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1. INTRODUCTION
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9. PLANAR THREE-DIMENSIONAL MATCHING

Three-dimensional matching (3DM) is a “standard” NP-complete prob-
em [4], and is used routinely in proving NP-completeness results. An
Bastance comprises three disjoint sets R, B, Y with equal cardinality g and a
fset T of triples from R x B X Y. The question is to decide whether there is

subset of g triples which contains all the clements of R, B, and Y. We¢'
may associate a bipartite graph with this instance, as follows. We have a
vertex for each element of R, B, and Y and each triple in 7. There is an
edge connecting a triple to an clement if and only if the clement is a
Fmember of the triple. This graph, G say, is bipartite with vertex bipartition
* RU B U Y. We will say that the instance is planar if G is planar. We
ill show that Planar 3DM remains NP-complete. The proof is in three
 First we show that Planar 3SAT [5] remains NP-complete if exactly
fone literal in each clause is required to be true (1-3SAT). This is then used
Fto prove NP-completeness of planar exact cover by 3-sets (X3C [4]) which is
" defined analogously to Planar 3DM. Finally we indicate how to modify the
reduction to obtain the NP-completeness of Planar 3DM.

LEMMA 2.1.  Planar 1-3SAT is NP-complete.

" Proof. By reduction from Planar 3SAT [5]. Suppose a typical clause in
the 3SAT instance is C, = {z,, Z,, z,}, where z,,, z,, z, are literals. In the
associated graph G, there will be an edge from C; to each of the variables
§ appearing in these three literals, and this graph is planar. The 1-3SAT
instance is then constructed by replacing C, by three clauses

{z, u,. v} {Z, u wh. {0, x,}

‘containing four variables. It is easily verified that these three clauses have a
th assignment with exactly one true literal in each clause if and only if C,
s satisfiable. This construction causes only a linear blow-up in the numbers
Fof variables and clauses. Note that it is not necessary 10 assume that C; has
three different literals for this substitution to be valid. (It may also be
observed that this reduction is not parsimonious [4], but can be made so at
the expense of one extra clause and variable for each C,.) It remains only to
show that this construction preserves planarity. This is illustrated in Fig. 1.
Let G, denote the graph constructed.

LEMMA 2.2.  Planar X3C is NP-complete.

Proof. By reduction from Planar 1-3SAT. The proof will be presented in
diagrammatic form. In these diagrams a dot will represent an element and a
~small circle a 3-set. An edge joining an element to a set indicates member-
“ship (see Fig. 2). The reader should ignore the broken line appearing in




176 DYER AND FRIEZE PLANAR 3DM IS NP-COMPLETE 177

external
clemont

F1G.1. (a) 3SAT instance; (b) 1-3SAT instance.

some of the diagrams, until after the proof that Planar 3DM is NP-con
plete. ;.

A variable, v; say, in the 1-3SAT instance will be represented by a cycle}
of 3-sets. If v; occurs r times in the instance (including negations) then the
cycle has 2r sets with each successive pair of sets sharing an element. Thisis
illustrated, in the case r = 3, in Fig. 3.

It is clear that any system of which this forms a part can have an exact ;
cover if and only if the “external” elements of this cycle are alternately
covered by-sets of the cycle, with alternate external elements covered by sets
not in the cycle. Either alternation is possible. A successive pair of externa
elements will represent the appearance of v; in a clause of the 1-3SAT}
instance, and the two possible alternations of these two elements being§
covered internally by the cycle or by sets external to the cycle will represent’
v; being “true” or “false.” We now augment this cycle with r additional sets g
and 2r elements by adding a 3-set to one of the external elements in each

pearance of v, will be called a “connector,” and either all three, or none,
of the connector elements will be covered by sets of the augmented v, cycle
g as v, is true or false. We take v; to be true if all three connector elements are
covered by the cycle when v; appears uncomplemented in the corresponding
i clause.

€ It is easily verified that negation is handled correctly. We must now
f consider the clauses. Each clause C; is represented by a copy of the
E configuration shown in Fig. 5. This has twelve elements and nine sets.

$Of the twelve elements, three are “internal” and the remaining nine are in
three groups of three. Each group of three will be called a terminal of C,.
The construction is then completed by identifying the three connector
elements for the appearance of v, in C; with one of the terminals of C,. Let

- connector connector
pair as illustrated in Fig. 4. The three elements now corresponding o an % ——t —_————
3-se0t / N N
(=) (b)
element. A
£ FIG. 4. (a) v, appears uncomplemented in the corresponding clause; (b) r, appears
FIGURE 2

mented in the corresponding clause.
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G, denote the graph constructed. Since we are reducing from Pla !
1-3SAT and all our components are obviously planar, it is clear that
have constructed an instance of Planar X3C. We have only to show that thisg
instance correctly simulates the 1-3SAT instance. This amounts to showing
that there is an exact cover of the C, configuration if and only if exactly one
terminal is covered externally, when we restrict the covering such that either
none or all three of the elements in each terminal are covered externally.
Now, in this configuration, the three internal elements each appear in three
of the nine sets, and no two appear in the same set. It follows that if this
configuration forms part of an exact cover by 3-sets, then exactly three of its
scts must be used and hence nine of its twelve elements will be covered
internally. Thus exactly one terminal can be left uncovered. Now it can be 3
verified easily from Fig. 5, using its symmetry, that if any terminal is
covered externally then the remaining nine elements can be covered inter-
nally. Thus there will be an exact cover by 3-sets for this Planar X3C
instance if and only if there is a satisfying truth assignment for the Planas:
1-3SAT instance. This establishes the NP-completeness of Planar X3C.

It may also be noted that the instances of X3C constructed have thef
property that each element is in either two or three sets. Thus Planar
remains NP-complete under this restriction.

Planar 3DM is NP-complete.

THEOREM 2.3.

Proof. An X3C instance is also a 3DM instance if the elements can by
“colored” red(R), blue(B), or yellow(Y) such that each 3-set is inciden
with one element of each color. We will show how to modify the con
tion of Lemma 2.2 so that the instances admit such a coloring. First obsexw
that the v, cycles (as in Fig. 3) have a coloring in which all the exte
elements are colored B. (Simply color internal elements alternately R.
Thus the connector elements can be colored so that the three elements cadh
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connector

Fixed connector
element

FIGURE 6

kreceive a different color. It is also evident that there is freedom as to which
jelements are colored R, Y, but the B element is fixed. We call this the fixed
‘connector element. Now consider the clause of Fig. 5. This has a 3-coloring
in which the three terminals have elements colored (in left-to-right order)
RBY, BYR, and YRB. The three internal elements each receive a different
color. The problem now becomes apparent. When the connector elements
are identified with those of the terminals, the colors may not match because
of the ordering. Now, returning to_Fig. 4, it is evident that we could match
-the colors if we were free to choose the color of the fixed connector element.
Thus we have only to show that the color of the fixed connector may be
changed from B to R or Y without destroying the properties of the
construction. This can be done by augmenting the variable cycles (c.f. Fig. 3
to Fig. 4) with the configuration shown in Fig. 6 i the (ixed connector
eement needs to be colored other than B. (It will be “reflected” if v,
appears negated, similarly to Figs. 4a and b.) Let G, denote the graph
constructed. A coloring is shown which changes the color of the fixed
 connector element to R, Similarly it may be changed to Y by interchanging
Y. R in this diagram. Thus using this component we can arrange that the
colors match at all terminals. We need only check that the configuration of
Fig. 6 behaves exactly like that of Fig. 4a in its effect on the way the
connector elements are covered. This can be easily verified from the
diagrams. This establishes NP-completeness of Planar 3DM, and again we
nay note that every element occurs in either two or three triples.
. We have proved the NP-completeness of Planar 3DM. However it must
stressed that this does not imply NP-completeness for k-dimensional
matching (k. DM) for k& > 4 by the simple argument used in the general
e., nonplanar) case of this problem. This is due to the fact that this
argument involves an essentially nonplanar construction. Thus we cannot
conclude that Planar k DM is NP-complete for any k > 3, although we
gonjecture that this is the case.
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Lichtenstein added the following extra condition for Planar 3SA :

tripl
simple cycle through all the vertices representing variables can be ad t < (eyha)
without destroying planarity. , E
Referring to Figs. 5 and 6 of [5] we see that the cycle added B

Lichtenstein can be diverted to go through all clauses as well as variablegd
without destroying planarity. Thus we can now assume that such a .
tonian cycle 1/ has been added to . Using /1, we will show that a cyde} x ¥ 4 * ¥ v
through the vertices representing elements in Planar 3DM can be add
without destroying planarity.

Consider first the transformation from G| to G,. It is casy to see frg
Fig. 1 that the visit of I, to C, can be replaced by a visit to the o
variables u,, v;, w,, x; of Fig. 1b. This can be done regardless of how the
cycle goes through C.. We thus obtain a cycle H, through all the verticesg
G, which represent variables.

H, can then be transformed into a cycle through the vertices represen
elements in G,, using the constructions indicated by the broken lines #
Figs. 3, 5, and 6.

Though we make no use of this cycle in the examples here and in {3},

referee has suggested that it may be of some use elsewhere.

FiGURE 7

aphs with & (> 3 and fixed) vertices. See also Berman, Leighton, Shor,

Sayder [1].

PLE 2. Partitioning the edges of a graph into claws. An instance of
problem presents a graph G = (V, E), and asks: Does there exist a
ietition of E into E,, E,, ..., E; such that each E, induces a subgraph of
Ewhich is a claw (i.e., an isomorph of X, ;)?

far as we know, this result is new even for general graphs.

Proof of N P-completeness for planar graphs. Consider the bipartite graph E,_Eo 1
gociated with an instance of Planar 3DM. Then each Eﬁgmm\u\ ’
Emay also assume that each element has degree 2 or 3. We now modily

g graph by adding a single edge to each element of degree 3, and two
pes to each element of degree 2, as shown in Fig. 8. We now claim that
B graph has a partition into claws if and only if the 3DM instance has a
ching. Suppose there is a partition.

ce each element has at least one incident edge which is also incident to
priex of degree 1, each element must be the center of at least one claw if
g graph is partitionable. But each element now has degree 4, and hence
Bl be the center of exactly one claw. When these claws are removed from

3. EXAMPLES

We will present five, fairly simple, applications of Theorem 2.3. We
NP-completeness of some graph problems using reduction from 3D}
cach case the reduction preserves planarity and hence we can conclude
the problem remains NP-complete for planar graphs.

ExampLE 1. Partitioning the vertex set of a graph into triangles. Al
instance of this problem is a graph G = (V, £), and we ask the questiong
Does there exist a partition of V into V,, V;,...,V, such that G[V]] s

triangle for i = 1,2,..., p?

TR TR

triples triples

Proof of NP-completeness for planar graphs. Garey and Johnson [4,.
68-69] show that this problem is NP-complete using a reduction: fa
3DM. Starting with the bipartite graph associated with the instancek
defined in Sect. 2 above), they replace the three edges incident to each
with the configuration shown in Fig. 7. They then show that the
graph can be partitioned into triangles if and only if the 3DM ins
contains a matching. Since the transformation is clearly planar, Theorem
establishes the NP-completeness of this problem even when restricted |
planar graphs of degree at most 6.

In [3] similar proofs show that the following problems are hard for
graphs: partitioning the vertices into paths, stars, trees, or com

element of element of
degree 3 degree 2

new edge new
edges

FiGure 8
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shere is 2 matching for the 3DM instance. Suppose there is a dominating set
size at most K. For each of the added paths of length 2, one or the other
of the two added vertices must be in the dominating set. There is clearly no
Boss in assuming that the vertex of degree 2 is in the dominating set, and the

ertex of degree 1 is not. Thus all the triples are now covered and we have
Ewsed 1 vertices in the dominating sct. We now have 1o cover the clements.
We may assume that no element is in the dominating set, since all it could
mow cover would be itself, and this could equally well be done by choosing
any triple in which it was contained. Thus there is a dominating set of size K
tonly if we can choose exactly ¢ triples which cover all the clements. This
will induce a matching. (There is clearly no dominating set of size less than
K ) Again the argument can be reversed to construct a dominating set from
fa matching. Since the construction preserves both planarity and bipartite-
baess. Theorem 2.3 gives the conclusion.

the graph, the resulting graph G’ will be such that each element has deg
in G. It now follows that the only way G’ can be partitioned into clawg
for each triple to have degree 0 or 3 in G'. The triples having degreeg
induce a matching in the 3DM instance. Conversely if the 3DM ins!
has a matching, this argument can be reversed to exhibit a partition of
graph into claws. The obvious planarity of the reduction now gives
desired conclusion.

It may be noted that this reduction actually proves a stronger result, tha
the problem is NP-complete for planar bipartite graphs. By considering the 3
line graph of the bipartite graph constructed for Example 2, we obtain the
simple corollary that partitioning the vertices of a line graph of a p .
graph into triangles is NP-complete. In [3] similar proofs show that thel
following problems are hard for planar graphs: partitioning the edges ing]
paths, trees, or connected subgraphs with k& (= 3 and fixed) edges.

We are indebted to Pulleyblank for pointing out the following application

ExAMPLE 3. Dominating set. An instance of this problem comprises, :
“Theorem 2.3.

graph G = (V, E) and a positive integer K < [V} The question is: Do
there exist a dominating set of at most K vertices in G, i.e., is there a sub
V' c V with |V’| < K such that every vertex of G is either a member of
or adjacent to a member of V"?

& ExavpLE 4. Minimizing set-ups in precedence-constrained scheduling.
e are given a set of n tasks N = {1,2,...,n} of unit time length, which
Eare 10 be processed on a single machine. There is an associated precedence
digraph D = (N, A), where (i, j) € A implies task i must precede task j.
iThere is a fixed set-up charge if task i immediately precedes task j and
i, j) € A. The problem is to find a sequence iy, i, ..., i, which minimizes
Ml <r<n (i, i) €A}

Garey and Johnson [4] comment that they have shown this problem o b
NP-complete for planar graphs by reduction from VERTEX COVERS
However, since the VERTEX COVER problem is polynomially solvable .
bipartite graphs, it would not appear that their methods could give §

following result. . .
E This problem can be re-expressed in several ways:

Proof of NP-completeness for bipartite planar graphs. Again we con
the associated bipartite graph for a Planar 3DM instance. Now we attach
each triple an independent path of two edges, as shown in Fig. 9. If
3DM instance has 3¢ elements and ¢ triples, we set K =q + 1. Now {
constructed graph has a dominating set of size at most K if and only

(i) Finding the minimum number of arcs that must be added to an
ic digraph in order to produce a hamiltonian path.

A less obvious re-formulation, for a special case, ts given in Chaty and
2]

F' (i) If D is bipartite, with all arcs directed from one side of the vertex
ition to the other, then the problem is equivalent to determining the
paximum cardinality of an alternating-cycle free matching in the bipartite
aph D’ obtained by ignoring the orientation of the edges in D.

fFor the above formulation, Pulleyblank [6] has given the following
Muction. Given an instance R, B, Y, T of 3DM, one replaces a triple
(r, b. y) by the configuration shown in Fig. 10. This is clearly planar,
pd furthermore has sufficient freedom of embedding in the plane that the
penections can be made without violating planarity. (For example. the
dative positions of the b, y elements can be interchanged without destroy-
pg planarity.) Thus it follows easily from Theorem 2.3 that the problem
panains NP-Complete when D is restricted to be planar.

new path of
iength 2

o= (x,y,2) t

FIGURE 9

9
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FIGURE 10
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Depth-Size Trade-offs for Parallel Prefix
Computation

MARC SNIR*

Institute of Mathematics and Computer Science, Iebrew University of Jerusalem,
Jerusalem 91904

ExaMPLE 5. Elimination degree sequence. An instance presents a grags
G = (V, E) and a sequence (dy, dy,..-, dy)) of non-negative integers Bg
exceeding |V| — 1. The question is: Can we number the vertices of G

the integers 1,2,...,|V]| so that, for each i, the vertex numbered i K
exactly d, higher-numbered vertices adjacent to it?

Received September 1, 1983

A prefix circuit has inputs Xp.-.-s Xpe and computes the # outputs x, ¢ - - ° Xj»
i=1....,n, where ° is an associative operation. It is shown that the depth 7 and
the size s of parallel prefix circuits are related by the inequality ( + s = 2n — 2.
This is true even if arbitrary binary operations can be performed at each node. For
2ign—-2<t1<n-— 1 optimal circuits with 1 + s = 2n — 2 are built. .?n anm:—
and size of carry-lookahead circuits with # outputs are related by the inequality
:+5 > 4n. The depth of parallel prefix circuits of width w is shown to be

n/(w + 1) + O(1). #1986 Academic Press. Inc.

Proof of NP-completeness for planar bipartite graphs. The construction
exactly that used for Example 2, and shown in Fig. 8. The seques g
comprises 4¢q 3's, followed by 1lg — 2¢ 0’s. (Note that the constructa
graph has 15¢ — 2t vertices.) Assume that we can number the vertices
required. Now it is clear that all degree 1 vertices must have d, = 0, anf
hence all elements must have d,= 3. This leaves g vertices to recem

d, =3, and these must be ¢ triples which are numbered before all thes , 1. INTRODUCTION
elements. But each element is numbered before all but one of the iples’
iEn: contain it. mmnr.m:nr triple :mm. d;, = w., As there are oa.:v, q triphes ,>En:x circuit has # inputs X,.. -, X, and computes y; = X, 0 -er o X,
with d, = 3 these must induce a matching, .>mm_= the argument 1s reversibiy 1.....n, where o is an arbitrary associative operation. The circuit s
,_;_F...é_:c construction and E‘.m:_.:n:p gives the NP-completeness of 8 1 ﬂon nodes implementing unary and binary operations. Prefix computa-
following problem: Given an undirected graph G and a set S of nonnegat

i i . occur in the solution of lincar recurrences, polynomial interpolation,
integers, can we direct all the edges of G so that each vertex has an indegyes

. . 2 : W in carry-lookahead adders. Parallel prefix computations with un-
in S7 It remains NP-complete if we have to direct the edges to form 2 Rounded parallelism have been considered by several authors (see [2] and
acyclic graph by the same construction, and this version is obviously ver§ i

RS eeferences therein). In a recent paper Fich [2] obtains upper and lower
close to the climination degree sequence problem. :

i i : : ands on the number of nodes for a restricted Tamily of prefix circuits with
We believe that our main result can be used to give easy NP-completene y

animum, Or near minimum depth.
proofs for planar cases of many other problems. B In this paper we consider the general problem of trade-offs between depth

day) and size (number of nodes) for prefix circuits. The size s and the
REFERENCES Bepth 1 of optimal prefix circuits with n inputs are shown to be related by
i & rlation s + £ = 2n — 2 over the range 2lgn—-2<t<n-1 2.08

Bat the circuit corresponding to a sequential computation of the prefixes
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