starting with the matrix B defined above, in polynomial time find V ¢
G'Lyy¢(Z) such that VB is in Hermite Normal Form with non-zero rows 21,22,...,2- Thus,
21,22, .., Zx 1s a basis for the lattice L{A, M). Let Z be the k x k matrix with rows z;, 29, .o 5 Zk-
Next, define X € Z**(k+6 gych that X(VB)= 2.
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Apply the LLL algorithm with § = % to the k-dimensional lattice with basis z1,29,... , 2 to
obtain a unimodular matrix U € GLy(Z) and the reduced basis wy,ws, . .. ,wg such that, if W is
the k x k matrix with rows wy,ws,... ,wy we have UZ = W and, by the reducedness of W,

will, <2%2N, 1<i<k
2

LetY =UXV. Then W =Y B.
What has happened to our initial set of equations? We had:

Bz = C mod M
and so
Y(Bz) =YC mod M
and hence
(YB)z = YC mod M

Let C' = VC mod M (since Y and C are known we can easily find C'). Then since W = Y B we
have the modular equalities

(8.3) Wz =C' mod M

Let us write @ = (z1,Z2,... ,24) . For the second step of the algorithm (transformation to a
system of equations over Z) observe that, for 1 < i < ¢,

k
il = D wijz;
j=1
= [(w;, z)|
< lwall ||l
< 2K N M o~/
M

2

where the upper bound on the absolute value of the scalar product (w;,z) is real (rather than
modular), and the second inequality follows by the reducedness of W and the assumed upper
bound on [|z[[,. Thus, by choosing each ¢ to satisfy |c}| < & we have that Wz = C" holds over
the integers.

Finally, Wz = C" gives us k equations in k unknowns over the integers. We can solve this
exactly using Gaussian elimination.

We have used an assumed upper bound on ||z]|, to conclude that |c}| < & “without modding
out.” u
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Corollary 8.2.4
Let sq = log A\ + % + %logk + 1. The system

k
Zaijszc,-modM 1§ZS£

i=1

has at most one solution x in which the sq most significant bits of each z; are specified.

1

Proof. Write z; = ztV + zt? where z;

i i are the known sg most significant bits of z; and

(2) M_ —1o—(k/2)=17.—1/2
2P| < o = Mt

Since this is implies the bound on ||z|| assumed in Proposition 8.2.2 we can substitute in the known

:zrf1> and then apply the Proposition. ]
Remark 8.2.5

We can actually apply the algorithm of Proposition 8.2.2 (and the Corollary) without knowing \y.
We follow the steps of the algorithm until we obtain the reduced basis wy,Wa,...,wW,. We then

check if the number of bits known in each x; is at least
1
max{log, |lwil|} + 3 logk +1

This provides a sufficient condition for the algorithm to work, because max; log, ||lw;i|| > logs Ak
since, by definition of the kth successive minimum, for any basis by,bo,. .. b for L(A, M),
max; [[bfly > Ag.

8.3 Application to the Linear Congruential Generator

For reasons discussed above, we may restrict discussion to the case in which ¢ = 0. Thus there are
unknowns x,zs,...,z; that satisfy the congruences Z;41 = ax; mod M, and we are given the
high order bits of the z;’s.

It is easy to see by induction that a’~'z; — 2; = 0 mod M, for 2 < i < k. We define the lattice
L = L(A, M) to be the set of all integer linear combinations of the rows of the following matrix:

M 0 0
a -1 0
a? 0 -1 0
ab=1 0 -1

Note that det L = M.
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Proposition 8.3.1 (Frieze, Hastad, Kannan, Lagarias, and Shamir)

For square-free M > c(g, k) there is an exceptional set E(M,e, k) of multipliers of cardinality
|E(M,e, k)| < M'™¢ such that for any multiplier not in E(M, €, k) the following is true. The z; are
uniquely determined by knowledge of the (1/k+¢)log M + c(k) leading bits of all {z; : 1 <1 < k},
where

k
c(k) = §+(k—1)log3+;logk+2.

Furthermore, there is an algorithm which runs in time polynomial in log M + k which finds the x;.

Remark 8.3.2
1. The number of bits needed for reconstruction is almost optimal on information-theoretic
grounds.

2. a =1 s clearly exceptional (although extrapolation is easy in this case!).
3. The proof actually shows that ¢ approaches Gg—f)g—M as M approaches infinity.

4. The z; are treated as independent unknowns.

S

For the special case k = 3 [FHKLS88] are able to show that, for any ¢ > 0, for all M,
knowledge of (% +¢) log M +c(k) leading bits of 1,2, and x3, allows recovery in polynomial
time for all multipliers a except a set of cardinality c(e)M'~¢/2.

8.4 Modern Definitions of Pseudo-Randomness

We present two equivalent definitions of pseudor-random sequences, due, respectively, to Blum
and Micali [BluMi] and to Yao [Yao82].

Definition 8.4.1 (ensemble)

Let % denote the set of all binary strings of length k. An ensemble S is a sequence {Si} such
that each Sy is a probability distribution on X*. The random ensemble R = {R}} is the sequence
of uniform distributions i.e., Ry (x) = 27% for all z € TF.

Definition 8.4.2 (polynomial-size family of circuits)
A polynomial-size family of circuits is a sequence of circuits C = {Cy} such that for some positive
integer d, Cy has at most k inputs and at most k? gates.

Definition 8.4.3 (predicting collection)

A predicting collection is a polynomial-size family of circuits C such that each Cy, has i < k inputs
and one output bit.
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Definition 8.4.4 (unpredictable by C)
For i <k, let m), be the probability that on input the first i bits of s €g Sk, the circuit Cy outputs
the (i + 1)st bit of s. The ensemble S is unpredictable by C if 3d),Vk > kq

PR
Th ST

Definition 8.4.5 (next bit test)
The ensemble S passes the next bit test if it is unpredictable by all predicting collections.

Definition 8.4.6 (Cx(S))
Let Cy. be a circuit with k inputs and one output, and let S be any ensemble. Then C, (S) is the
probability that Cy outputs 1 on input s €g Si.

Generally speaking, a statistical test is an algorithm than on any input produces a single
Boolean output.

Definition 8.4.7 (polynomial-size statistical test; pass a test)

A polynomial-size statistical test is a polynomial-size family of circuits. An ensemble S passes test
T =A{Ty} if Vd3kaVk > ky

T4(5) - TulR)| < 1

Proposition 8.4.8 (Yao)
Ensemble S passes the next-bit test if and only if it passes all polynomial-size statistical tests.

Proof. See [BoHig9). ]
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Positive Applications of Lattices to Cryptography*

Cynthia Dwork

IBM Almaden Research Center.

Abstract. We describe constructions of several cryptographic primitives, including hash functions,
public key cryptosystems, pseudo-random bit generators, and digital signatures, whose security depends
on the assumed worst-case or average-case hardness of problems involving lattices.

1 Introduction

Initiated by Ajtai’s paper “Generating Hard Instances of Lattice Problems,” a burgeoning effort to
build cryptographic primitives based on the assumed hardness of worst-case or random instances of
problems involving lattices has proved extremely fruitful. Prior to Ajtai’s work, lattices, and in partic-
ular, the lattice basis reduction algorithm of Lenstra, Lenstra, and Lovész, were used in cryptography
principally to prove cryptographic insecurity [1, 9, 10, 20, 22, 25]. We describe more positive applica-
tions of lattices: constructions for public key cryptosystems, cryptographically strong hash functions,
and pseudo-random bit generators whose security depends only on the worst-case hardness of the un-
derlying lattice problem; a digital signature scheme whose security depends on the average hardness of
the underlying problem.

2 Definitions

Many of the definitions included here are ertremely informal. References for precise definitions are
included in every case.

2.1 Cryptography

A one-way function is easy to compute and hard to invert. A trapdoor function is a one-way function
for which there exists some special “trapdoor” information, so that given the trapdoor information the
function is easy to invert, but without the trapdoor information the function is hard to invert (see [12]).
A public key cryptosystem is a method of encrypting messages using publicly known information called
the public key, in such a way that ouly the party knowing the corresponding private key can decrypt
the ciphertext. Thus, encryption has a trapdoor nature: without the trapdoor information (the private
key) decryption is hard, but decryption is easy given the private key (see {16] and [11]).

A digital signature scheme is a method of generating a (public key, private key) pair, together with a
pair of procedures SIGN, and VERIFY. SIGN requires as input the message to be signed and the private key
of the signer, while VERIFY, requires as input the message, its purported signature, and the public key
of the claimed signer. Let (K, s) be a (public key, private key) pair. Let (m,a) be a claimed (message,
signature) pair. Given (m, a, K) the VERIFY procedure, without knowing the secret s, verifies that o =
SIGN(m, s) (see [17]).

A one-way hash function is a one-way function h mapping long strings to short strings, say, b : {0,1}" —
{0,1}* for n > ¢. One-way hash functions have many uses in cryptography. In particular they are used
to “shrink” long messages before signing (see [24]). Thus, what is actually signed is h(m) rather than
m (h(m) is sometimes called a message digest). In this case the VERIFY procedure checks that o =
SIGN(h(m), s). For this application it is essential that, given h(m), it is hard to find a different message
m' # m, for which A(m’) = h(m). A little more formally, a family of universal one-way hash functions is
a collection F of functions f : {0,1}™ — {0,1}'™ with the property that for any element z € {0,1}™,

™ This paper appeared in the proceedings of the 22nd International Symposium on Mathematical Foundations of
Computer Science, LNCS 1295, Springer, 1997.



if f is chosen at random from the collection F, then it is hard to find an element y # z such that
f(y) = f(x). Each choice of I[(m) yields a class of hash functions. A slightly stronger notion is collision-
intractability: for a randomly selected function f € F, it is hard to find z,y such that ¢ # y and
f(@) = f(y).

A pseudorandom bit generator is a (deterministic) function that takes as input a string s € {0,1}" and
produces as output a string p € {0,1}™ where m > n. Moreover, the strings produced in this way when
the inputs s are random should be polynomial-time indistinguishable from truly random strings of
length m. Thus these functions appear to manufacture some additional bits of randomness (see [6, 26];
extensive treatment appears in [23]).

The subset sum problem of dimensions m and [ is: given m numbers a = (a1, ..., an), each of length I,
and a number T, find a subset S C {1,...,m} such that EiES a; = T mod 2'. The subset sum problem

can be viewed as that of inverting the function f(a,S) =a,Y. . a; mod 21",

i€S

2.2 Lattices

The fundamental concepts concerning lattices can be found in [8, 18, 19].

If a1, ..., an are linearly independent vectors in IR", then we say that the set {3°"_, kiailk1, ..., kn € Z}
1s a lattice in IR". We will denote this lattice by L(a1, ...,a,). The set ay, ..., a,, is called a basis of the
lattice; its length is maxi<i<n ||lai||. The determinant of a lattice L will be the absolute value of the
determinant of the matrix whose columns are the vectors a, ..., a,. We let bl(L) denote the length of
the shortest basis for L.

The dual lattice of L, denoted L*, is defined as

L"={zeR"|z"yeZforall ye L}

If (by,....by) is a basis of L then (e1,...,c,) is a basis for L*, where
v, [1ifi=j
¢ bj _{Oifi;éj

Thus, if we represent the lattice L = L(b1,...,b,) by a matrix B with columns by, ..., b,, then the
dual of L is the lattice spanned by the rows of B™!. Each basis vector b; in L = L(b1,...,by) induces a
collection of mutually parallel (n — 1)-dimensional hyperplanes, where, for k € Z, the kth hyperplane
in the collection is the set of all points whose inner product with b; is equal to k. The distance between
adjacent hyperplanes in the collection is ||b;]|™*. Thus, if ||b;]] < |lb;||, then adjacent hyperplanes in
the sth collection are farther apart than adjacent hyperplanes in the jth collection. As the formula for
computing the basis for the dual makes clear, the dual lattice is the set of points that are intersections
of n hyperplanes, one from each of the n collections.
Assume n is a positive integer, M > 0, d > 0 are real numbers, and L C Z" is a lattice which has an
n — 1 dimensional sublattice L' with the following properties:

1. L' has a basis of length at most M;

2. if H is the n — 1 dimensional subspace of R™ containing L' and H' # H is a coset of H intersecting

L, then the distance of H and H' is at least d.

We say that L is a (d, M)-lattice. If d > M, then L’ is unique. In this case L’ will be denoted by L{%*),

If a1,...,an € R™ are linearly independent vectors, then P~ (a,...,a,) denotes the half-closed par-
allelepiped {3""  7ia:l0 < v < 1,4 = 1,...,n}. By “c mod P” we mean the unique vector =’ €
P~ (a1,...,an) so that z — z’ is an integer linear combination of the vectors a1,...,an.

The orthogonalzty defect of an n x n matrix B is the quantity det(B) Hl 1 15:]|. The dual orthogonality

defect of B is the quantity det(B T E-T 1, ||8:]], where for 1 < i < n, b; is the ith row of B~L.

3 Generating Hard Instances of Lattice Problems

Cryptographic constructions necessarily require random choices: if, for example, the choice of a key
were deterministic, then the key could not be secret. Thus, the security of the construction relies on the
intractability of a random instance of the problem on which the construction is based. It has therefore



been a longstanding goal in cryptography to find a “hard” problem for which one can establish an
explicit connection between the hardness of random instances and the hardness of the hardest, or
worst-case, instances.

Such a connection is the contribution of the celebrated paper of Ajtai, “Generating Hard Instances of
Lattice Problems” [2]. Specifically, the paper presents a random problem whose solution would imply
the solution of three famous worst-case problems:

1. Find the length of a shortest nonzero vector in an n-dimensional lattice approximately, up to a
polynomial factor.

2. Find the shortest nonzero vector in an n-dimensional lattice L where the shortest vector v is
unique in the sense than any other vector whose length is at most n¢||v|| is parallel to v, where ¢
is a sufficiently large absolute constant.

3. Find a basis by, ..., b, in the n-dimensional lattice L whose length, defined as max?_; ||b;|}, is the
smallest possible up to a polynomial factor.

Ajtai’s Random Lattice Problem. For n,m,q € N such that nlogg < m < 547 and ¢ = O(n®) for
a fixed ¢ > 0, given a matrix M € Z7*™ (that is, an n X m matrix of integers in [0,q-1] of a certain
form described below), find a vector « 0 € Z]* so that Mz = 0 mod q and ||z|| < n. The lattices are
defined modulo ¢, in the sense that if two vectors are congruent modulo ¢ then either both are in the
lattice or neither is in the lattice. Thus the matrix M and the integer q define the lattice: z € A(M, q)
iff Mx = 0(modgq). i

The matrix M is obtained as follows. Randomize vectors v1,...,vm—1 independently and with uni-
form distribution on the set of all vectors (r1,...,zn) € Z;. Independently randomize a 0,1 se-
quence d1,...,6,m-1, where the numbers §; are chosen independently and uniformly. Then define
Um = — Z:’:ll d;v; mod ¢ with the additional constraint that each component of v, is an integer
in [0, ¢ — 1]. The matrix M has columns v, ..., vm. The class of lattices A(M, q) defined by matrices of
this type will be called A. The random problem is to find a vector in A(M, g) of length less than n. Note
that (d1,...,0,m—1,1) € A(M, q) and its length is O(y/m), so this vector is a solution when m < n?.

Let L be an n-dimensional lattice, let a1,...,a, be a set of linearly independent vectors in L and let
M = max}_, ||a;||. The heart of Ajtai’s work is a procedure which, if M > nbl(L) for a fixed consant c,
uses an oracle for the random lattice problem just defined to obtain another set of linearly independent
elements in L whose maximum length is at most 3 maxi<i<n ||ail-

In rough outline the procedure works as follows. Starting from ai1,...,a., construct a set of linearly
independent lattice vectors fi,..., fn such that max[_, ||fi|| < n*M and W = P(fi,..., fa) is close to
a cube, in the sense that each vertex of W will be at most distance nM from a fixed cube. If the space
is covered with the cells of a lattice determined by a short basis, then most of the cells intersecting W
lie completely in the interior of W. This implies that every parallelepiped of the form u+ W, v € R",
has roughly the same number of lattice points. Moreover, this also holds for parallelepipeds of the form
u + %W for g = [n°?], where ¢ is sufficiently small with respect to c. Thus, if we pick a lattice point
v at random from a set D of parallelepipeds of the form u + LW with non-overlapping interiors, then
the distribution induced on D - that is, the choice of which element in D contains v ~ is very close to
the uniform distribution.

The set D of parallelepipeds u + %W that is of interest to us is that obtained by cutting W into ¢"
small parallelepipeds by dividing each of the vectors f; into g pieces of equal length. Thus each of the
small parallelepipeds is of the form (ZLI tiiq"-) —+ %W, where 0 < t; < gq,7=1,...,n is a sequence of
integers; that is, (t1,...t.) € Zg. Let us call the vector o = Y ti{li the origin of the parallelepiped.

We will name an element of D by the vector (o) = (t1,...,t,) of coefficients of the L defining its
origin. If we choose a random set of lattice points &;...,&m in W and look at, for each £;, the name
t(0;) of the parallelepiped containing £;, then we get a sequence t(01),...,#(0m) of elements chosen
almost uniformly from D. Express each §; as the sum of the origin o; and an offset §; € %W. Note
that the offset is relatively short: since §; is contained in éW, [I6;]] is bounded by n times the length
of the longest side of W. That is, maxi<j<m ||&;] < n(%n3M).

By definition of D and the fact that the distribution induced on D by the choice of £ is almost
uniform, each t(o;) is distributed almost uniformly in Zj. Let m = [cinlogn]. Consider the se-
quence t(o1),...,t{om) as a value of the random variable X (it is shown in [2] that the distribution of



t(o1),-..,t(om) is extremely close to that of ). If there exists an algorithm .A that can solve Ajtai’s ran-
dom lattice problem, then using .4 we can find a short (length at most n) vector h = (h1,... k) € Z™
satisfying Z;n=1 hjt(o;) = 0 mod q.

Writing the lattice vector Z;"zl h;&; as the weighted sum of origins and offsets, we get

w=Zhj€j :Zhj0j+zhj6j .
j=1 j=1

j=1

Critically, since z]' hjt(o;) = 0 mod g, we have that Z], hjo; is an integer linear combination of the
vectors (fi,..., fn). Since the f; are lattice vectors, so is Z]. h;o;. Since w is also in L the difference
w3 hjoj = >_; hjd; € L. Finally, since [Z;"zl h3| < n® and, as noted above, each of the offsets is
also relatively short, the lattice vector Zlngn h;d; is relatively short: || ZlSan h;d;|| < n? (n4M%),
which is less than % if ¢ is sufficiently large (say, ¢ > n’).

Recently, Ajtai’s results have been tightened by Cai and Nerurkar [7]. Through a number of technical
steps, Cai and Nerurkar are able to shrink the constant c in Ajtai’s reduction, slightly better than
halving it.

Based solely on the results in [2], it is possible to design a number of interactive cryptographic proce-
dures, including schemes for identification, bit commitment, and coin flipping [3].

4 Hashing

The reduction described in the previous section has implications for the security of the following family
of hash functions, studied by Impagliazzo and Naor [21]:

Let I(m) = (1 — c)m for ¢ > 0. For ay,...,am € {0,1}'™ the function fa = fay...am : {0,1}™ =
{0,1}'™) s defined as follows. Let the m-bit number ¢ be written = 125 ...zm where each z; €
{0,1}. Then fa(z) =Y | wia; mod oHm),

The bits of x act as selectors to determine which of the a; are summed. We can represent the function as a
1 xm matrix M with columns a1, ..., an. Given z € {0,1}™, the value of the function is Mz mod 2™,
As we next explain, Ajtai’s proof shows that the ability to solve a random instance of the subset sum
problem implies the ability to solve the worst-case lattice problems listed in Section 3 (additional details
appear in [2]). So if we assume that these worst-case problems are hard for dimension n, then these
randomized subset sum problems will be hard as well. To illustrate this connection, let ¢ = [n°?] and
m = [cinlogn] as in the discussion of Ajtai’s reduction in Section 3. Let N = q1¢2 . ..q, where each q;
is a distinct prime in [g,2q]. Let a1,...,am,b be random integers modulo N. Consider the subset sum
problem of finding « € {0,1}™ such that ) " wia; =bmod N.

Remarks.

(1) The numbers a; are of length I(m) ~ nlogq = (1 — ¢)m for some ¢ > 0 if ¢; > ¢2. So subset sum
problems of this type are essentially those in the Impagliazzo-Naor family of hash functions.

(2) If z € {0,1}™ then ||z]| < V/m < n.

We may express each a; as a vector of remainders modulo the primes q1,...,qn: a} = (af,... ,ai,),
where aj € Zy;, for 1 < ¢ <m and 1 < j < n. Note that if a; is chosen uniformly from Zx then
a; is implicitly chosen uniformly from Z,, x ... x Z,,. Similarly, let b be the Chinese remainder
decomposition of b. Let M be the n x m matrix with columns a},...,a,. If we can find z € {0,1}™
satisfying » " zia; = bmod N, then Mz = b’ (where the jth component of the product is reduced
modulo ¢;, 1 < 7 < n).

The hardness of this problem follows from Ajtai’s proof. The key modification is as follows. Recall that
W = P(f1,..., f). Rather than cutting each vector fi, 1 <4 < n, into g equal pieces (for a fixed g),
mmstead for each 1 <4 < n, cut f; into ¢; pieces. Thus, instead of having ¢" little parallelepipeds we
will have N = q1 ... ¢, of them. Any solution = plays the role of the solution k = {hi,...,h,,) in the
original proof. See [2] for more details and extensions of these results.

Impagliazzo and Naor proved that if the subset sum function for length (1 — ¢)m, ¢ > 0, is one-way in
the sense that no polynomial time algorithm can invert the function on a random input, then it is also



a family of universal one-way hash functions [21]. Since this class of subset sum problem is hard on
average (assuming the worst-case lattice problems are difficult for dimension n), the Impagliazzo and
Naor construction yields a family of universal one-way hash functions.

In a related note, Goldreich, Goldwasser, and Halevi [13] observed that these hash functions are actu-
ally collision-intractable. Specifically, they show that if M is a random matrix in Z3*™, then finding
collisions of the function h(x) = Mz mod g is hard provided a slight modification of Ajtai’s random lat-
tice problem is hard. The modification is to only require that the vector z have coefficients in {-1,0,1}
(rather than to require z € Z7* and |/z|| < n), and the proof of collision-intractability relies on the
fact that Ajtai’s results hold even if the random lattice problem is relaxed so that ||z|| is bounded
by a polynomial in n. (The more relaxed version incurs a cost in the quality of the approximation
obtained in Ajtai’s reduction.) Collision-intractability follows from the fact that if it were easy to find
z,y € {0,1}™ such that Mz = My mod q then M(z —y) = 0 mod g. Since z —y € {~1,0,1}™, finding
such a pair z,y is difficult.

5 Public Key Cryptography

Ajtai and Dwork constructed a public key cryptosystem generator with the property that if a random
instance of the cryptosystem can be broken, that is, if for a random instance the probability that
an encryption of a zero can be distinguished from an encryption of a one (without the private key)
in polynomial time is at least % + n~°! for some absoloute constant ¢; > 0, then the worst-case
unique shortest vector problem has a probabilistic polynomial time solution. Intuitively, this worst-
case/average-case equivalence means that there are essentially no “bad” instances of the cryptosystem.
In this discussion we will work with real numbers, ignoring issues of finite precision. The private key is
a vector u € IR” chosen uniformly at random from the n-dimensional unit ball. u induces a collection
of (n — 1)-dimensional hyperplanes, where for i € Z the ith hyperplane is the set of vectors v whose
inner product satisfy u-v = i. Very roughly speaking, the public key is a method of generating a point
guaranteed to be near one of the hyperplanes in the collection. The public key is chosen so as not to
reveal the collection of hyperplanes — indeed, Ajtai and Dwork prove that any ability, given only the
public key, to discover the collection implies the ability to solve the worst-case unique shortest vector
problem. Encryption is bit-by-bit: zero is encrypted by using the public key to find a random vector
v € IR” near one of the hyperplanes ~ the ciphertext is v; one is encrypted by choosing a random vector
w uniformly from IR™ - the ciphertext is simply u. Decryption of a ciphertext z is simple using the
private key u: if u -  is close to an integer then z is by definition near one of the hidden hyperplanes,
and so r is interpreted as zero; otherwise z is interpreted as one.

If a lattice A has an n-unique shortest vector v, then L = A* is a (||v]| ™", n=¢ Ilv]|~1) lattice, where ¢’
is roughly ¢ — 2 (a proof appears in [2]). Moverover, v is orthogonal to the (n — 1)-dimensional space

containing L' = AT W™ and if H is the {(n — 1)-dimensional subspace of R™ containing L’,
then the hyperplanes induced by v are the cosets of H intersecting L (recall the discussion of the dual
in Section 2).

Define pert(R) to be a random variable that, roughly speaking, is normally distributed about the origin
in a ball of radius R. Let K be a very large cube, and let R = n°. It is first shown that if the n“*-unique
shortest vector problem is hard, for ci sufficiently larger than c, then the distribution obtained by
choosing a random lattice point in K and perturbing it by adding a value of pert(R) (for sufficiently
large R) is polynomially indistinguishable from the distribution obtained by choosing a vector uniformly
at random from K.

To see this, suppose we are given a random lattice A with an n°!-unique shortest vector v, and let L =
A*. Let d = ||[v||=* and M = n=°1||v||!, where ¢} is roughly c1 —2. Then L is a (d, M) lattice. Let L' =
L@M) have basis b1, ..., bn—1. Let H = Hg be the (n— 1)-dimensional hyperplane containing L'. If R is
sufficiently large with respect to bi,...,bn—1, then the random variable obtained by sampling pert(R),
projecting the result onto the (n — 1)-dimensional hyperplane containing L', and taking the projection
modulo P~ (b1,...,by_1) is extremely close to the value obtained by choosing a point uniformly in
P (b1,...,ba1).

Intuitively, this means that any algorithm distinguishing between “lattice point + pert(R)” and the
uniform distribution is really distinguishing between points close to the cosets of H intersecting L and



random points. ;From this it is possible (with some effort — see [4]) to find H. Finally, given H we can
recover v, the unique shortest vector in A = L* as follows. As noted above, v is perpendicular to H. By
definition ||v]| = d™'; given a basis for L (computable from the given basis for A), we can sample points
from L and compute for each its distance from H. By taking the ged of many random such distances
we can find d.

The next step is to dispense with the lattice L. Let u be chosen uniformly at random from the n-
dimensional unit ball and let #. be the collection of hyperplanes induced by w. The distribution
obtained by choosing a random point in H. N K and then sufficiently perturbing the chosen point, is
indistinguishable from the uniform distribution in K — otherwise there would be a way of distinguishing
points close to the hyperplanes from random points. The scheme is therefore as follows.

Private Key: vector u chosen at random from the n-dimensional unit ball

Public Key: v1,...,vm: a collection of perturbations of points chosen uniformly from #, N K, and a
parallelepiped P

Encryption: To encrypt zero, choose 81, ...,8m, each §; € {0,1}. The ciphertext is Z:';l é; mod P.
To encrypt one, choose a random point in P~

Decryption: given ciphertext z, compute & - u. If the result is sufficiently close (as a function of R) to
an integer, then decrypt z as zero; else decrypt z as one.

There is some chance of a decryption error. This can be avoided by including in the public key a
point B obtained by averaging two encryptions of zero lying on hyperplanes of different parity. (A
related solution appears in [15].) The procedure for encrypting one becomes: follow the procedure for
encrypting zero but add B before modding out by P.

Very roughly, worst-case/average-case equivalence is shown as follows. Suppose we have an algorithm
A that can break random instances of the cryptosystem with non-negligible probability over the choice
of u. Given any instance L of the unique shortest vector problem, we convert it to an instance of the
cryptosystem by choosing a number of random linear transformations U = 6v where # € R and v
is an orthogonal linear transformation. Intuitively, v rotates the lattice L leaving the lengths of the
basis vectors unchanged, while # scales the rotated basis. If v is the unique shortest vector and we
choose enough transformations, then for one of them ||[Uv|| < 1 and A can crack the instance of the
cryptosystem defined by «. Note that v is the n°-unique shortest vector of L if and only if Uv is the
n°-unique shortest vector of UL. It follows that J, the dual lattice of UL, is a (1, n_cl) lattice, where
¢’ ~ ¢ — 2. Moreover, the distribution obtained by perturbing points of J is exponentially close to the
distribution obtained by perturbing points in the hyperplanes induced by Uv. But Uv describes (the
private key of) a random instance of the Ajtai-Dwork cryptosystem: it is random because U is random.
Moreover, the ability to distinguish zeros — points close to the hyperplanes induced by Uv ~ from ones —
random points— would imply the ability to distinguish perturbations of lattice points in J from random
points. As argued above, this ability would yield Uv, the unique shortest vector in J*, and hence, by
the invertibility of U, v.

6 Pseudorandom Bit Generators

The Ajtai-Dwork construction suggests a pseudorandom bit generator with a very natural geometrical
interpretation. Note that, given the secret information w, it requires fewer bits to describe a point that
is close to one of the hyperplanes induced by u than to describe a point chosen at random from RR™.
To see this, consider a basis b1,...,b, for R™ in which the first n — 1 vectors lie in Hy, the (n — 1)-
dimensional space orthogonal to u, and by, is parallel to u. Using this basis it is easy to see that to
describe a random point requires more bits than to describe a point close to one of the hyperplanes
because, intuitively, there are more choices for the random point (the distance of a random point to the
nearest hyperplane can be any value in [0, ||u||/2], while the distance of a point close to the hyperplane
is in [0, n™°] for a fixed constant ¢ > 0).



7 Digital Signatures

Goldreich, Goldwasser, and Halevi have suggested a digital signature scheme based on a trapdoor
function related to the problem of finding the lattice vector closest to a given vector v [14]. Their
approach, which also yields a public-key cryptosystem, depends on the hardness of random instances of
the underlying problem (rather than worst-case instances). Naor and Yung have shown how to obtain
a digital signature scheme from any one-way function [24]. Other than schemes obtained by applying
this general construction to the one-way functions of [2, 4], we know of no proposed digital signature
scheme with worst-case/average-case equivalence.

The trapdoor function proposed by Goldreich, Goldwasser, and Halevi relies on the difficulty, given a
basis B for a lattice L, of finding a basis for L with small dual orthogonality defect. Call such a basis
reduced.

The trapdoor information is a reduced basis R for an n-dimensional lattice (defined implicitly by R).
Given R, it is possible to generate a second basis B for L = L(R) so that B has high dual orthogonality
defect. The trapdoor function is specified by B and a real parameter o € IR. Given vectors v,e € R",
the function f(p . (v,e) = Bv + e. Note that the value o does not appear in the definition of the
function. Rather, o governs the selection of e: each entry in e is chosen at random according to a
distribution with zero mean and variance ¢2. For example, each entry in e can be chosen uniformly
from {o, —c}.

Assume e is chosen as described and each component of v is chosen uniformly from, say, {—n?, —n?+
1,...,n* = 1,n°}. Let ¢ = f(po)(v,e) = Bv+e. If o is chosen carefully, the function can be inverted
using R by applying Babai’s rounding technique [5]: represent ¢ as a linear combination of the columns
of R and then round the coefficients in the linear combination to the nearest integers to obtain a lattice
point (integer linear combination of the columns of R). Once v is recovered we find e = ¢ — Bwv.

In the Goldreich, Goldwasser, and Halevi digital signature scheme, the private key is a reduced basis
R and the public key is a non-reduced basis B. To sign a message m encoded as a vector v € IR", the
signer computes, using the reduced basis, a lattice vector w close to v. The public verification key is
a threshold 7 and the non-reduced basis B; the signature is verified by checking that |j[v — w|| < 7.
As the authors point out, if u, %’ € IR" are sufficiently close, then a signature on wu is likely also to be
a signature on u’; it is therefore important to use a “good hash function” to hash a message before
interpreting it as a vector in R™ [14].
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