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n ON COUNTING LATTICE POINTS IN POLYHEDRA* I

MARTIN DYER*Y

! sbstract. Some reductions of the computational problem of counting all the integer lattice points in
» arbitrary convex polyhedron in a fixed number of dimensions d are considered. It is shown that only
4d 4 need to be studied. In three dimensions the problem is reduced to the computation of Dedekind
-ams. Hence it is shown that the counting problem in three or four dimensions is in polynomial time. A

_aresponding reduction of the five-dimensional problem is also examined, but is not shown to lead to

i R ) N
% wlvnomial-time algorithms.
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1. Introduction. Questions concerning the existence of integer lattice points in
0 :onvex polyhedra have been well studied. The problem of determining whether the
: ~olyhedron contains any lattice points is the problem of integer programming. This
; s well known to be NP-complete in general [7], but it is an equally well-known result
1 Lenstra [14] that this can be done in polynomial time in any fixed dimension. (See ;
diso Kannan [10] for subsequent improvements.) B
Counting all lattice points in a polyhedron is #P-complete, in general [24], but
fe status of the problem in fixed dimension is less clear. In three and four dimensions,
Mordell [15] proved results concerning the numbers of lattice points in the simplex
rmed by cutting an orthant with a hyperplane. In the special case of pairwise coprime -
*d2¢ lengths (for the orthogonal sides), he established a close connection with the ;
Dedekind sums [19]. Though his concerns were not principally computational, Mor-
fell's paper is one of the main inspirations for the results here. Zamanskii and
ferkaskii [25], [26], [27], [28] also examined the counting problem. They were able
' -how that it is in polynomial time in R2. They analysed extensions to R® but were o
-atle to find a polynomial-time algorithm for the general three-dimensional case. -, . h{
. ok, Hartmann, Kannan, and McDiarmid [4] examined the problem of approximately i . .-
L ~énting and showed that this is polynomial-time solvable in any fixed dimension. | ¢ !

: 350 showed that, in variable dimension, it is even NP-hard to approximate to’ e
f i exponential factors.

. . . . !
. - There has also been interest in counting the numbers of vertices of the convex ]

N
N

- vl the lattice points in a polyhedron [23], [9], [17], [4], [2]. It has been shown

i "+ this number is bounded by a polynomial in the size of description when the

" envion s fixed. This important fact is vital to the development here. Hartmann [8]
" Tff‘fﬁ a4 polynomial-time algorithm for listing all vertices of this convex hull when
* Umension is fixed. :

“32Te s a wealth of related material, and the reader should note that the literature
Aere is in no way comprehensive, nor is it intended to be.

- ‘¥ main contribution of this paper is to show that there is a polynomial-time
2 for the general lattice point counting problem for polyhedra in both three
SV * it dimensions. The method is based on reduction to counting a particular type

“+eX. This reduction is quite general. The problem of counting in even dimensions
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is further reduced to that in lower odd dimensions. The three-dimensiona] PrOble;n
then shown to rest on the computation of Dedekind sums, which can be evaantedi:f
polynomial time. N A"

2. Definitions and notation. Throughout, [n]={1,2,--- n}, and [, "]
{m,m+1,-- -, n}. A sign means an element of {-1,1}. If n=Zm=0 are intege;s o
write n™ for n(n—1)-- - (n—m+1) (=1 if m=0). For ScRYint S, cl S, aﬁs?“w
conv S denote the interior, closure, affine hull, and convex hull of S,

We use simplicial decompositions of (convex) polyhedra. Now any closed polyh;
dron has a unique partition into relatively open faces. We will call P R 3 polyhed;a?
if it is any union of relatively open faces of the closed polyhedron cl P. We write 1
implied relation as P=cl P. The adjectives open or closed will be used if we wis|
be more specific. We use the term simplex similarly. If P is a polyhedron, any fa
cl P will be called a face of P, but it will be called included or excluded, depen
on whether or not it actually belongs to P. In particular, vert P denotes the vert
of P. We must, of course, assume that this list of open faces is supplied as part of
description of P. We observe that the maximum number of such faces is polynomi
in the number of facets or vertices of P in any fixed dimension, so the list cannot }
too large. A polyhedron P<R“ will be called full if int P # &. For any ScR?,
denote by |S| the number of integer lattice points belonging to S (i.e., || %' ISNz4));
Counting S means evaluating |S|. For any convex S, the integer hull of S is the !
S, =conv(SNZ?). A polyhedron P is integral if ¢l P= Py, i.e,, P has only intej b

vertices.

We use vector notation in a rather sloppy fashion. Whether a row or col;
vector is intended will be clear from the context. A vector may also be regarded
the ordered sequence of its coordinates or as the corresponding linked list o
coordinates. We are correspondingly sloppy about the use of the notation “dim,” ,whic
simply means “dimension.” Again, we believe the meaning should be clear from
context. (The multiple usage of the term ‘“dimension” is, perhaps unfortunately;
common in mathematics.) .

Throughout, ¢; is the ith unit vector and e a vector of all 1’s. If a e R? and a €R,
the notation @ > a (and similar) means a > ae. We will write a A b for ged (a, b). Itis
well known that the operation “A”™ is then associative and commutative. If xeR, we
use the (nonstandard) notation {x} = x — | x] to denote the “fractional part.” We use
this principally in § 6, when considering Dedekind sums. It is traditional in this setting
to use the “sawtooth” function (x)=x—3(|x] + [x]). (See, for example, [19], [13])
This function has some nice properties for dealing with Dedekind sums and theil
relatives but gives no simplification of our results. Consequently, we will not use it

3. Preliminary observations. Let P be a polyhedron such that cl
{xeR?: Ax=b}, where Aisan mxd integer matrix and b an m-vector. We cons'ld‘g‘g
the computational problem of determining | P| when the dimension d is fixed. We call
this the d-dimensional counting problem. Our objective is to perform the computation ,
in polynomial time. When we use the term polynomial in this paper, we will usual
mean polynomial in the size of the input A, b, as measured in [22]. Observe that
may equally suppose that cl P is given as a list of rational vertices, since (in fix
dimension) there is no difficulty in moving between these representations in polynom!
time. Similarly, any reasonable representation of the list of included faces will suffice
We may also observe here that we lose little generality in restricting to the intege
lattice since, for any lattice with rational generators, we can reduce to this case by
finding a basis (in polynomial time) and then making substitutions. (See [22].)
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We consider reductions of the general counting problem to that for “simpler”
ssses of polyhedra. Thus let us use the following terminology. If € is any class of
'\L,lvhedra, let €,={Ce%:dim(C)=d}. If & is some other class, let us say that 6,
';d;wes to 2, if counting any C € €, is achievable in polynomial time using an oracle
-t counts arbitrary D € @,. We will say that € reduces to @ if €, reduces to 2, for
Jil (fixed) d.

We use & to denote the class of all polyhedra. Thus if the counting problem is
~olynomial-time solvable in all fixed dimensions, & reduces to &. Clearly s/ reduces
o the class of full polyhedra, since if P is not full, we may reduce dimension by
naking a suitable substitution in the inequality system. The same is true for open
~olyhedra, since all open faces of a polyhedron P are lower dimensional open
solyhedra. Note that, in variable dimension, it is a nontrivial task [5] to determine in
}ol)'nomial time the affine hull of a polyhedron in some presentations. However, in
ived dimension, this computation is clearly polynomial-time equivalent to finding the
uine hull of its (explicitly presented) vertex set, a more straightforward task.

A much deeper fact is that of reduces to the class of open integral simplices. This
1y be seen as follows. First, determine the integer hull P, of P. Because P, has only
~olynomially many vertices, this can be done in polynomial time using fixed-
<mensional integer programming [14], [10]. See Cook, Hartmann, Kannan, and
\McDiarmid [4] and Hartmann [8]. We may then triangulate P, into a simplicial
womplex, such that all simplices have vertices which are also vertices of P;. Hence we
w0 partition P; into open simplices of various dimensions. The conclusion now follows.

4. Reduction to a standard integral simplex. In this section we show that « reduces
> a certain “nice” class of open simplices. For reasons discussed in § 1, it is more
-nvenient to prove the reduction using general simplices. The proof is based on the
“wilowing lemma.

Lemma 1. Let A be a nonsingular d x d integer matrix;, then there exists a unimodular
nairix U such that every element in the first row of UA is a, for some integer a # 0. The
watrix U can be determined in polynomial time (even when d is not fixed).

Proof” Let a =(det A)eA™". Then a is clearly an integral vector. Reduction of a

- Hermite normal form (see [22, Chap. 4]) shows that there is a unimodular matrix
- such that aV = Be,, for some integer 8 #0. Now if U= V™' with first row u,,
“=Bu,. Thus u, = B 'a, and we have u,A = ae, a constant vector, with a = (det A/).
early @ is an integer, since u,, A are integral. Thus U has the required property. It
1 be determined in polynomial time using a suitable Hermite normal form algorithm.
See [22, Chap. 5].) 0

We will need the following lemma on decomposition of stmplices.

Lemma 2. Let S=R? be a full simplex with vertex set V={p° p',---,p"}, and

122RY be any point. Let F, be the facet of S with vert F,=(V\{p'}), and let S, =

Mwvert F;U{p}). Then there exist full simplices S| S,, (ie [ [0, d]) and signs o,
<4 thay

ISI= % ailSil.

iel
Proof. Define
o,=-1 if aff F, strictly separates p, p’,
=0 if aff F, contains p,

=+1 otherwise.
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Let I={iio,#0}, I"={iel:o,=+1}, and I =I\I". Then,
conv (SU{p}), it is straightforward to show that int S, (ie I") are the d

letting g’ -

. . . . -dimensiong
simplices of a simplicial complex that triangulates S’, and int S, (ieI) are the

d-dimensional simplices of a similar triangulation of S$\S. Therefore we ma
full simplices S/= S, (i€ I) to partition S’ and S'\S. Since |S]| =S| —|S'\S], the lemmga

Y choose

follows. 0
Let & be the class of open simplices {S,(a)} where, for some a €2

(1) vert Sd(a)={0, i ae; (ke[d])}.

¥

w5

We will always assume, below, that a > 0. This involves no real loss of generality sirice'

we are interested only in full simplices, and reflection in a coordinate hyperplane s
unimodular transformation. g

We now observe that S,(a) has the following nice description by facets.

(2) » 'Sd(a)={xeRd51>x1/al>x2/az'">xd/ad>0}-

To see this, note first that all the vertices of S,(a) are in the closure of the set defined
by the inequalities in (2), and only the kth vertex in (1) fails to satisfy the kth ineqﬁalft :
as equality. (We are defining the Oth vertex in (1) to be 0, and numbering the (d +1)
inequalities in (2} 0,1,---,d) EREE
We now prove the reduction theorem. :
THEOREM 1. Let ScR? be a full integral simplex. Then there exist simplices
Ay, 8:,-+ -, A, where r=d!, and signs o; (i [r]) such that
(a) intA; e &y,
(b) |S| =Z,—'=1 oifA.
For fixed d, a description of {A;: i€[r]} can be computed in polynomial time.
Proof. We assume by induction that, for a given t€[0, d], there are full integr:
simplices A}, A3, -« -, A}, with r, = d*”, and corresponding signs o' (i e [~.]), such tha
(a) vert A can be ordered as (p° p',- - -, p?), for instance, so that, for some ...
integers o,
pi=aj (jell, 1], ke[, d))
=0(ke[0,1],je[k+1,d]). -
(b) |S|=37, ollaf. R
The theorem is the case ¢ = d of the induction hypothesis. Since S can always be
translated onto a full simplex AY, which has its first ordered vertex at 0, the hypotpes
holds for ¢ =0 with r=1 and o} =1. Assume, then, that it holds for any tef[0, d'-'-l
Consider a particular A; with vertex ordering satisfying (2) of the induction hypothesi
The last (d —1t) coordinates of p° - -, p' are all zero, by induction, and those of:
p'', .-+, p? form the columns of a (d —1)x(d —t) integer matrix A. Singularify i
this matrix would imply dim A{ < d, contradicting the assumption that A! is full. Hence
by Lemma 1, we can determine a unimodular transformation U for A which will make"
its first row constant. We apply this transformation to the last (d —t) coordinates
R, leaving the first ¢ invariant (i.e., we augment U by a txt identity matrix). This
transformation preserves the integer lattice, and hence leaves |A}] unaltered. N
however, p"*',- - - p? all have their (r+ 1)st component equal to «, for some integer
a.Letp=(a), a5, -, ai, a0, -,0). We now apply Lemma 2 to (A!, p) to conclude,
that A can be replaced by a set of full simplices {Aj:jeJ< [0, d]}, where vert A
(vert A\{p’})U{p}. Thus |J|=(d +1), but we may bound it more tightly as follow

Mo re————————— 1

fum
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wote that p has its first {r=1) coordinates equal to those of p'™', - - ,p". Thus, for
.10, 1], Aj has a set of (d = t+1) vertices which lie in (t+1) common hyperplanes,
.. in an affine subspace of dimension (d —t—1). Thus we can find a hyperplane
which includes all the vertices of A]. Hence we may assume J < [t+1, d], and hence
ped =)

Now {A!rie[r, ]} is formed by replacing each A[ by the set Al (jeJ), derived
< above. Then ri o = d-tir,=(d-1)d"= d"*V, using the induction hypothesis and
ihe bound on |J|. The vertex ordering for A/ may be any having (p%p', - -,p,p)as
\n initial subsequence. Then part (a) of the induction hypothesis for the A'"'is obvious
from the specification of p. Part {b) follows from the final identity of Lemma 2 and
(b) of the induction hypothesis for the A'. This completes the induction. There is
clearly a polynomial-time algorithm for the decomposition which directly mirrors the
method of proof. O

Thus & reduces to {P:int Pe #}. Now 4 will reduce to % immediately if & is
closed under the operation of taking subfaces. We prove this next. Let p' (i€[0,d])
be the ith ordered vertex of S,(a). Let F be any face of S,(a), with vert F = {p':ielg}.
Consider the following procedure applied to the d-vector g, viewed as a formal list.

function b(a, F)
(1) for ic[d—1]do
if i 2 I then insert the (g.c.d.) operation A between a; and ;..

(2} Evaluate all the A operations to give the reduced vector b, for instance.
i3 if 02 I then delete the first element of b.

if d ¢ I then delete the last element of b.
(4) b{a, F)«b.

Clearly b(a, F) is a vector with dim b=dim F. Call b= b(a, F) a face-vector of

a. Clearly any face-vector can be obtained in polynomial time. Now we have the

following lemma.

LemMmaA 3. If F is an open face of Sy
bh=b(a, F).

Proof. Since the g.c.d. operator is assoc

(a) with dim F =k, then |F|=|Sk(b)|, where

iative, it is clearly sufficient to prove this
for F a facet and to use induction. If 0¢ I, then we must have x,/a,=1o0n F, and
the lemma follows directly. Similarly if d I, we have xs/ag=0.1fi¢ I¢ (ie[d-1D),
we have x,/a = X,/ ai., on F. Let A=aAQiey, @=a[A, B= a;.,/ A Tt follows from
simple divisibility considerations that we must have x; = x'a, x;,=x'B for x'e[rA-1]
at integer points on F. Thus X,/ @ = Xic1/ Qi1 = x’/ A at all such points. The lemma now

tollows. O
CoroLLAary 1. & reduces to .
Remark 1. The simplices, ={M,(a)}, considered by Mordell [15], were

d
Md(a)={xeR": Y ox/a; <1, x,/a,>0, x/a;>0, " ',xd/ad>0},
j=1

so vert My (a) = conv {0, ¢ (ke[d])}. For
but this is not true for d = 3. The class M may appear simp
know whether & reduces to /L.

S. Even dimensions. The main result of
2, reduces to Hy--

If ye[3]¢"", consider the following algorithm applied to @ eZi.

function ¢ (v, a)
1) for ic[d—1] do

d=2, My and &4 are essentially the same,
ler than &, but we do not

this section is to show that, if d is even,

s st S e RCh . PR . 420 A AN

it SRR i

i
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if y, =1 then split the list between a, and a,_,.
if y, =2, then insert the operation A between a, and a.,.
(2) Evaluate all the g.c.d. operations in the sublists.
Let b, (j<[r]) be the resulting reduced sublists (i.e., vectors).
Let k, =dim b; and r=|{i: y; =1}|.
3) d(va) (=1 17, IS, (by)l.

Then we have the following theorem.
THeOREM 2. Let d be even, and let T =[3]Y""\{3e}. Then

Si@)=3 T o(v,a)

Proof. The method is “inclusion-exclusion,” using a natural symmetry of Sd(a)
Let » ’

Ri(a)=[a,~1]x[a,—1]x- - ~x[a;—1].
i xe R,(a) (which we will abbreviate to R) then, from (2), under the bijeyct’iog;
x> (a—x) on R, —
(3 |Sd(a)I=HXER5xl/an<xz/az<'"<xd/ad}l-

e

For ie{d ~1], let us write A,(x)= (xi/ a; = xi+1/ a;y). For pe{<, =, >}, let 8° be“the
indicator function of A,(x) p 0. Then, from (2) and (3), '

d-1 d-1 o
(4) |Sq(a)] = ZR [167(x)=3% I 87(x).
xe i=1 xR i=1 ; .
However, we have 8 (x) =1 ~87(x)—87(x). Thus the last expression of (4) implies
d—1 '
(5) 1Sa(a)l= % T (1-87(x)~567(x)).
xeR i=]

Expanding the product in (5), we obtain |Ss(a)| as the sum of 3¢ terms, each
of the form :

d-1
(6) D) H &ily),

veER i=1

where o is a sign, and ¢, € {67, 8], 1}. Each ¢ is an indicator function, so the product

in (6) is the indicator of an intersection of sets. For each i there are three possibilities. |

The case {; =1 is equivalent to deleting the (i+ 1)st inequality in (2), so the inequality
system **decomposes” on R into

{x)/ay>---> X,/ a;} X{xi 1/ Q> - >xa/ a4}

This corresponds to “splitting™ the vector a,1.e.,t0 ;=1 in the computation of d’(%,,a»

Having {; =8, corresponds to replacing the (i + 1)st inequality in (2) by an equ‘élity.- :

This is equivalent to inserting the g.c.d. operation in a, i.e., to y, =2 in the computa

i
of ¢(y,a) (cf. Lemma 3). Finally, {, =5 corresponds to imposing the (1+1)S§
inequality in (2), i.e., to ¥, =3 in the computation of ¢(y, a). The sign o is clearly -

(—1)“"'"" where ¢ is the number of i for which ¢; = 1. This corresponds to the sign in

the computation of ¢(y, a). Thus each of the 39! sums is equal to a unique ¢(‘Y-ia)‘"
However, using (4), we have ¢(3e, a) = (-1)*7'|S,(a)| = —|S.(a)}, since d is even. The

theorem now follows from (5).
THeOREM 3. & reduces to ¥° ={S,(a)e ¥ (d odd)}.
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proof. For even d, the computation of &{y, a) for y # 3e involves only determina-
qon of :S.(b)| for k<d, and b a face-vector of a with dim b = k. The resuilt follows
1y induction on d. 0
 COROLLARY 2. Sy(p)=p—1,1S:(p, @) =H(p-1g-1)—=(prg—1))-

proof. The first assertion is obvious. The second follows from this and
[heorem 2. 0

COROLLARY 3.

'S Lax/p) =4(p=1ig=D+(pra=1)

p—1

Z, [qx/pl=%pg+tp—q—PArq).

x=

Proof. Using Lemma 3,

S lax/p) =H0<y/a = x/p <= ISP ISP A,

,,gl [gx/p]=H0=y/q<x/p<1}=|S:q P +[S:i(P)-

The results now follow from these and Corollary 2. 0

COROLLARY 4. Two-dimensional counting can be done in polynomial time.

Proof. The proof follows from Corollary 2 and Theorem 3. O

Remark 2. The result of Corollary 4 was previously obtained, using different
methods, by Zamanskii and Cherkaskii {see [25]-[28]).

Remark 3. For any suitably defined convex body K in R? the feasibility question
/K. 20 canbe answered in polynomial time by fixed-dimensional integer programming.
(See Kannan [10, p. 434]. By “suitably defined’” here, we mean “given by a (polynomial
time) separation oracle.”) Hence the integer hull K, of such abody could be determined
in polynomial time by the “gift wrapping” idea (see [18, p. 1251) provided K, has only
polynomially many vertices. Since K, is a polyhedron, counting K could then be
achieved as above. We might therefore hope that Corollary 4 would generalise.
However, it appears to fail for very simple convex sets in R%. To see this, consider

K(n)={(x,y)eR:xyzn1=(x,y)=n}

It is easy to see that |K(n+1)|—|K(n)|=2n-1if and only if n is prime. A
polynomial-time algorithm for counting K (n) therefore implies a similar algorithm
tor primality testing. Thus we might guess that K,(n) can have nonpolynomially many
vertices. Tt is easy to see that this can happen. Let m= 114, and n be the product of
the first [m/In m] primes. Each prime is at most m by a form of the Prime Number
Theorem [21]. Thus n <37, say, so m measures the input size of K(n). However, n
has at least 2™'™™ (ordered) two-term factorizations, i.e., nonpolynomially many. Each
sives a vertex of K;(n). Thus the approach to counting K (n) used here is doomed at
the outset. (See Remark 8 below for an even worse example.)

Remark 4. The proof of Theorem 7 leads to a closed formula for S.(a). Note
that —1 < A,(x) <1 on R, and thus 8; (x)= [A.(x)]. Thus, from (4),

alvl az-l ad-] x x x X x X
y ] 2 -3 1 d d—1
lSd(a)[: Z z - Z [—-—— e e ———— |
x;=1x3=1 xg=1 a, a, a, a; ay a;

Unfortunately, this expression is not directly computable in polynomial time.
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We prove one further general reduction, that the elements
common divisor. We place it here since it has some superficial sim
2. For this, it is convenient to use

of a need y,

N ave
larities to fo

Theoren,

Sala)={1>x,/a,>--->x,/a, 20},
rather than S,(a). Let ye[2]*"', acZ?, and AeZ.. Consider
function {(v, a, A)

(1) for ie[d—1] do
if y; =1 then split the list between a; and a,,,.

(2) Let b; (je[r]) be the resulting sublists of a, k; =dim b,.
(3) Lty a, )= I, ISk (b)].
Then we have the following lemma.

LeMma 4. |S)(ra)) =2 ez Ly, a, 1),

Proof. Partition the x e §%(Aa) into boxes according to |x,/a;| =5
corresponds to a nonincreasing sequence s =(s,,* - -, sy4) such that s;e[A). Anym
s splits into maximal subsequences for which s, has the same value, Suppose ‘thg'xsm

r distinct ;. There are exactly () ways of choosing these distinct values, For each

choice, the possible s can then be formed by splitting a d-sequence into r nofﬁm
parts, and then assigning the r values, in decreasing order, to the successive pétfﬁ? :

splitinto r parts corresponds to choosing a . For a given split, Suppose §;=- -«
(=¢-1) is any part, and let b=(a;,---
S,(a), we must have

L A box

ko

(¢+ 1)>xj/aj> P Xt/ G ZE

But this set has a bijection x> (X;+1-, ~ £,41-,) (€ []) with Si(b). The le
follows. 0 ’

o

Remark 5. This lemma is closely related to the theorem that the numb:éfio Jlattice
points in a polyhedron varies polynomially under the operation of subdivisiqitx;gf!gfef_
lattice. (See, for example, [16].) Unfortunately, it does not seem that we can apply
this result directly to get our conclusion here. : o

THEOREM 4. of reduces to 9*={S,(a) e ¥°: ayn---anay =1} Lt

Proof. By induction on d, the result follows from Theorem 3, Lemma 4, and the

equation |Sy(a)|=1S,(a)|+|S,_,(a’)| (where a’ = (a,, -+, ay_,)), which folloWs‘ﬁ‘bﬂl
Lemma 3. 0 :

6. Dedekind sums and three dimensions. From Theorem 4, three-dimgﬁw

counting clearly reduces to counting S;(r, p, ¢), where pagar=1. Then, however,
using Lemma 3 and Corollary 2,

1S5(r, p. @)l = N ~1Sa(r, pag)l = N =Y pnrg—1)(r-1),
where, if (z, x, y) is the typical point of R?,
(7) N=[{o<y/gq=x/p<z/r<i}.

It clearly suffices to determine N. But since, for any integer 0 < x <p, there are[qX/PJ
values of y, and (r—1— [rx/p]|) values of z in (7), '

NJ; Lax/pl(r—1=rx/p]),

(8) =(r-1) p}; lgx/p) —p‘; lgx/p]rx/p],

=5 =D D@=D=(pag=1)="F Lax/p]L/p),

[OR

4o Corollary 2. T

e order of supersc

pgl Le

Thus we have ¢
s polynomial-time ¢
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Proof. Substitu.
‘he mapping is bije.
change x — (x—18
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Ve ng ine Corollary 2. Tt thus suffices to determine Z':l, lgx/p)Lrx/p]. Now let
.e()rem e
D¢ =Y {gx/pHrx/pl,
x =1
def 1 r!
D¢ Dy = T (x/p)lax/ph,
x=1
def 1 e 2
D, D,=Y (x/p)*=(p—-D(2p—1)/6p.
x=1
rie order of superscipts in D} is clearly immaterial. Now, using the above notation,
p—1 p—1
b S lax/p)l/p) = ¥ (gx/p~{gx/ph(rx/p—{rx/p})
h X x=1 x=1
vV Suc _ B r r
. ch =rqD,—gD,—rD}+ D;".
€ are
" each Thus we have only to evaluate the sum D?" in polynomial time in order to have
‘mpty 1 po\ynomial-time algorithm for three-dimensional counting. Since D}" has (p-1
5. Any .erms, it is not obvious that this is possible. However, sums of this type have been
Sivk-1 well studied, since the D} are (essentially) the “Dedekind sums” [19]. We first show
aIn that DY can be determined using only a polynomial-time algorithm for evaluating D;
in the special case pag=1. We need the following simple lemma. This lemma is well
tnown in relation to Dedekind sums, as is some of the other content of this section,
| now kut we give proofs, since they are all fairly short. ;
3 LemMA S. If6<R and pag=1, then P f(gx+0)/p}= fo}+3(p-1).
attice Proof. Substitute x — g~ 'x mod p into the sum. (Because prg =1, g~ exists and
of the . the mapping is bijective.) The sum is then y2_ d(x+0)/p}. With a further variable
api;ly; change x — (x — {8]) mod p, this is Z';;:) (x+{6})/p, giving the result. 0
We now prove the claimed reduction.
LEMMA 6. Ifpagar=1,A=pagq, (a, B)=(p, q)/ A, then
d the D% =D& +i(A—1)(a~1).
from
Proof Putting x=pa+v (ne [0,A—1], ve[0,a - 1]),
.ional ' a-1 A-1
vever, Di'=3%Y YL J{(r/.L+rv/cz)/)t}{{ﬁv/a}}.
r=0 p=0
3 {sing Lemma 5 on the inner sum gives
a1 1
Dy'= L (ﬁrV/a}HE()\— 1))%3!//6!}«
R v=0
x/pl

\pplving Lemma 5 again (with §=0) on the second term in this sum gives the
<onclusion. 0

Therefore we may suppose that pag=1.

Remark 6. The assumption p A g A r=1isnot entirely necessary, since ifA=pagnA

«  rand (a, B, v)=(p, g r)/A, we can easily show that D% =AD%".

Levma 7. If pag=1, then Di' =D, where t = rg”" (mod p).

Proof. Change variable x — g 'x mod p (cf. proof of Lemma 5). g

We have thus reduced to evaluating D} . But, by Lemma 6, we may assume p A g =1
tre coprime. All the work required so far can be done in polynomial time using only
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the Euclidean algorithm. It remains only to show how to evaluate D in polynomial
time in the case p A ¢ = 1. That this can be done is a direct consequence of the famous
“reciprocity relation”™ of Dedekind. Many proofs of this identity, and generalizationg
are known (see [19], [13]). Since we have the machinery available, we give a Shor;
proof for completeness.

Lemma 8. Ifpag=1, then

Di+ D% =4(p+q-3)+i(p/a+q/p+1/pq).
Proof. The variable change x — g~ 'x mod p implies D}?= D,. Thus

(10) 'S \ax/p)*='Y, (gx/p—{ax/ph)=(d'+ DD, ~24D}.

Since gx/p, pv/q are not integral for xe[p-1], yelqg—1],

p-

L lax/pl’= Z (2y-1)
x=1 <y/g<x/p<1
= x (2(g-y)-1)

0<x/p<y/q<}

(11) ) (2q-1-2y)lpy/al,

'Rl

<

SR

(2q—-D(p-1)(g-1)-2 q}; y(py/q—{py/q}

=(p-3)qD,—24Dg,
where the first line involves an elementary sum, the second follows by making the
variable change x — (p—x), y = (g —y), the fourth by using Corollary 3, and the fifth
by using (9). The lemma now follows by equating (10) and (11), using (9), and
simplifying. g

CoROLLARY 5. D?" can be evaluated in polynomial time.

Proof. We need only consider Dj with pag=1. If g > p, then clearly Dy = D?,
where ¢’ = g mod p. This, with Lemma 8, implies an algorithm whose behaviour and
analysis closely parallel those of the Euclidean algorithm. (Note, since pAg= 1, we
finally reach DY =0.) 0 ’

Remark 7. Lemma 8 is clearly elementary, but was discovered by Dedekind in
the context of modular function theory. (See [1, Chap. 3] for an introduction.) The
book by Rademacher and Grosswald [19] is an exhaustive account of the known facts
on Dedekind sums at the time of publication (1972). The algorithm for the calculation
of the sums was probably known from Dedekind onwards, as was its “computational
efficiency.” More recently, explicitly algorithmic treatments have been given, for
example, by Knuth [12], [13].

In consequence of the results of this section, we have Theorem 5.

THEOREM 5. Three-dimensional counting can be done in polynomial time. a
From Theorem 3, we can therefore conclude with Theorem 6.
Tueorem 6. Four-dimensional counting can be done in polynomial time. 0

Remark 8. In R*, counting more general convex bodies appears even harder than
was implied for R? by Remark 3. The following observation is due to Kannan [11]. Let

B,(n)={xeR* x}+x3+x3+xi=n}.
It is a classical result of Jacobi (see, for example, [6]) that
rin)=|By(m|—|Bs(n-1)[=8 ¥ m

4 min
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Thus if n is the product of distinct odd primes p, g, then ry(n) =8(1+p+q+ ny.
Ihis. together with n = pq, is sufficient to determine p and q. Therefore (this type of)
ryctorization can be done in polynomial time given a counting oracle for B,(n). In
particutar, a polynomial-time algorithm for counting B.(n) would imply a similar
\tgorithm for breaking the RSA cryptosystem [20]. All r,(n) points are vertices of the
ngger hull of B,(n), i.e., “exponentially’” many.

7. Beyond four dimensions. It is not clear how to extend the result of § 6 to higher
Jimensions, since we have no polynomial-time algorithm for evaluating sums analogous
10 the DY, i.e., of the form

) Dy =T daix/pHaxx/h - Laa-rx/p}

it is even unclear to what extent the problem can be reduced to the computation of
.uch sums. The reader may check that such sums are sufficient if and only if & reduces
to the class of d-pyramids ? = {P,(a): d odd}, where

Pia)={0<x/a;<x4/a; <1 (ie[d—1])}.

We are unable to prove this in general. However, we are able to show that /¢ reduces
o ?,. To establish this, it clearly suffices to show that &5 reduces to P;. We will
briefly outline this reduction below, leaving the interested reader to supply some of
the details. Note that the converse implication is true, however. If we could solve the
counting problem in d dimensions, then, by counting polyhedra in the class P,(a),
we could certainly evaluate sums of the form (12). ;

ForaeZ’,leta' =(ay, - -,a;) (i€[5]), and, for given a’,

f) =H1>x/a,> > x/a >yl a.
Let
Y(a)={1>x,/a,> X,/ a;> X3/ ay> (x4/ as, x5/ as) > 0},
X(a)={1>(x,/a,, xs/ a;)> X3/ a3> (xa/ aa, x5/ as) > 0}.
We first reduce Ss(a) to Y(a), then to X (a). Simple counting gives
t13i Ss(@)|+|Ss(a?, as, ag)l =] Y(a)| =|S«(a’, asn as)|.

Letting g(x)=([x]—1), we can also show easily that

Sdall= I glasp/adfity)

= las/a) T 30+ T glas/ abnfity)

= |as/ aAJ (lSS(aA, 04)| +]S4(a")|)+]S5(a4, as mod a4)|,
a3—1

Isx(a*, a0l = T, ! glaw/a)(glaw/ )+ DAY)

y=

¥ (@, al+3 15 da)

From (13), (14), and (15) we can construct a “Euclidean” algorithm which reduces
counting S5(a) to counting a polynomial number of Y’s. Essentially the same method,
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after using the bijection x — (a — x), reduces counting Y(a) to counting g p°1yn0mia|
number of X's. Thus we need only to count X(a). But [X(a)| can be €Xpressed ag a
single sum over x,, by a similar argument to that leading from (7) to (8). This sum
can then be manipulated into the required form. With a little fu
show the following lemma.

Lemma 9. Five-dimensional counting is polynomial-
computing the sums

rther work, we can

time (Turing) equivalent 4,

p—1

DZ.r,s.l — gl ﬂqx/p}{{rx/pﬁ {{sx/p}}{{lx/l’},

where glp and garasat=1.

Remark 9. The difficulty of computing these “generalized” Dedekind sumg (ie.,
sums like (12) with odd d = 5) is that the “‘reciprocity relations” which can be obtaineqd
(analogously to Lemma 8) are in terms of three or more such sums. (See, for example,
[3].) The “Euclidean algorithm™ approach therefore leads to branching (and nonpoly.
nomial behaviour) when the number of “parameters” is greater than two. Thus, it jg

not clear whether these reciprocity relationships are actually useful from a computa- -

tional viewpoint. (See, for example, the pitfall in the main idea of [28].)

8. Concluding remarks. By reducing to Dedekind sums, we have shown that
counting in up to four dimensions can be done in polynomial time. We have been
somewhat vague about the complexity of the algorithm, but the reader may check
(using [4], [12], [22] for the necessary estimates) that the running time is dominated
by the O((m¢)**) time needed to determine the integer hull P,. (Here d =2,3, or 4
is the dimension of P, m is the number of inequalities in the system defining" P, and
¢ is the maximum size of any inequality. See [22].) ’

Obviously, the major question left unresolved is whether a similar result holds in
five dimensions (and hence six). A polynomial-time algorithm for evaluating the sums
of Lemma 9 would, of course, settle the counting problem for six dimensions. More
generally, we might hope that the corresponding result is true for any fixed number
of dimensions, as with integer programming. We conjecture that this is the case, though
a solution seems to require some new techniques.

Of course, it may be that d-dimensional counting is not in polynomial time for
some d>4. Proving # P-completeness, or even NP-hardness, seems likely to be
extremely difficult (even if true). It might be possible to reduce some difficult number
theoretic problem like factorization to counting, as was done for B,(n) in Remark 8.
However, this also appears tricky, since there is no apparent relationship between
linear inequalities and nonlinear problems like factorization.

A less ambitious aim is to establish whether s/ reduces to any ‘“nice” classes of
polyhedra other than &, for example, the pyramids 2 or the Mordell simplices #.

Reduction to 2 would be interesting, since it would imply the equivalence of cquntihg
to evaluating sums like (12).
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