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ON THE COMPLEXITY OF COMPUTING MIXED VOLUMES*
MARTIN DYER'!, PETER GRITZMANN!, AND ALEXANDER HUFNAGELS}

Abstract. This paper gives various (positive and negative) results on the complexity of the
problem of computing and approximating mixed volumes of polytopes and more general convex
bodies in arbitrary dimension.

On the negative side, we present several #P-hardness results that focus on the difference of
computing mixed volumes versus computing the volume of polytopes. We show that computing the
volume of zonotopes is #P-hard (while each corresponding mixed volume can be computed easily)
but also give examples showing that computing mixed volumes is hard even when computing the
volume is easy. .

On the positive side, we derive a randomized algorithm for computing the mixed volumes

my mg ms
e e, it N, r—t—
V(Ky,....K1,K2,...,K2,...,Ks,...,Ks)
of well-presented convex bodies K1i,...,Ks, where mi,...,ms € Ng and m; > n — 1/)(n) with
P(n) = of F{:‘lgzg_n)‘ The algorithm is an interpolation method based on polynomial-time randomized

algarithms for computing the volume of convex bodies.
This paper concludes with applications of our results to various problems in discrete mathematics,

combinatorics, computational convexity, algebraic geometry, geometry of numbers, and operations
research.
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Introduction. The present paper deals with algorithmic questions related to the
problem of computing or approximating volumes and mixed volumes of convex bodies
by means of deterministic or randomized algorithms. The emphasis will be on the
case of varying dimension (but we will also mention some results for fixed dimension).

As the terms are used here, a convez body in R is a nonempty compact convex set
and a polytope is a convex body that has only finitely many extreme points. A convex "
body or a polytope in R™ is called proper if it is n-dimensional and hence has nonempty
interior. A convenient way to deal algorithmically with general convex bodies is to
assume that the convex body in question is “well presented” by an algorithm (called
an oracle) that answers certain sorts of questions about the body and also gives some
a priori information; see subsection 1.2 for precise definitions.

The problem of computing the volume vol,(K) of an appropriately presented
convex body K of R"™ is of fundamental importance from both a theoretical and
computational point of view. If K is of the form K = Ele MK, where Ky, ..., K,
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are convex bodies and A1, ..., A; are positive reals, then vol,(K) can be expressed in
terms of the mired volumes V(K;,,K,,,...,K;,) of K1,..., Kj; in fact,

8 8 ] S
V(ZAJQ) =353 > A ALV (E Ky K
i=1

i1=14=1 tn=1

is a multivariate homogeneous polynomial of degree n in the variables A1, ..., As; see
subsection 1.1.

The corresponding Brunn-Minkowski theory is the backbone of convexity the-
ory (see [Sc93]), but it is also relevant for numerous applications in combinatorics,
algebraic geometry and a number of other areas; see section 4 and [GK94].

As it is well known, V(K, ..., K) = vol,(K), and hence, mixed volumes gener-
alize the ordinary volume. From this observation it is already clear that, in general,
any hardness result for volume computation carries over to mixed volumes. Specif-
ically, the problem of computing the volume of polytopes (given in terms of their
vertices— “V-polytopes”—or in terms of their facet hyperplanes—“H-polytopes”; see
subsection 1.2) is known to be #P-hard (see [DF88]), whence computing mixed vol-
umes of polytopes is also (at least) #P-hard.

The hardness issue of volume versus mixed volume computation is, however, more
complicated than that. In the case where the number of bodies is not bounded
beforehand but part of the input, the above multivariate polynomial typically has
exponentially many coefficients and this implies that the task of computing all mixed
volumes of a given set of bodies does require exponential time. But this fact also
allows for the possibility that the volume of the Minkowski sum of convex bodies may
be hard to compute even if each mixed volume can be computed easily. Indeed, when
the bodies K1, ..., K, are all line segments, each mixed volume computation is just
the evaluation of a corresponding determinant; computing the volume of the zonotope
K = K; +---+ K is, in general however, hard.

THEOREM 1. The following task is #P-hard: given n,s € N and rational vectors
z1,...,2s of R™, compute the volume of the zonotope ¥ ;_,[0,1]z;.

A slight strengthening of this result is contained in Theorem 5. As a corollary to
Theorem 1 we show in Theorem 2 that (approximately) computing the volume of the
Minkowski sum of ellipsoids is also #P-hard, a result needed in subsection 2.4.

Conversely to Theorem 1, computing a single mixed volume may be hard even if
the volume of the corresponding Minkowski sum is easy to compute.

THEOREM 3. The following problem MIXED-VOLUME-OF-BOXES is #P-hard:

given a positive integer n and, fori,j =1,2,...,n, positive rationals oy ;, determine
the mized volume V(Z1, . .., Zn) of the azes-parallel parallelotopes Z; = 3_7_, [0, & 5]e;,
(i=1,2,,...,n), where e; denotes the jth unit vector.

The #P-hardness persists even when the boxes: are restricted to havmg just two
different (and previously prescribed) edge lengths.

Proofs of these theorems (and related results) are given in section 2. We further
show that Theorem 3 can be strengthened to just two parallelotopes if one of them is
permitted to deviate from being axes-parallel (Theorem 4). In view of these results
it may be surprising that even though the computation of certain mixed volumes
appears to be harder than volume computation, from the point of view of complexity
theory it is not. Theorems 6 and 7 show that the problem of computing any specific
mixed volume of polytopes (or zonotopes) is #P-easy.

Section 2 will also discuss the problem of how efficiently mixed volumes can be
approximated by means of deterministic algorithms. [GLS88], [AK90], and [BH93|
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give exponential upper bounds for the error of deterministic polynomial approxima-
tions of the volume, and [BF86] gives an almost matching lower bound in the oracular
model. We discuss possible extensions to mixed volumes and derive a polynomial-time
algorithm for estimating any mixed volume of two convex bodies to a relative error
that depends only on the dimension but is independent of the “well-boundedness”
parameters of the bodies (Theorem 9). As a necessary “by-product” we further show
that it can be decided in polynomial time whether the mixed volume of convex bodies
vanishes (Theorem 8). This is a nontrivial result since a mixed volume may be greater
than zero even if each set is contained in a lower-dimensional affine subspace.

A natural approach to mixed volumes is to try to use values (or estimates thereof)
of the polynomial vol,(}"7_; \;K;) for computing (or estimating) (some of) its co-
efficients, the mixed volumes of the convex bodies K;. This approach works under
reasonable assumptions provided the above polynomial can be evaluated (approxi-
mately) in polynomial time; see [GK94]. This is particularly true for polytopes in
fized dimension; see [AS86], [CH79]. For variable dimension there is not much hope
in ever obtaining a polynomial-time deterministic algorithm for this task, but we may
utilize the polynomial-time randomized volume algorithm of [DFK91].

PROPOSITION 1. There is a polynomial-time randomized algorithm which solves
the following problem:

Instance: A well-presented conver body K in R™, positive rational numbers 7 and
8.

Output: A random variable © € Q such that

|0 — vol, (K)|
pTOb{T(K,) 2 T} S ,6

Let us point out that after a preprocessing “rounding” step whose running time
depends on the “a priori parameters” of the body, the running time of the main
algorithm is bounded above by a polynomial in n, %, and log(%).

[DFK91)’s algorithm was improved by [LS90], [AK90], [DF91], [LS93], [KLS97];
see [Kh93], [GK94], and [Lo95] for surveys. Let us point out that, when dealing with
randomized algorithms of the above kind, it suffices to give the desired approximation
to error probability, say . Then after O(log(1/8)) independent trials of the algorithm,
the median of the results achieves the required probability 3; see [JVV86], [SJ89],
[KKLLL93], or [LS93]. ‘

Even for just two bodies there are two major difficulties in extending Proposition
1 to mixed volumes. First, in general there is no way of obtaining relative estimates
of the coefficients from relative estimates of the values of a polynomial p. (This
is easily seen by considering the one-parameter sequence of univariate polynomials
gg(x) = 1 + Bz + z2, where 3 may be any arbitrary small positive rational number;
of. [GK94, section 6.2]). The special structure of the “mixed volume polynomial”
p(x) = vol, (K1 + zK2) will, however, allow us to handle this problem. Second,
the absolute values of the entries of the “inversion” which is used for expressing the
coeflicients of the polynomial in terms of its approximated values are not bounded by
a polynomial, while the randomized volume approximation algorithm is polynomial
only in % but not in size(7). This difficulty is mirrored in the restrictions on 1 in the
following theorem.

THEOREM 10. Suppose that v : N — N is nondecreasing with

wn)sn  and  P(n)logy(n) = oflogn).

Then there is a polynomial-time algorithm for the following problem:
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Instance: Well-presented convex bodies K1, Ko of R™, positive rational numbers
€ and 3, an integer m with 0 < m < ¢(n).
Output: The information that the mized volume

n-—m m

am =V(K1,...,K1,Ks,...,K3)

of K1 and Ky vanishes, iff a,, = 0, or, otherwise, a random variable é.,, € Q,
satisfying

prob{w Z 6} S B
am

The complexity of the above algorithm is only marginally worse than the com-
plexity of the volume oracle; see section 3 for a detailed analysis. Note that the

function
logn
vn) = lrlog2 log n-l

satisfies the above condition (on N\ {1,2,3}).
Theorem 10 can be extended to more than two bodies.
THEOREM 11. Suppose that v : N — N is nondecreasing with

Y(n) <n and Y(n)logy¥(n) = o(logn).

Then there is a polynomial-time algorithm for the following problem:

Instance: n,s € N, my,...,m; € Ny with m; + my+---+ms = n and m; >
n — Y(n), well-presented convex bodies Ky,..., K, of R™, positive rational numbers €
and 3.

Output: The information that the mized volume

mi ms
-

Vg, =V(Ky, .. Ky,... K, ..., Ks)

vanishes, iff Vi, . .m, =0, or, otherwise, a random variable V,,, _m, € Q such that

prob{|vmlv~~’ms - Vm17»~-7ms| 2 E} S /8

lea“-wms

Theorems 10 and 11 will be proved in section 3. But let us take a few words
here to place their results into perspective. Both theorems are proved by using an
interpolation (or numerical differentiation) method, which is based on Proposition 1.
A special feature of such a method is that in order to compute a specific coefficient
of the polynomial under consideration it computes essentially all (or at least “all
previous”) coeflicients. Now, suppose that 1 : N — N is a functional with ¥(n) < n
for all n € N; let ‘

Iw(n) = {(ml,. .. ,mw(n)) MY, - My(n) € Ng, my+--- +m,¢,(n) =n
and n —my < ¥(n)},
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and let K1,. .., Ky, be convex bodies of R". Then
2¢(n) — 1)
Zyp(n)| = ,
ol = (0
whence the number of different mixed volumes

mi mo Map(n)
A A N

V(Ky,... K, Ka,..., Koy Koyiny, - -y Kopin)

is in general only bounded by a polynomial in n if ¥/(n) < xlogn for some constant
. This means that there can possibly be a polynomial-time algorithm for computing
all such mixed volumes only if

P(n) < klogn.

As we will see in section 3, the statements of Theorems 10 and 11 are much easier to
prove for 1 being constant. As the previous discussion shows, when the number of
bodies is part of the input, no polynomial-time algorithm is capable of computing more
than “very few” mixed volumes. This fact places severe limitations on interpolation
methods that indicate that the restriction on 1 in Theorem 11 is “essentially best-
possible” for any such method.

Let us remark that, for general convex bodies, it is an open problem whether there
exists any method that avoids these limitations and allows one to access single specific
mixed volumes. Hence it is open, whether the above restrictions on 1 can be lifted
and whether there are polynomial-time randomized algorithms which, on arbitrarily

gwenn,s € N, my,...,ms € Ny with m; + mo + --- + my = n, well-presented convex
bodies K1,...,Ks of R™ and positive rational numbers € and 8, compute a random
variable Vi, . m, € Q such that prob{|Vi, . m. = Vini,..mu|/Viny,...ms = €} < B.

Note specifically that even the case s =n, m; =--- = m; =1 is open.

Section 4 contains some problems related to mixed volumes and some applications
of our results. In particular, we deal with the problem of counting the number of
integer points in lattice polytopes and with some determinant problems involving
minors of given matrices. Furthermore, we discuss possible applications of our results
to problems in mixture management, combinatorics, and algebraic geometry.

1. Basic geometric and computational aspects. The following three sub-
sections provide definitions, notation, background information, and some first results
that are needed later in sections 2 and 3.

1.1. Mixed volumes. Let K™ denote the family of all convex bodies of R”.
A theorem of Minkowski {Mill] (see also [BF34], [Sc93, section 5]) shows that for
Ki,Ks,...,K; € K™ and nonnegative reals Ay, Aa, ..., Ay,

VOln (i )\le>
i=1

is a homogeneous polynomial of degree n in Ay, ..., Ay, and can be written in the form

(1.1) voln(zs:,\,-m> ZZ Z,\,l,\u.- V(K Ky, K),
1=1

t1=1145=1 in=1
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where the coefficients V(K;,, Ki,, ..., K;,) are order-independent, i.e., invariant un-
der permutations of their arguments. The coefficient V(K;,, Ki,, ... ,K;,) is called
the mized volume of K;,,K;,,...,K;,. We will also use the term mized volume for
the functional

n

e N
V:K'"x ... x K" = R, (Ky,...,Kp) — V(Ki,...,Kp),

as well as for restrictions of this functional to certain subsets of K™ x --- x K™

Mixed volumes are nonnegative, monotone, multilinear, and continuous valuations;

see [BZ88, Chapter 4], [Sa93], and [GK94] for the basic properties of mixed volumes,

and see [Sc93] for an excellent detailed treatment of the Brunn-Minkowski theory.
The order-independence gives rise to the notation

my ma ms
N

-

v(K,...,K,Ks,...,Ka2,...,Ks, ..., Ky)

for the mixed volume V(Kj,...,K,), where each K; occurs exactly m; times and
S _,m; = n. The following Aleksandrov-Fenchel inequality, [Al37], [AI38], [Fe36],
plays a fundamental role in the Brunn-Minkowski theory and will be needed in the
approximation algorithm of section 3.

(1.2) V(K1,K2,Ks,...,Kn)" > V(Ki,K1,Ks,,...,K,) V(K2, K2, Ks, ..., Kp),

whenever K, Ks,...,K, € K™; see [Sc93 | for a proof and a discussion of this in-
equality.

The following “decomposition lemma” (see, e.g., [BZ88, section 19.4]) will also
turn out to be useful in our analysis.

PROPOSITION 2. Let Ky,...,K, € K" and suppose that Kpn_my1,..., Ky, are
contained in some m-dimensional affine subspace U of R™. Let Vi denote the mired
volume with respect to the m-dimensional volume measure on U, and let Vi1 be
defined similarly with respect to the orthogonal complement UL of U. Then

< 7:; > V(Kh s aKn-—m7Kn—m+17 . 'aK'n) =
Vo Ky, K )Vu (K nema 1y - K,

where K{,...,K! _,. denote the orthogonal projections of Ki,...,Kn_m onto Ui,
respectively. '
As a particular consequence, it follows that

V(Kh - -7Kn—maKn—m+17 e 7Kn) =0

if there is a proper subspace of U that contains Kp_m+1,...,K,. (Note, however, -
that in general the mixed volume may be greater than zero even if each set lies in
some lower-dimensional subspace of R™.) In the special case m = 1, K,, = [0, 1]v, and
U = lin{v}, where v € R" \ {0}, Proposition 2 reads

n-V(Ky,...,Kn_1,[0,1v) = |lv|| - Vyro (K7, . .. JKL_ ).
If all bodies Ki,..., K, are line segments, say

Ki=8,=p;+[0,1]z; (1=1,...,s),
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with p;, z; € R™, then Z = Zle S, is a zonotope. It follows that for any sequence
1 <141,42,...,in < s of mutually distinct indices,

1
V(Sil,Siz,...,Sin) = m}det(zil,ziz,...,zinﬂ,

where (2;,, 2i,, - . ., 2;, ) denotes the n x n-matrix with columns z;,, ..., z;,. With the
aid of (1.1) this implies the well-known volume formula for zonotopes,

(1.3) vol,, (Z S’i> = Z |det(zi1,zi2, ceenZiy)
i=1

lsil <ig<--<in <8

)

see [Sh74], [Mo89], or [St91].

The polynomial expression in (1.1) involves all s variables Aq,...,A; but, of
course, one of the variables, say A;, may be set to 1, whence the problem of com-
puting all mixed volumes of s sets in R” can be reduced to the task of computing
the coeflicients of a (generally now inhomogenous) polynomial of degree n in s — 1
indeterminates. For s = 2 we obtain the univariate polynomial

n
p(x) = vol, (K1 + zK3) = Z ( 7: ) a;zt,
i=0
where
n—i i

P

a; = V(’I{h . .,Kl‘,rffz, .. ,K;)

The Aleksandrov-Fenchel inequality implies that the sequence

Am—1

qm = o (m =1, 7”)
is increasing, whence the sequence aq, ..., a, is unimodal.
Finally, note that when s > 2, mj,ma,...,m; € Ng with 3°7_; m; = n, and
L, = Ky + K, for nonnegative z € R,
my mz ms

>N N

—N— ~ ’ ~
q(x) =V (Lg,..., Ly, Ka,...,Ko,...,Kq,..., K,)

is a polynomial in z of degree m;, and we have

(1.4)

mi—k k me ms

mi A A A A
q(f) :Z( 77]1;:1 )V(K(),...,Ko,Kl,...,KI,K2,...,Kz,...,Ks,...,Ks).’L'k.
k=0

This fact will, in particular, be used in subsection 3.3.

1.2. Algorithmic preliminaries. The present subsection begins with some re-
marks on how to deal algorithmically with polytopes and more general convex bodies,
and then collects a few results that are needed later.

The underlying model of computation is the binary Turing machine model, which—
in case of convex bodies—will be augmented by certain oracles; see [GJ79], [GLS88].
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From an algorithmic point of view, polytopes are dealt with much more easily than
general convex bodies because polytopes can be presented in a finite manner, namely,
in terms of their vertices or in terms of their facet halfspaces. Clearly, from an algo-
rithmic point of view it is not the geometric object that is relevant but its presentation.
Hence we use the following notation; see e.g., [GK94].

A string (n,m;vy,...,Vy) with n,m € N, and vq,...,v,, € Q" is called a V-
polytope in R™; it represents the geometric object P = conv{vy,...,v,}; hence we
will sometimes write P = (n,m;v1,...,Vn). A string (n,m; A,b), where n,m € N, A

is a rational m x n matrix and b € Q™ such that P = {x € R™ : Az < b} is a polytope
is called an H-polytope in R™, and is again identified with the geometric object P.
If we want to focus more on the geometric object P we will call each corresponding
V- or H-polytope a V- or H-presentation of P. The binary size (or short size) of a
V- or H-polytope P is the number of binary digits needed to encode the data of the
presentation.

Let us point out that each rational polytope admits a presentation as a V- or H-
polytope, and in fixed dimension one can be computed from the other in polynomial
time. This is no longer true in general when the dimension is part of the input, since
the number of vertices of a polytope may be exponential in its number of facets and
vice versa; see [Mc70].

Zonotopes admit specifically “compact” presentations. A string (n, s;¢;21,...,2s)
with n,s € N and ¢, z1,...,2; € Q" is called an S-zonotope in R™; it represents the
geometric object Z = ¢+ Y ;_,[0,1]z;- Sometimes we will also work with zonotopes
whose relationship to the origin (and whose scaling) is different. Specifically, zontopes
of the form 77 _,[—1,1]z; will be used. To keep the notation simple, we refrain,
however, from introducing an additional name for such a presentation. Note that,
in general, neither the vertices nor the facets of a zonotope are readily accessible
from an S-presentation. In fact, for zonotopes generated by s segments in general
position, both the number of facets and the number of vertices grow exponentially as
m increases.

A zonotope Z is called a parallelotope if the “generators” zp,...,zs are linearly
independent; it is rectangular if they are pairwise othogonal, and azes-parallel if all
generators are standard unit vectors.

A convenient way to deal algorithmically with general convex bodies K is to
assume that K is given by an algorithm (called an oracle) that answers certain sorts of
questions about the body. These oracles are designed in such a way that the standard
polytope case is included, i.e., it is easy to construct the corresponding oracles for
V- or H-polytopes. This oracular approach has been introduced and extensively
studied for proper convex bodies in [GLS88]. In particular, [GLS88] shows that under
suitable additional assumptions, “membership,” “separation,” and “optimization” are
equivalent. Here we need a slight variant since we want to deal with mixed volumes of
possibly improper convex bodies. Let K € K", and define for € > 0 the outer parallel
body and the inner parallel body of K, respectively, by

K(e) = (K+eB™")Nnaff(K) and K(—¢) = K\ ((eff(K) \ K) + eB"),

where B™ denotes the Euclidean unit ball in R™. The most natural algorlthmlc prob-
lem for convex bodies K is the following.

WEAK MEMBERSHIP PROBLEM FOR K € K". Given y € Q", and a rational
number € > 0, assert that y € K(e) or that y ¢ K(—e¢).

If a convex body K is given by an algorithm that solves the weak membership
problem, we say that K is described by a weak membership oracle. It is quite evi-



364 MARTIN DYER, PETER GRITZMANN, AND ALEXANDER HUFNAGEL

dent that the information given by a weak membership oracle is insufficient for most
algorithmic purposes. Hence we need some additional a priori information about
the body in question; see [GLS88] for a discussion of these assumptions in case of
a proper convex body. A convex body K of R™ will be called well presented if
it is given by a weak membership oracle and if the following additional informa-
tion is provided: a nonnegative integer d and vectors ag,...,ag € Q" such that
aff(K') = aff{ao,...,aq}; a vector b € KnQ", and positive rational numbers pand R
such that (b + pB™) Naff(K) C K C RB™.

Note that d is the dimension of K and that aff(K) is presented in terms of an
affine basis. It is, however, easy to compute from ay, ..., aq a presentation of aff(K)
as the solution space of a system of (rational) linear equations and vice versa. The
size of a well-presented convex body K € K™ is then defined as n plus the sum of the
binary sizes of the parameters ao, ..., aq, b, p, and R, and the input size of the weak
membership oracle for K is the sum of size(K) and size(e).

It is not hard to see that well presentation carries over to Minkowski sums. In
fact, let K1,...,K; € K™ be well presented with parameters n, d;, ai0,---,0d, b,
pi, and R; for ¢ = 1,...,s, and let Ay,..., A, be positive rationals whose sizes are
bounded above by the sizes of Kj,..., K. Then it is easy to find an affine basis of
the affine hull of K = MKy +--- + A, K;, and

d:dim(lin{aiyj—aiyo:i:l,...,s;j: 1,...,d,‘}),
b= A1+ -+ Agbs,
R:)\1R1+"'+)\3R3

are valid parameters for K. Further, one can compute in polynomial time a nontrivial
lower bound p such that (b+ pB™)Naff(K) C K. It is also true that a membership or-
acle for K can be derived in polynomial time from membership oracles for K3, ..., K,
but this result makes use of the nontrivial relation of the oracles studied in [GLS88].

PROPOSITION 3. Let Ky,...,K; € K™ be well presented, and let Ay,..., )\ be
positive rationals whose sizes are bounded above by the sizes of Ky,...,K;. Then, a
well presentation for K = A\ Ky + -+ A;K, can be computed in polynomial time.

The following Léwner—John-type “rounding lemmas” in terms of B® and C,, =
[~1,1]™ are due to [GLS88] and [AK90], respectively; see the survey [GK94, section
6.2] for some additional results in this context.

PROPOSITION 4. There are oracle polynomial-time algorithms which accept as
input a well-presented convex body K and construct affine transformations ¢1 and ¢
such that 0 € aff(¢1(K)), 0 € aff(¢2(K)) and

aff($1(K)) NB" C ¢1(K) C nv/n + 1B,  aff($2(K))NCy C ¢2(K) C 2(n+1)Ch.

1.3. Some estimates for numerical differentiation. As already mentioned
above, computing (some/all) mixed volumes from the ordinary volume can be re-
garded as computing (some/all) of the coefficients of a polynomial from its values.
This can in principle be done by numerical differentiation, and we will derive a few
estimates now that will be used in section 3.

Let

g(x) = Zc,mi
i=0

be a univariate polynomial of degree n, and let &, ..., &, be pairwise different inter-
polation points. The Lagrange-interpolation polynomials lx(z) = Y ;. briz* on the
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node set X = {&,...,&,} satisfy
W(&) =Y bri€l = b,
=0

where 4y, is the usual Kronecker symbol. Then

n

a(@) = > al&)hu(z) = 3

n
k=0 i=0

>

k=0

q(ik)bki) "
hence
e =3 buig(g) fori=0,...,n.
k=0

In general, only estimates G(¢;) of the function values g(&;) are available. In fact,
for the purpose of section 3 we can only use estimates with bounded relative error.
Here we suppose first that the absolute error is bounded beforehand, i.e., there is a
positive é§ such that

1G(&;) —a(§;)| <6 forj=0,...,n.

Now, let m € {0,...,n}, and let us take

Em = brmd(Ek)

k=0

as an estimate for c¢,,. Then we obtain

(1.5) lem — ém| = Z bim (q(€x) — G(&))| < 52 |bkm | -
k=0

k=0

Efficient methods for performing the computations in a systematical way (e.g., by
using divided differences) can be found in any textbook on numerical analysis; see for
example [BZ65]. The problem of how to choose the interpolation points to minimize
the error terms 37, |bgm| is discussed in (among others) [Ri75]; see also [MMS85],
[Sa74], [Ri90]; equidistant nodes are in general not optimal. We will use equidistant
interpolation points anyway since, on the one hand, the subsequent analysis becomes
more tractable and, on the other hand, the additional error introduced that way is
dominated by other occurring error terms and hence is essentially irrelevant.

For the estimates in this subsection, we will normalize the nodes to the set X =
{0,1,...,n}; in section 3 we will use the node set hX for some suitable positive
rational h.

Let M denote the (infinite) Vandermonde matrix M = (5%); jen,, (with the setting
00 =1); forr € Nlet M) = (3%)i,5=0,...—1 be the restriction of M to its first r rows

and columns, and let B = (bg))i,j:o,,,,7,~_1 be the inverse of M(. We will now
derive an upper estimate for 37"/ |b£;2[

For i,j € N with ¢ > 7, let 0;; denote the Stirling numbers of the second kind,
Le., the number of partitions of the set {1,...,4} into j pairwise disjoint nonempty

subsets (see, e.g., [St86]). In addition, let oop = 1, gip = O for all ¢ > 0 and 0 =0
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whenever ¢ < j. Note that jlo;; is the number of surjective mappings of {1,...,i}
into {1,...,7}; hence, it follows that

(1.6) =Zazkk( ) Zazkm—l G-k + 1),
k=0 .

and, in particular,

L%,
—] e

Thus, with the notation (z)x = z(z ~ 1)(x — 2) - ... - (z — k + 1), the identity
Z k(Z)k
k=0

holds for all integers = 0, ...,1 and hence holds for all z € R. Let

L= (0i)ijene, U= < J ) , and D = diag(0!,11,2!,...).
v i,jE€No

Then L and U are an (infinite) lower and upper triangular matrix, respectively, and
(1.6) can be written as

M = LDU.

Left multiplication by L™! = (s;;); jen, yields
2(z—1)-...-(z—-i+1) = Zszkﬂ:

Hence, s;; has sign (—1)*7 (for j < i) and, evaluating the above identity for z = —1
yields

%
Z Isij| =gl
=0

The numbers s;; are called the Stirling numbers of the first kind. From

mj:i<g)(x——1)i and (x—1)f=i<f)( 1),

1=0 1=0

we conclude for the inverse U~! = = (wsj)i,jen, of U that
Wi; = (—1)j_.i (j) .
1
Now, note that

(L(r))—1 _ (L‘l)(r), (D(r))_l _ (D—l)(T)’ (U('r‘))_l _ (U—l)(r)
and M = O i)
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Hence,

B — (U(T))’I(D(r))‘l(L(r))'l _ (U-l)(r)(D—1)(r) (L—l)(r)’,

and this reads explicitly as

(1.7)
r—1 ’ r—1 ’
- _ifk\ 1 i K\ 1 .
o = 0 () oo = o () gt iz,
k=0 ’ k=0 )
This implies that for any m € {0,...,7r — 1},
r—1r-1 |3 [ lS |
i=0 k=0

We conclude the univariate case with an additional technical estimate that is
needed in section 3. It gives an upper bound on the error induced by using only
B (for some r < n) rather than the full matrix B+ in the computation of the
coefficients of a polynomial of degree n.

Let, for ¢,5 € No with 7 <r,

dij = Z bk

Clearly d;j = 6;; for i < r. For i > r, combining (1.6) and (1.7) yields

i )

> S e (Sev=() ()

p—O q=0 k=0
r—1
% i
< E |spiloip < p* <t
p=0 p=0

Let us close this section with a few brief remarks about the general multivariate
case. Let, for n,s € N,

Yn,s = {y = (mlv---ams) € (NO)S : Zmi = ’I’L}

n+s—1
¥t = (727

Suppose that the elements of Y;, ; are ordered (for instance lexicographically) so that
Yos = {y1,--.,yn}, where y; = (m;1,...,m;;s). Now we want to determine the
coefficients of a homogeneous multivariate polynomial

Clearly,

(xl,...,xs)—ZCJxljl'... ;n]s
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from its function values. So, we have to choose N interpolation points in such a way
that the N x N matrix
N (30 m]-,s)
(&) 4j=1,.,N '

(GRIRGR

a higher-dimensional analogue of the classical Vandermonde matrix, is nonsingular.
(Note that, as opposed to the univariate case, it does not suffice to choose the N
points mutually different.) Sufficient conditions for nonsingularity can be found in
[CYT77]; see also [O186]. In particular, one may take an (s — 1)-dimensional simplex
S = conv{zy,...,2,} in R® and choose £k1s-+ks) = %Z;zl k;z;, where (ki,...,ks) €
Yo s

This implies, in particular, that when the dimension n is fired, there is a polyno-
mial-time algorithm which, given s € N and (V- or H-) polytopes P4, ..., Ps, computes
all mixed volumes V(P;,,..., P; ).

mja mj.2

2. Deterministic algorithms. The present section discusses the problem of
computing or approximating (mixed) volumes by means of deterministic algorithms.
In particular we give results that focus on the difference of volume versus mixed
volume computation.

2.1. Computing the volume of zonotopes. In this subsection we deal with
the following problem.

VOLUME-OF-ZONOTOPES.

Given an S-zonotope Z = (n, s;¢; 21, . . ., 2s), compute its volume.
Note that the problem asks for vol,,(Z), where Z = c+3_;_,[0, 1]z Since the volume
is translation invariant, we can always assume that ¢ = 0. Now, let A denote the nx s
matrix with columns z1, . . ., 25 and let J denote the family of all subsets I of {1,..., s}
of cardinality n. Then (1.3) can be written in the form

vol,(Z) = ) _ | det By,
Ieg

where By is the n x n-minor of A whose columns correspond to I. It is clear that for
constant n or constant s —n, the number (fl) of n x n subdeterminants is polynomially
bounded, whence the volume of zonotopes can be computed in polynomial time. The
general case is, however, #P-hard. '

THEOREM 1. VOLUME-OF-ZONOTOPES is #P-hard.

Proof. The proof will use a reduction of the following #P-complete problem.

#SUBSET-SUM (see [GJ79], [Jo90]). Given positive integers m, «y,..., 0y, and
o, determine the number of different subsets J of {1,...,m} such that ZjeJ o = .
So, suppose (m; ay, . .., 0m, @) is an instance of #SUBSET-SUM, and let n = m+2
and s = 2m + 3. Further, define '
29k—1 = €k + Qpemy2, k=1,...,m;
2ok = €k, k=1,...,m+1;

22m+1 = €m+41 — A€mp42;
m+1

B4z = — Z e; +6emy2,  6€{-1,0,1},
i=1

where €1, ..., e, denote again the standard basis vectors of R™, and set

s—1 .
Zs = _[0,1]z; + [0, 1]25.
i=1
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Suppose now that there is a polynomial-time algorithm A for solving the problem
VOLUME-OF-ZONOTOPES, and apply A to compute vol,(Z_;) - 2voly (Zo) +vol, (Z1).
In terms of the determinant formula, this means that we are only interested in those
n X n submatrices By of the n x s matrix

1 1.0 0 0 0 0 0 0 0 -1
0 01 1 0 O-... 0 0 0 0 -1
6 0.0 0 1 1 ... 0 0 0 0 -1
As = Do R
Q 6 0 0 0 o ... 1 1 0 0 -1
0 0 0 0 0 0 ... 0 0 1 1 -1
o1 0 a2 0 a3 0 ... am 0 —a 0O &

which depend on é. Then, clearly, B; has to contain the last column z‘zsm 4+3 of As,
and in choosing the remaining m + 1 columns, we have to select exactly one vector

from each pair zp;_1, 225 (k = 1,...,n — 1). Therefore, the summands | det By| of
the determinantal expansion of vol,,(Z5) which are depending on § are in one-to-one
correspondence with the subsets J of {1,...,m + 1} via

jeJ«<2j-1€l.

From this it follows easily that there is an integer & that depends only on oy, ...,q
and « but not on § such that

vol,(Zs) = k + Z !5+Zajl,

Jc{1,...,m+1} ieJ

m

where, for notational consistency, a1 = —c. Then,

vol, (Z_1) — 2vol,(Zp) + vol,(Zy)

= Z ,“14‘201!—2‘2&]’4—’14‘2&1
jed jeJ jeJ

Jc{1,...,m+1}

Since for any nonzero integer v,
| =1+ =2+ 1+ =0,

it follows that

%(voln(Z_l) — 2vol,(Zy) +voln(Z1)) = ’{J c{l,...,m+1}: Zai = 0}’

jedJ
But
Zai:O ifandonly if m+41¢€J and Z a; = q,
Jjed jeJn{l,...m}
whence A gives rise to a polynomial-time algorithm for #SUBSET-SUM. 0

Theorem 1 proves the #P-hardness of evaluating > 1c7 | det By|. This result is
in striking contrast to the fact that by the Binet-Cauchy formula (see, e.g., [BS83))

2

(2.1) D " (det By)? = det(AAT),
Ieg
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whence the sum of the squares of all n x n subdeterminants can be evaluated in
polynomial time. i

Note, further, that Proposition 1 can be applied to S-zonotopes since it is standard
fare to derive a well presentation for an S-zonotope. So there is a polynomial-time
randomized algorithm for VOLUME-OF-ZONOTOPES. Zonotopes come, however, with
an additional structure (and in particular, with a natural dissection into parallelo-
topes) so it is conceivable that there are faster randomized algorithms for zonotopes
than there are for general well-presented convex bodies. This question is, however,
open. ‘

For an easiness result complementing Theorem 1 see Theorem 6, and for an ap-
plication of VOLUME-OF-ZONOTOPES to a problem in the oil industry see subsection
4.3.

We will now draw the first of a few consequences of Theorem 1 and prove a result
that is relevant in subsection 2.4. _

THEOREM 2. The following problem VOLUME-OF-SUM-OF-ELLIPSOIDS is #P-
hard: given s,n € N, nonsingular rational (n X n)-matrices A;,...,As, an error
bound € € Q, € > 0, compute a rational number V which satisfies

V —vol, (B, + Ey + - + B,)| < ¢,

where E; is the ellipsoid E; = {zx € R" : 2T AT A;z < 1}.
Proof. Let (n,s;c; 21,...,2s) be an instance of VOLUME-OF-ZONOTOPES and set
Z =3%7_,1-1,1]z;. Note that

vol,,(Z) = 2"vol, <c + Z[O, 1]zz> ,
i=1

whence it suffices to show how the computation of vol,(Z) can be reduced to a suitable
instances of VOLUME-OF-SUM-OF-ELLIPSOIDS.

For each i = 1,...,s we compute first an orthogonal basis {v;1,...,v;n} of R®
such that v;1 = 2;. Let B; be the n x n-matrix with rows v]y,...,v],, set for u € N,

. 1 Iz ©
D“zdl&( , s ),
¢ & <Zi, Zi> (Uz‘,2y Ui,2> (Ui,m Ui,n)

and define the ellipsoid
E!' = {z e R™ : 27(D!B;)T (D¥By)z < 1}

Then we have

. Lo
(1,12 C BY C [-1,1]z + = ) _[-1,1]vs ;.
w=
J_
Now, let Z' = 327, >_7_5[~1,1]vs 5, and let R € N such that Z U Z’ C RC,, where
C,, denotes again the standard unit cube. Then the above inclusions yield

1 R
ZCEiL+E5+"'+E5CZ+;ZICZ+;C’H,'

Now note that for any A > 0,
n—i %
n e N, it e,
Vol (Z + ACp) = voln(Z) = 3 (’Z) V(Z,...,2,Cn,...,C)N,

=1
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and this implies that

i 4
n — e P e i n
volo (Ef + -+ + E*) — vol,(Z) < E (?) V(Z,.. .,Z,Cn,...,Cn)<L—%) < (415) .

i=1

Hence, if for p1o = [2(4R)™] the volume of E°+...+ E* is approximated to absolute
error 3, we obtain an estimate of vol, (Z) to absolute error e. Further, it follows from
(1:3) that size(vol,(Z)) is bounded by a polynomial in the input size. Therefore, it
suffices to approximate vol,(Z) to a sufficiently small absolute error ¢ whose size is
polynomially bounded and then perform the usual rounding (with continued fractions)
in order to obtain vol,(Z) precisely.

Finally note that all constructions and computations can be done in polynomial
time; this completes the transformation. ]

2.2. Mixed volumes of paralellotopes. We give some hardness results for
computing mixed volumes of parallelotopes. The first involves axes-parallel parallelo-
topes which (for brevity) will be called bozes.

Before we state the result we need two lemmas.

LEMMA 1. Let the entries of A = (a;5)i j=1,2,... n be nonnegative rationals, and
fori=1,....n set Zy = 3°°_,[0,au5]e;. Then

n!'V(Zi,...,Z,) = per(A),

where per(A) denotes the permanent of A.
Proof. Note that the Z; are all boxes, and so is Z?zl XiZ; for each n-tuple.
(A1,...,An) of nonnegative reals. Hence,

vol,, (i AiZi> = vol, i l:O, i)\iai]] e | = ﬁ (zn: )\,;C%‘j) .
i=1 j=1L =1 j=1 \i=1

Comparing the coefficients of A - Ay - ... - A, we see that

1 n n
V(Z1,...,2Zn) = ] Z 2 : €51yeendin ¥Lij1 * - o O

ji=1 In=1

where
_J1 ifjy,..., 4, is a permutation of 1,2, ..., n,
Todn 0 otherwise,
and this proves the assertion. 0

The problem of computing the permanent of 0-1-matrices is known to be #P-
complete [Va77]; see also [Va79)], [Br86], [JS89], [LS90], [KKLLL93]. Hence, Lemma
1 implies that the problem of computing the mixed volume V(Zy,.. ., Z,) of n faces
Z; of the cube [0,1]™ is also #P-complete. (Note, on the positive side, that in view of
Lemma 1, Theorem 11 yields a randomized polynomial-time algorithm for estimating
the permanent of certain classes of matrices.) In order to extend this result to proper
boxes, observe that if we replace the 0-entries of a given 0-1-matrix B by a parameter
@ to obtain an a-l-matrix B,, then per(B,) is a polynomial in o; evaluation of
this polynomial for n + 1 different values of a (or for one sufficiently small value
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of «) allows us to compute its constant term per(B). In order to prove the sharper.
statement of Theorem 3, we use the following strengthening of [Va77]’s hardness result
to the permanent of o-3-matrices with prescribed o and 3.

LEMMA 2. The following problem is #P-hard for any pair o, 8 of (fixed) distinct
rationals: given a positive integer n, and an nxn matriz A with entries a, 3, compute
per(4). '

Proof. We may assume that 5 = a+ 1 and o # 0. Let B = (b;k)i,k=1,..,n e an
arbitrary 0-1-matrix. We will reduce the computation of per(B) to the computation
of the permanent of several matrices with o, a 4+ 1 entries.

Let G denote the bipartite graph on 2n vertices whose adjacency matrix is B,
and for k = 1,...,n let M} be the number of matchings of size k£ in G. We want to
compute M,, = per(B). For j =0,...,nlet X\ = (xgi)), denote the (n+7) x (n+ j)
matrix with entries

ik o otherwise.

20 — {a+bik fori,k=1,...,n;
Clearly, X) has only entries o, a + 1; whence using an oracle for evaluating the per-

manent of matrices with o, a+1 entries n+1 times, we can determine the permanents
of all the X(). On the other hand, we have

(2.2) > Mi(n—k+ o = per(XD)  (j=0,...,n).
k=0

To see this, regard o as an indeterminate, and expand per(X ) as a polynomial in
a. Then the terms contributing to the coefficient of a® **J arise as follows. For
every k-matching in G we obtain a product (o + 1)*, and this can be completed in
(n — k + j)! ways to give a lowest term o™ *+7. We do this by selecting the o term
from the product of monomials (either & or & + 1) represented by any matching on
the complete bipartite graph induced by the remaining n — k + j rows and eolumns.

Therefore, if the above system (2.2) of linear equations is nonsingular, we can
solve it for M, and this establishes the #P-hardness result.

To see that (2.2) is indeed nonsingular, let us rewrite the system as follows:

S (54 ) et = 2Dy

ol
k=0

Introducing the new variables yx = k!a*M,,_x, the question now reduces to deciding
whether the (n + 1) x (n + 1) matrix C with entries cx; = (k’].”) is nonsingular. But
this follows easily from the Vandermonde identity

£ (1) s

since C = UUT, where U is the lower triangular matrix with entries Uij = (;) which
has all its diagonal elements 1. O ‘

Now we can prove Theorem 3.

THEOREM 3. Let o, be (fized) distinct positive rationals. Then the following
restriction of MIXED-VOLUME-OF-BOXES is #P-hard: given n € N, and for i,j =
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L,2,,...,n, an element a;; of {, B}, compute the mized volume V(Zi,...,Zy,) for
the proper bozes Z; = 3°7_1[0,ai5le;, (i =1,...,n).
Proof. The result is a simple consequence of Lemmas 1 and 2. 8|

Theorem 3 implies directly the “instability” result that, while the case of € = 0 is
trivial, it is #P-hard for any € > 0 to compute the mixed volume of n proper boxes,
all containing the unit cube C, and all being contained in the cube (1 + €)C,,.

Note that MIXED-VOLUME-OF-BOXES can be solved in polynomial time if the
number s of different boxes is bounded beforehand. In this case there are only O(n*~1)
different mixed volumes, and they can all be computed by the approach of subsection
1.3 (see [GK94, subsection 4.1]), since their Minkowski sum is a box whose volume
can be computed easily. We will show, however, that the corresponding problem for
just two proper rectangular parallelotopes is #P-hard if they are not both required
to be axes-parallel.

THEOREM 4. The following problem is #P-hard: given n € N, m € {0,...,n},
ai,...,on € N, and integer vectors yy, ..., yn which form an orthogonal basis of R™,

n—m m
compute V(Zy, ..., 21,23, ..., Zs), where Zy = 371 [0,1)y; and Zo = 3°1+ [0, ales.

Proof. We use the problem VOLUME-OF-ZONOTOPES of Theorem 1 for a reduc-
tion. Let Z = (n,s;¢,21,...,2,) be an S-zonotope. We may assume without loss of
generality that z,...,2, € Z", that s > n, and that Z is proper. Now, let A denote
the n x s matrix with columns 2y, ..., z,. Since, by (1.3), elementary row operations
to A do not change the volume of the zonotope generated by the columns of A, we
may further assume that the rows vy, ...,v, of A are orthogonal.

Let {vn41,...,v5} C QF be an orthogonal basis of the orthogonal complement of
the linear hull of {v1,...,v,} such that the sizes of v,,1,...,v, are bounded by a
polynomial in size(Z). Note that such a basis can be computed essentially by solving
a system of linear equations. Let B denote the s x s matrix that is obtained from A4
by augmenting the rows vp41,...,vs, and let y;,...,y, be the column vectors of B.
Since the rows of A are orthogonal, so are the columns. Hence,

S

Zy = _[0,1]y;
i=1
is a proper rectangular parallelotope in R®. Set, further,

$ n
C= Z [0,1]e;, and forO< p <1, Z)y=C+ uZ[O, 1le;.
i=n+1 i=1

By Proposition 2, applied with U = {0}" x R*~" (and hence U+ = R x {0}*"), we
obtain :
n s§—n
NN
<S>V(Z1, L Z,,C,...,C) = voln(2),

and this gives already an #P-hardness result for the case that one of the parallelotopes

is permitted to be lower dimensional. To complete the proof of Theorem 4, observe
that (by (1.4))

n S;n ST n s—n—1t Ce
P e - ~ — e P N
V(Zl,...,zl,zg,...,zg)=Z(si”)V(ZI,. L Z,,C,...C. 0, O,
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where ¢ = [0,1] x {0}*~™. Since there is a positive integer R of size bounded by a
polynomial in size(Z) such that Z; C R[0,1}*, it follows that

n s—n n s§—n
—— —— e e e e
V(Z.,...,2,,C,....0)<V(Zy,..., 20,2, ..., 21
n s—n

e M N
S V(Zl,...,Zl,C,...,C) +28—an,Ll,.

Now, let po be a positive rational of size bounded by a polynomial in the input size
such that 1/pe > 2- 257" R? (Z), and set Zo = Z§°. Then Z; is a proper rectangular
parallelotope, and

s\ —— "
VOln(Z)— n V(Zl,...,Zl,Zg,...,ZQ) <§

Since vol,(Z) is an integer, this shows that it suffices to compute the mixed volume
n n—s

e
V{(Z1,...,Z1,2,...,Z3) in order to obtain vol,(Z). To conclude the transformation
just apply a suitable scaling to make po integer. 0 :

As a simple consequence of Theorem 4 we can derive a sharpening of Theorem 1.

THEOREM 5. The following problem is #P-hard: given n € N, and two n-tuples
Ul, ..., Uy and Wy, ..., w, of integer vectors that form orthogonal bases of R™, compute
the volume of the Minkowski sum

n

vol,, (ﬁ:[o,l]vi) + (E[O, l]wj>

Jj=1

Proof. Let Z; = Y ,[0,1]v; and Zy = 377 ,[0,1]w;. For the proof of the
theorem, just note that all mixed volumes of Z; and Z, can be computed by the
method indicated in subsection 1.3 by evaluating vol,(Z; + £Z,) for n + 1 mutually
disjoint interpolation points &g, .. .,&,, and apply Theorem 4. O

2.3. Easiness of mixed volume computation. The results of the previous
subsection show that mixed volume computation is in general at least as hard as any
problem in #P. The present subsection addresses the question of whether computing

-mixed volumes is possibly even harder.

As shown in [DF88], using any oracle which solves some #P-complete problem in
constant time, the volume of a V-polytope can be computed in polynomial time; this
is stated by saying that volume computation for V-polytopes is #P-easy.

‘H-presented polytopes come with the additional difficulty that the size of their
volume is not bounded by a polynomial in the input size. An example was given by
[La91], showing that there is no polynomial-space algorithm for eract computation of
the volume of H-polytopes. However, approximation to any positive rational absolute
error € is again #P-easy for H-polytopes, [DF88].

It is clear from section 1.3 (see also [GK94)]) that the easiness results for computing
or approximating the volume can be extended to mixed volumes if the number s of
sets under consideration is bounded beforehand. If, however, s is part of the input the
number of volume computations needed for the numerical differentiation approach to
compute a single mixed volume cannot be bounded by a polynomial in n and s. The
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reason is that this method “essentially” computes all mixed volumes at once and their
number is exponential. v

We will show in the following, however, that even in this general case computation
(for V-polytopes or S-zonotopes) or approximation (for ‘H-polytopes) of any single
mixed volume is #P-easy. We begin with the easier case of S-zonotopes.

THEOREM 6. Let IT be any #P-complete problem. Then any oracle Op for solving
II can be used to produce an algorithm that runs in time that is oracle-polynomial in
the input size for solving the following problem:

Instance: n,s € N, and mq,...,ms € N such that Z;;l m; = n, S-zonotopes
Zi = (n,si;ci;zi,l,. . ~1zi,si)7 fO’f‘ Z = 1,. -5 8.
Task: Compute the mized volume
mi ma My
V(Z1y.. s 20,20y 2oy Dy .. Z).

Proof. The proof reduces the problem to the task of approximating the volume
of a (typically nonconvex) finite union of parallelotopes.
Forie S ={1,...,s}, let J; ={(,1),...,(4,8:)},set J=J U---UJq, and
TImy,ome ={I C T | INJ;| =m;, forie S}.
Further, let = 37, s;, and let A denote the n x r matrix
A=(211,- -, 25101 25,15+ s 25,6, )-
Then it is easy to see, by expanding voln (371 XiZ;), that
ma s

m
my, y Mg

(23) V(Zl,...,Zl,...,Zs,.. ,Zs): IdetB]|,

where B; denotes the n x n submatrix of A with column indices in I, and (ml ")
is the usual multinomial coefficient, i.e.,

( n ) n!
mi,...,Mg m1!-...-ms!

To prove the theorem, we will now interpret (2.3) geometrically. In fact, let
Z= Y [0,1zy,
(i,7)eJd
and let again 7 denote the family of all subsets I of J of cardinality n. Using a simple

inductive argument (with respect to r), we see that there is a subset 7 of J and that
there are vectors p; (I € Z) such that the parallelotopes

Py =pr + Z[O, 1]Zi (Ie 1)
el
form a dissection of Z into proper parallelotopes; see [Sh74]. Further, for each
z € ZN Q" asubset I € T with z € P; can be found in time bounded by a
polynomial in size(Z) and size(z). Note that these parallelotopes are in one-to-
one correspondence with the nonsingular matrices By with I € J. Hence, with
Ty oiom, = UIGJml,,..,ms Pr, we have

my ms
n —— Pr—
(ml m )V(ZI, By Dy L) = VOl (g m )
’ ’ 8

and membership in Z,, . m, of a point € Q™ can be checked in polynomial time.
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Now, let R =3 o s l12illco, whence Z C R[-1,1]™. Further, let € be a positive
rational, let

R
. and 6= —.
«o

o= "2r”n2(2R)".‘ ’

€

For each integer vector t = (7y,...,7y), let

1 1\" )
Ty =96 (T1 + 5,...,7'"4— 5) , and Ci=x;+ 5[—1_,1]".
For each z,, membership in Z,,, ., can be decided in polynomial time, so Op
can be used to construct a counting machine that outputs the number N of integer
vectors t for which 4 € Z,; .. So, if v is the number of cubes C; that intersect
the boundary of Z,,,, . m,, we have

IN6™ = volp(Zm,,...m. )| S vé™.

It is readily seen that each facet of any Z; (I € Jp,,...,m,) is intersected by at ‘most
2n(2a)™~! such cubes, whence (after some standard calculations)

2 -1 n
INS™ = voln(Zm,,...m))] < 4r"n(20)" 776" < e < (ml7 ,ms>€'

Therefore,

my ms -1
P Pr— . n
)—Né"( )
mi,...,Ms

V(Zl,...,Zl,...,Zs,...,Zs <e.

Now, size(vol,(Zp, ....m,)) is bounded above by a polynomial in the size of the input.
mi msg
So a suitable choice of € and subsequent rounding yields V(Z3,...,21,...,Zs,...,Z,)

exactly. 0

Note that as a corollary we see that VOLUME-OF-ZONOTOPES is #[P-easy.

THEOREM 7. Let I1 be any #P-complete problem. Then any oracle On for solving
II can be used to produce an algorithm that runs in time that is oracle-polynomial in
the input size (including size(e) in the second case) for solving the following problems:

Instance 1: n,s € N and my,...,ms € N such that Z;lmi = n, V-polytopes
P, =(n,n;vi1,...,Umn,), fori=1,...,s.

Task 1: Compute the mized volume

my mz My
e e, e e —_———
V(P,....,P,Psy,....,Py,...,Ps, ..., Ps).

Instance 2: n,s € N and my,...,ms; € N such that Zlemi = n, H-polytopes
P, = (n,n;; Ay, b;), fori=1,...,s, a positive rational number e.

Task 2: Compute a rational number Vi, m,,...m, such that

my me ms
. PN UV
Vinimayoome = V(P ... Py, Pay oo Py Py, Py)l < e

Proof. For V- or H-polytopes it is not so clear (as it was for S-zonotopes) that
mixed volumes can be reduced to a volume computation, yet it is possible. The proof
makes substantial use of a formula of [Sc94] (a generalization of [Be92]), and we will
begin by restating [Sc94]’s approach.
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For a polytope P in some R™ and an 1nteger k with 0 < k < m, let, as usual,
Fi(P) denote the set of k-faces of P, and let F(P = Upeo Fr(P). Further, for a face
F of P, let N(P, F) denote the cone of outer normals of Pat F.
Now, let Py,..., P be polytopes in R". Set r = s - n and

S
. N

P=P xPyx-xP,CR"xR"x.-- x R" = R".

It is easy to see that

FPy={FixFyx---xF, : Fi e F(PY),...,F, € F(B,)}

and that
]:k(P): U {FlXF2X"'XFs:Flth(Pl)v-qusE]:ks(Ps)}'
k1,...,ks €ENg
kit =k
Let
A={=T,2T,.. . aYTeR :z e R"™};
A is a linear subspace of R” of dimension n. For & = (v, ... ;o) € AL\ {0}, let

Az = lin(A U {0}), and let '
A ={w € Ay : (w,7) > 0},

the corresponding “positive” open halfspace. Further, let 7o and 7, denote the
orthogonal projections onto A and Az, respectively, let 7'» be the restriction of 7
to the set Az, and set Py = ma, (P) Note that

1 s $ T
T T
ﬂ'A(.’IJl,...,:IIs):g E mi,...,g z;
\i=1 i=1

Then vol, (ra(P)) is just the sum of the volumes of the projections of those facets of
P; with outer normal vector @ in A7
Suppose that none of the w € A7 is orthogonal to a hyperplane in R” that

supports P in a face of dimension greater than n. Then each facet of P; with outer
normal @ in A} is the projection of exactly one n-dimensional face F' € F,(P) such
that @ € N(P, F). Let FF be the set of all faces & e Fn(P) for which

N(P,Fyn A #0.
It follows that

ma(P)= |J ma(F)
Fert
and .
vol, (ma(F) N7a(G)) =0 forall F,G e Fr F+G.
Now, let

le,.“,ms = U il’lt(Fl +-"+Fs),

F=FixFyx-xF,eF}
dim(F1)=m,..., dim(F;)=m,
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where int is taken with respect to R™. (Clearly, in terms of volume computations,
taking the interior does not matter, and we do it only for technical reasons that
become clear when we develop a method for checking membership in Fy,,, . m, later.)
By replacing P; by A\;P; for A\; > 0, and comparing coefficients we obtain [Sc94]’s
formula

n mi mg
v, P B, P
my, y Mg

= Vol (Frn, m.) = > vol,(Fy + -+ + F,).
F=F1xFyx-xF,eF}
dim(F1)=m;,...,dim(F,)=m,

Suppose that rational vectors vi,vs,...,v, € R™ can be computed in polynomial
time with o = (vf,v1,...,vT)T € A' and such that no w € A7 supports P in a
face of dimension greater than n. We can then apply the same proof technique as
in the proof of Theorem 6, if we can check membership of a point z in Fp,, ., in
polynomial time. But this can be done as follows (in both cases where Pi,..., P, are
V- or H-polytopes).

Given z € R", we first check whether z € Py + Py + - - - + P,. Clearly, this can be
done by linear programming. If the answer is affirmative, we compute the vector Z,
that is given by

¥

{%0} = {£+ X0 : A >0} Nrelbd(P;), where z = (27,...,27)T.

To see that this can be done in polynomial time, observe that the corresponding
parameter Ag is the solution of the linear program

max(9,%Z) st. &€ Pn(Z+A%).

Since P = {8 =@T,.. 20T .2y € Pp,...,z, € P} and Z + AL can be easily

expressed in the form AZ = b, where A is an n X r matrix with 0-1 coefficients,
b € Q", and the size is bounded by a polynomial in r and size(z), the given linear
program can be solved in polynomial time.

Now, if Ag = 0 we know that z € bd(P, + P, + --- + P;), and we report that
2€ Foy o om,-

Otherwise we compute an outer normal % € A,-f of P; at zy. This can be done in
polynomial time.

Let Fj denote the face of P; that corresponds to the supporting hyperplane
determined by . It may or may not be the case that Fy is a facet of P; (we will find
out in the final step); and we know that z & F,,, ,,, if it is not. (This situation is
the reason for considering only the interiors of the sets F; + - -- + F, in the definition
of le,...,m,-)

Next we determine the face F of P which is induced by the supporting hyperplane
orthogonal to w. This is done by solving for ¢ = 1,..., s the linear program

max{w;, ) s.t. x € B,

where wy,..., w, € R™ such that ¥ = (w¥,...,wT)T. Note that is is not enough to
find a solution; we need to find a V- or H-presentation of the set of all solutions. But
this can be done in polynomial time. So, let Fy,..., F; be the respective solution sets.
Then FF' = Fy x Fy x -+~ x F . is the face of P in question. Now we need to check
whether dim F; = m; for all i = 1,..., s, a task involving just linéar algebra, and, if
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this is the case, finally, whether ma_ does not reduce dim F , again a simple task from
linear algebra. '

Hence we have derived a polynomial-time algorithm for checking membership in
Fin,....m, which we can now apply to the points z; used in the proof of the easiness
results for zonotopes, and we may proceed as before.

In order to finish the proof of Theorem 7, all that is left to be done is to show
that an appropriate choice of the vector © can be made in polynomial time.

The condition on ¥ is satisfied if
$

ﬂ (relint (N(P;, F})) — v;) =0
i=1

for all s-tuples (Fy, Fy, ..., Fy) of faces F; of P; such that
dim F; + dim Fy + -+ - + dim Fy > n.

We will actually produce (in polynomial time) vectors v1, ..., v, such that
(2.4) ()(lin (N(P;, F})) — v;) =0
i=1

for all s-tuples (F1, Fy, ..., Fy) of faces F; of P; such that
dim F} + dim F + - - - + dim Fy > n.
Let (F1, Fy, ..., Fs) be such a choice of faces, i.e.,
ki+---4+ks>n+1, wherek;=dimF;fori=1,...,s.

Suppose that for i = 1,..., s the vectors Qi 1,--.,0; n—k; are facet normals of P; that
span lin(N(P;, F;)). Then (2.4) is violated for some choice of @, if and only if the
following inhomogenous system of linear equations (in the variables z and ), ;) is
feasible. ’
n—k;
(25) T+ Z /\iyjai)j = U; (z:l,,s)
j=1
Note that this system is overdetermined; it consists of r equations in n+zf=1 (n—k;) =
r+(n— 37 ki) <r—1 variables and is, hence, generically infeasible. In order to
find a specific vector ¥ of size that is bounded by a polynomial in the input size,
which renders all such systems infeasible, we have to analyze the condition a bit more
carefully, since in general there are doubly exponentially many such systems. Note,
however, that the coefficient matrices have the property that all entries are of size
that is bounded by a polynomial in the input size. Now suppose ¥ is of the form

P = (o], 0L, .. ,vD)T = (£,€%,...,€NT  for some € > 1.
Note that, in general, ¢ ¢ AL, but since Te € A, it is of the form (yET, ey yg)T + ﬁé
with 0; € AL, whence it suffices to show that for a suitable choice of € the system
(2.5) is infeasible for v;. Now, since (2.5) is overdetermined, it is only feasible if
the components of U satisfy a linear relation with coefficients that come as subde-
terminants of (2.5)’s coefficient matrices, whence are bounded in size by an integer
polynomial 7(A) in the input size A, i.e., we have a relation

r—1

F+> af =0 with |aul,...,Jar_q] <27®),
i=1

Hence, with & = 2r27(%) the vector U, makes all systems (2.5) infeasible.
This completes the proof of the two asserted easiness results. O
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2.4. Deterministic methods for approximating mixed volumes. The prob-
lem of how well the volume of a well-presented convex body can be approximated in
polynomial time was investigated by various authors; see [GK94] for a survey.

For a positive functional ¢ on K™ (or on appropriate subsets of ™) and a func-
tional A : N — R, a (relative) A-approzimation of ¢ is a functional ¢ defined on the
domain of ¢ such that

P(K) $(K)
m S A and m < A

(Note that the relative error |($(K) — ¢(K))/¢(K)| is only appropriate if one is
confronted with small errors since taking ¢(K) = 0 always gives an estimate with
relative error 1.)

When looking for relative estimates for mixed volumes, the first question is if one
can efficiently check whether the mixed volume under consideration is greater than
zero.

THEOREM 8. There is a polynomial time algorithm which solves the following
problem: giwen n,s € N, my,...,ms € Ny with Ele m; = n, and well-presented
convez bodies K1, ..., K, decide whether

my me ms
N

V(K,... K, Ks,...,Ko,...., Ks,...,K;) =0.

Proof. Fori =1,...,s, let d; = dim(K;), and let a;y9,...,a,4, € K; such that
aff(K;) = aff{a;0,...,aiq,}. Note that these vectors a;; are part of the input of
the problem. Since our task is clearly translation invariant, we may assume that
a0 = --- = aspo = 0, and also that by = --- = by = 0, where b; is the given “center”
of Kl

Now, fori =1,...,s, let Z; = Z?‘:l[—l,l]ai,j. Then clearly, for some p, R > 0
(which we do not have to know explicitly),

pZz C K; C RZ,.

Hence, by the monotonicity of mixed volumes,

mi me ms
- . -

V(Ky,...,K1,K2,...,Ko,..., Ks,...,K;) =0,

if and only if

mi my mg
e A

o~

- ~ ~ ~ S —
V(Zi,.... 210,22, ..., Z2,..., Zs,..., Zs) = O.

Using the notation introduced in the previous subsection, let J; = {(i,1),...,(i,d;)}
foralli=1,...,8,set J=JyU---UJg, set

TInayom, =T CI | INT| =my, fori=1,...,s}
and let Ay = {a;;:(¢,5) € I} for ICJ.

1 ma ms
It follows from Proposition 2 that V(Ki,..., K1, Ka, ..., Ka,..., Ky, ..., Ks) # 0 if
and only if there is a linear independent subset A; of Ay which, fori=1,...,s, con-

tains exactly m; elements from A;,. This is equivalent to the existence of a common
basis for two matroids, the linear matroid and the partition matroid on Aj. The ex-
istence of such a common basis can be determined in polynomial time by the matroid
intersection algorithm of [Ed70]; see also [GLS88, Theorem 7.5.16]. g



ON THE COMPLEXITY OF COMPUTING MIXED VOLUMES - 381 -

Now, assume that K1, ..., K, are well-presented convex bodies and we are longing
for relative approximations to
my ms

- N ’ N,
V(Ky,...Ky,...,K,,... K,),

where m; +-- -+ m, = n. Using Proposition 4, we easily obtain a (min{pn’?, Vﬁ/z})-

approximation of vol,,(K), where
pn=nvn+1 and v, =2(n+1).

(In the rest of the paper we will use these abbreviations to emphasize that improve-
ments in Proposition 4 (in general or for subclasses of K™) carry over to our approxi-
mation results. For such an improvement for H-polytopes see [KT93], and see [GK94]

for a survey.) Note that pi/2 and /2 depend only on the dimension n and are inde-
pendent of the bounds of the in- and circumradii given in the input. On the negative
side, it has been shown by [BF86] that for each polynomial-time algorithm which pro-
duces a A-approximation of the volume of well-presented convex bodies there exists a
constant ¢ such that A(n) > (locg"n)"/2 for all n € N. ‘

It is clear that we cannot expect anything better for mixed volumes, but can we at
least get polynomial-time approximations whose error depends only on the dimension
n? Note that the “obvious” approach of approximating the bodies K,..., K, by
parallelotopes each and then using the mixed volume of the parallelotopes as estimates
fails in view of Theorem 4, and Theorem 2 indicates some limits for a similar approach
using ellipsoids. The following result, however, gives a positive answer for s = 2; the
general case is open and posed here as a problem.

THEOREM 9. Let m : Ny — Ny with m(n) <n foralln € Ny, and let \:N - R
be defined by

m(n) nom(n)  n-m(n) m(n)
A{n) =min< p, 2 v, ° n 2 Up 2 .
?

Then there is a polynomial-time algorithm which produces a A-approrimation of

n—m(n) m(n)

V(Ki,...,K), Ko, ..., K5)

for well-presented proper convex bodies K, K.
Proof. Given Ky and Kj, let ¢; and ¢ be affine transformations such that

B" C ¢1(K1) C ppB™ and C, C ¢2(K32) C vyCh.
This implies, with Z = ¢1(¢2_1(C’n)) and m = m{n), that

n—m m n—m m

V(]an v 7]Bn7 Z1 ce 7Z) < V(¢1(K1)7 'f7¢1(K1)7¢1(K2)’ A7¢1(K2)‘)

n—m m

< V(,ronB", ..., pnB", v, .., VnZ)

Since the common affine transformation ¢, changes the mixed volume only by the
absolute value of the corresponding determinant as a factor, we obtain the desired
bound by taking the geometric mean of the lower and upper estimates and noticing
that the roles of K and K can be interchanged. The polynomiality of the algorithm
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follows from Proposition 4 and from the fact that the quermassintegrals of a paral-
lelotope can be approximated to absolute positive rational error € in polynomial time
in n and size(e); see, e.g., [GK94, Theorem 4.4.4]. 1]

Let us point out that Theorem 9 can be extended to improper sets K; and K>
by first using Theorem 8 to check whether the mixed volume under consideration is
0, and if this is not the case, by applying Theorem 9 to the bodies K; + ¢B" and
K, + eB" for suitably small positive rational e.

The final result of this subsection is needed as preprocessing for the inductive step
in the main algorithm of section 3. It is included here because it is approximative
in the sense that it gives an algorithmic solution to the (properly phrased variant

n—k+1 k-1
of the) question of how well a specific mixed volume V(rKl, ... ,Kl‘,er, o ,K2‘) of
n—k k . :
two bodies approximates the “next” one, V(:Kl, LK ; , rKg, e ,K;). First we state

a theoretical bound which holds after some preliminary normalizations, then we will
show how these assumptions can be satisfied in polynomial time.

LEMMA 3. Let Ky,Ky € K™, let E be an ellipsoid centered at O such that E C
K C ppE, and let v1,...,v, be the semi-axis vectors of E, such that ||v]| < -+ <
lvnll. Further, suppose that B™ C Ky C p,B™ and that |jum|| = 1. Then

(,n+ 1)—4m+5/2 S azl-l S (n+ 1)4m-—3/2’
m

where, for k =m — 1, m,
n—-k k

. A

ap = V(’I{l,...,Kl‘,kz,...,Kz‘).

Proof. For ¢ = 1,...,n, set w; = v;/||v;||. Further, for j = 1,...,m, let U; =
lin{v,...,v;}, let 7; : R® — R™ be the orthogonal projection on Ujl, and let Vi,
and V;;. denote the (mixed) volume taken in Uj, Ujl (with respect to the standard

1
J- or (n — j)-measure in U; or U]-l), respectively.
n—k k

Let us begin by giving a simple lower estimate for V(?{l, . .,KI, ?{2, . .,K;),
when k =m —1,m. Let

Qr = conv{zwy,...,Twi}.

Then we obtain, with the aid of Proposition 2,

n—k k n—k k
V(’I{h""Kl:kZ’"' )ZV(Kla Kvak7 "7Qk)
n— k k:
n
=< VU (m (K1), - --y'“'k(Kl))VUk(Qky---an)
(2.6) k

3

f

k
) Vohn 4Ol (@) = e voh ()

k
VOln k(ﬂ'k(Kl))

(
=

SRR VERG
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Next we derive upper bounds. Note, first, that

[vill K2 C pallvr||B™ C pnE C pnKiy;
K; C 71'1(K1) + pn[wl, 1]U1;
K, C 71'1(K2) + pn[—l, l]wl.

Now, again let k = m — 1, m. Using the monotonicity of mixed volumes we obtain

n—-k k

P

V(Ki,...,Ki,Ks,...,K3)

" n—k
<V (m (K1) + pol—1,1v1, ..., m1(K1) + pa|—1, 1]vr,
k
;T1(K2) + pn[—1, 1wy, ..., 7 (K2) + pn[—l,l]w;)
n—k k n—k—1i i
n—k\ (kY. - ~—— -~ ‘
= Z ( . ) ( ) V(mi (K1), ..., m(K1), pul—=1,1Jv1, ..., pn][~1, 1]vy,
- - 1 ¥
=0 7=0
k—j J

A .

;rl(KZ)a e ’WI(K237rpn[_'1a 1]’(1)1, v -»Pn[‘la 1]“’;)

Proposition 2 then yields the following estimate.

n—k k
V(Ky,... K1, Ks,...,K>5)
n—k—1 k
< (n = k)W (r (K1), ..., (K1), pn[-1, o1, 11 (Ka), ..., m1(K2))
n—k k-1
+EV(T(KY), ..., m(Ky), 71 (K2), - . ., m1(Ka), pu[—1, 1]wi)
n—k-1 k
2(n — k)pn|lv - N -~ ~
= J—sz'—ll-ﬂVU#(ﬂ'l(Kl),...,7‘l’1(K1),7l'1(K2),...,7T1(K2))
n—k k-1
2kpn - N - - N
+ VUlJ_(ﬂ'l(Kl),...,7T1(K1),7F1(K2),...,71'1(K2))
2 n—k k-1
2(n -k n + 2k n ” nKg ~
<A )fl Py (K)o i (B (K)o (K))

n—k k-1
. N

<202 Vys (m1 (K1), . ., mi(K)), mi(Ka), - .., i (Ka)).

The same estimate can now be applied inductively; if we do this k — 1 times for k = m
and k times for kK = m — 1 we obtain

(2.7)
V(K1 K Ko, K2) < 2027 Ws | (noa (KD, -y o1 (K, Tt (K))
n—m+1 m—1

N

V(Ki,...,K1,Ka,...,K3) < (2p2)™ Volp_ms1(mm_1(K1)).
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Now we combine the estimates (2.6) and (2.7) with the fact that

Wm—l(KQ) - Pan—m+1 C pnﬂ-m—l(Kl)a
7rm—l(I(l) C 71'm(-Kvl) + Pn[_ly 1]'Um7

and obtain

(2.8)
V(KL K Ky, K) < (20)™ Wys (Rme1(K1), - o1 (K ), o1 (K2))
n—-m+1 m-—1

< (2pi)m”1pnvoln_m+1(7rm_1(K1)) < nm_lpim_lV(’Kl,...,K;,:Kz,..,,Kg‘)

and
e — 2\ ™
V(Kl,...,Kl,Kz,...,Kg) Z (;’;) VOln_m(ﬂ’m(Kl))
(2.9) X n—m-+1 m-1
m-— ' 1 V. -~ N 7~ - N
> poy VOln_m+1(7l'm_1(K1)) > wv(Kl,...,K1,K2,...,K2).
n"pn nmpn

When p,, is replaced by its upper bound (n+1)3/2, the estimates (2.8) and (2.9) yield
the assertion. 0

LEMMA 4. There is a polynomial-time algorithm which constructs, for given well-
presented proper conver bodies K1, Ky of R™ and a given m € {1,...,n}, an affine
transformation ¢ and a rational number k > 0 such that '

7
Um—1 8
1§—a, < (n+1)°7,

m
where, fork=m —1,m,
n—k k

N P

’ ] ) r
a/k:‘/(}'('l,...7 1’K27"”K2)

is the corresponding mized volume of the transformed bodies K| = k¢p(Ky) and Kb =
P(K2). .

Proof. Proposition 4 allows us to construct affine transformations ¢ and ¢ such
that

B" C ¢(K2) C puB” and B" C $(¢(K1)) C puB".
So, let us assume for simplicity of notation that, already,
Ec K, Cp,FE and IB” c K, C p,B",

where E = A7!B" for a nonsingular matrix A whose entries are bounded in size by
a polynomial in the input size. Now, using the multilinearity of the mixed volumes,
Lemma 3 implies

—4m a
(n+ 1)~ 7452y, || <

Dol < (n 1) 2, .
Am,
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The problem of computing ||v,,|| is essentially the task of computing the eigenvalues
of AT A, and this can be done in time that is polynomial in the input data and in the
binary size of the required precision €. (A conceptually simple way to find the largest
eigenvalue of a positive definite matrix A4 is to perform a binary search on A — AT
(with respect to a parameter )\) using the criterion for positive definiteness that the
determinants of the k x k submatrices of the first k& rows and columns are positive.
The rest is then standard fare in linear algebra.) However, all these quantities are
only available up to a polynomially bounded precision. So suppose that v is a positive
rational such that |v — |Ju,,||| < €. Then we obtain

(n + 1)—4m+5/2(y_€) < am-1 <(n+ 1)4m—3/2(y+6)’
am

whence, with a sufficiently small (but polynomially bounded) positive ¢,

(n+1)"4my < gm-1 < (n+ 147y

Qm
So, if we rescale K by a factor (n+ 1)%™ /v, we obtain the asserted inequality. ]

3. Randomized algorithms. In this section, we give a randomized algorithm
for computing relative approximations of certain mixed volumes of well-presented
convex bodies to relative error e whose running time is polynomial in 1 /€ and the size
of the input. We begin with the case of two bodies K; and K,. Our algorithm uses
the polynomial-time randomized volume algorithm of Proposition 1 to obtain relative
estimates of the values of the polynomial

- p(z) = vol, (K1 + zK>3) = chzj = Z (?)ajxj
=0 j=0

n—j J

(?)V(:Kl, NN AN A

n
j=0
at certain interpolation points. After deriving a basic estimate in subsection 3.1 and
showing that the general case of possibly improper convex bodies can be reduced to
the case of all bodies in question being proper, we describe a randomized algorithm
in subsection 3.2 that computes approximations d., of the mixed volumes a,, of two
proper convex bodies recursively. The scaling of Lemma 4 is used as a preprocessing
step; it gives a first rough estimate for a,,. The first part of the algorithm uses a search
procedure to produce an approximation of the ratio am,_1/a,, to constant error; the
second step gives the desired relative approximation of a,, to error ¢. Subsection
3.2 concludes with the analysis of the complexity of the algorithm, thus establishing
Theorem 10 (as stated in the introduction). Subsection 3.3 generalizes the randomized

algorithm to more than two convex bodies and proves Theorem 11 (as stated in the
introduction). '

3.1. A basic estimate and a reduction lemma. The first part of this subsec-

tion gives an estimate that is fundamental for the algorithm presented in subsection
3.2.

Let &o,...,&n be (equidistant) interpolation nodes and for i = 0,...,n, let ¥
denote the relative estimate of y; = p(¢;) to error 7. Setting

n
ém = __>_ bkmfgka
k=0
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where the by, are again the coeflicients of the Lagrange polynomials, (1.5} yields

n
[Em = em| < 7 max {g(&)} kz_% 1)

We are, however, interested in a relative approximation, i.e., an estimate of the form

|ém — em| < 7'|em]-

Using the results of subsection 1.3, it is not hard to see that, in general,

71“ Jmax {g(&)} > Ibem]
k=0

lem

grows exponentially in n. Unfortunately, the running time of the approximation
algorithm of Proposition 1 is polynomial only in the approximation error and not
in its size. Hence the relative approximations of y; to error 7 that are produced
via Proposition 1 cannot be used in this way to give estimates for all coefficients
in polynomial time. This is the reason for using a small (left upper corner) r x r
submatrix B(" of the full matrix B"*+1; to allow polynomiality, (rm)™ must be
bounded by a polynomial in n.

The following lemma gives a bound for the error |&, — ¢n|, where the estimate
ém is now computed from B("). The parameters used are all generated later by the
algorithm.

LEMMA 5. Letm € {1,...,n}, let r e N withr > 4m + 7, let a, v, and o be
positive reals with o > 1 such that

T M < 1.
(3.1) ’ykak < a™yme  fork <m —1;
Yo for k> m,

let0<n<1, h=nL, and for j =0,...,r — 1 let § = j - h. Further, let 7 >0, and
forj=0,...,7—1 let §; € Q such that |§; — y;| < Ty;. Then, taking the estimate

r—1
em = h7™ Db,
i=0
we have
R o (n ” m . 20
(3.2) |ém — em]| < oy (m) ((Za) er(rm)™ + ?)
Proof. It follows from the choice of interpolation nodes and from (3.1) that

y; = Ip(€)] < Ip(&) =Y _ei(rh) =D emiy'n™
(3_3) =0 =0

n n

(n 1

< oy"a” E n_z( ) < oy™a” E = <oy"a"e.

1 3!
i=0 1=0
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Now let
r—1
=0

Since () > (&)™, it follows from (1.8) and (3.3) that

r—1
[Em = ém| < BT max{yo, .., yr_1}- Y bS] < hMroy™ale - 2"
(3.4) i=o
< 2a)"tn "ae(rm)™ (n)
m
Now,
r—1 n r—1 ) n ) r—1 )
= S = 3t S0 ot S S
§=0 i=0 §=0 i=r =0

Since r > 4m + 7, whence 7! 2™ < r!, we obtain, with the aid of (1.9) and (3.1),

n r—1 n
Em = Cm| = ™3 S b 51 < A ST g hirt
Jm.
i=r j=0 i=r

n : n
(3.5) — n—-m,y—m(rn)m Z Ci’)’ini;fl_i < 7"r—ma.(,rn)'m (”?)n—i
i=r i=r L
nY o 1 ny 2
r— m- : r—m
< " "™g(rm) (m>§H <7 U(m)ﬁ.
Clearly, (3.4) and (3.5) yield the asserted inequality (3.2). 0

The next lemma will allow us to reduce the general case of mixed volume com-
putation to the case of proper convex bodies. We use the notation of Theorem 11.

LEMMA 6. Letk € N, k < s, and suppose A is a polynomial-time randomized
algorithm that performs the task stated in Theorem 11 under the additional assumption
that K1, ..., Ky are proper (while Kiy1,..., K, may be tmproper). Then there exists
a polynomial-time randomized algorithm Ay_, that performs the same task under the
assumption that Ky,...,Kg_y are proper.

Proof. Let K,,...,K, € K™ be well presented, let K,,...,Ky_1 be proper, and’

suppose we want to compute the mixed volume

my ms
-

v = V(.’Ifl,...,Kl,...,r}'{s,...,z).
Let us first use Theorem 8 to determine whether v = 0. If this is the case, we are

done. So suppose that v # 0. Then, of course, there is a fixed integer polynomial ©
in the size A of the input such that

v > 9-m(A)
Now, consider for 0 < § < 1 the mixed volume
mi ME—1 my
p() =V(Ki,...,Ky, ..., Ki_1,..., Ky_1, Ky + 6B", ... Ky, + 6B",
ME41 m

e Nl

Kitty - Kipry oy Ksy -0 Ky).
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Clearly,

where
mi mg—1i Mg i
> N .

pi=V(&y, ..., Ki,...,.Kgy....Ki,...., K, ..., Ks,B", ..., B"),

and po = p(0) = v. Let R € N such that K;,...,K; C R[-1,1]". Note that such a
bound is part of the input. Then we have

p(6) — v = 57}% (”:k) P65t < 6(2R)" mz (“:k) < §(4R)".

i=1 i=1

Let € € Q with 0 < € < 1 be given; set

\
€ €

and T = -—.

fop=——
07 3(dR)n2r (™) 3

From the given well-presentation of Kj we can easily derive in polynomial time a
well-presentation of K} = K} + 6B"; hence we can apply Ay to the bodies
K1, K1, Kjy Kiyr, - K.

We call Ay with error parameter 7 to compute an approximation p of p = p(p) to
relative error 7. We take 0 = p as an approximation of v, and obtain

v — p — p — - - —wv
b—v| _|p v}gﬁ(Ip pl Ip U|>QST£+P Ut ()P
v P v P p v v v v
<7+ 260(4R)"27M) < g + 2_;; — e '
Hence ¢ is the desired approximation of v to relative error . 0

3.2. Mixed volumes of two proper bodies. We will now describe a ran-
domized algorithm for computing the mixed volumes ag, . . ., ax of two proper convex
bodies K and K5 of R™ recursively, where k < ¢(n), with

P(n) <n and Y(n)logy(n) = o(logn).

We use Proposition 1 to compute relative estimates of vol,(K; + xK3) for suitable
choices of nonnegative rational z. In particular, ag = vol,(K;) is already (approxi-
mately) available. For the inductive step suppose that, for some m € {1,...,%(n)},
estimates dg, ..., Gm—1 of the mixed volumes ay, ..., am,m-1, respectively, have already
been obtained to relative error, say Tlﬁ'

By Lemma 4 we may assume that

1< g = “:‘1 < (n+1)%m,

m

since the transformation underlying Lemma 4 changes a,, by a constant factor and
does not affect relative approximation. Clearly,

10 10
—1—1(n +1)™¥G,, 1 <ap, < 5 dm-1,

and this gives a first 1/(11/9)(n + 1)*™ approximation of a,.
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The main routine is divided into two parts. First, we apply a search technique
to improve the above approximation of ¢, to constant error. Then we run a similar
procedure to obtain the required approximation of a,, to relative error .

1. Search procedure: Set go = 1, and let

1 ifm=1;
Yo = max { f&’:‘_ﬁ , 1} otherwise.

Now, note that

Han-a Gm—1 > —g-af"—‘z form >2
- 11am_1

9alm-—l

and that the Aleksandrov-Fenchel inequality (1.2) implies that gm, > max{gm-1,1}.
This yields, for v = o,

(9)? 2
3.6 >y > | — 12 —Qm—1-
(3.6) qm_v_(H) Um-1 2 3qm-1
In the kth iteration of our search procedure we have v = -y, also satisfying (3.6),
hence,
Of = Qm—1 > m—1 = Q.
Tk dm
Now the Aleksandrov-Fenchel inequality implies that v, < g; for all j > m, hence,
inductively,

Wiaj < ’Y;cn_lamq =vg'or forall j >m.

Similarly for j < m — 2, we deduce from g;41,...,¢m-1 < 37 that

) m—j—1 3 r
'yiaj < (5) vlT‘lam_l < (—2—> yitor forall j <m —2,

whenever » > m. Let us choose r > 4m + 7 such that r = O(¢). Now we apply
Lemma 5 with the parameters

1
=Y, O0=0 a= - —
Y Yk ks 25 20. 3"+1(rm)m
So, using the volume algorithm of Proposition 1 with interpolation nodes € =j-hfor
3=0,...,7—1, where h = hy = X& and error bound 7 we obtain relative estimates
75 € Q of y; = p(£;) that can be used to produce in polynomial time an estimate &,
of ¢, that satisfies (3.2), whence

. < n 1 2 < ny 1
|ém — em| < o% m %+ﬁ <o m) 19"

But then we have for

n=1 and 7=

1
|Sk - am| S Edk.

Now, if
< 4-10 G,p—1 < 4

I P TR
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then

< 4 n 1 < Ok

a — [ —

m=\9 " 19)%% 2

whence yx < 4. So Yry1 = 2 still satisfies (3.6), and we can repeat the above
procedure with ygq1.

Note that 6g < ap—1 and 41 = %—O'k; this implies that after at most 8mlog{n+1)
iterations the process stops with a 4 € Q such that

40,1 4
> > —0k.
%k <05 =110k
This implies that
' 4 1 1
3.7 > > = - — > 2
(3.7) Ok 2 m 2 (11 19> Ok 2 70k,

hence ¢, /4 <4 < gy Note that 104,,—1/(11%) is already a 4-approximation of a,.
2. Approximation: Now that we know g¢,,, approximately, we are able to compute
Gm, the desired approximation of a,, to the relative error . We assume that 0 < e <1

and choose a positive rational 7y of size that is bounded by the size of the input such
that

1
770 S €r—m
As before, we apply Lemma 5, this time with the parameters

=4, o=0 o= 3 = and 1= —776
’ ’ 2 , )
i k n="o 15 - 37 (rm)™

Then we use again the volume algorithm of Proposition 1, now with interpolation
nodes §; = j-hfor j =0,...,r — 1, where h = %770, and error bound 7, and we
obtain relative estimates §; € Q of y; = p(¢;) that lead in polynomial time to an
estimate &,, of ¢, that satisfies (3.2), whence

N remf T e 2 n\e¢
|&m — em| < okmg (m) <T5.+7') < (m>£—10’k-
In conjunction with (3.7) this yields

I&m - am| < iak < eapm

for G = ém/(]) as required.
As for its running time, under the stated assumptions on 1 the algorithm uses

O(rmlog(n + 1)) = o(log®n) calls to the volume estimator

with error, where

= 0(3"r?™) = n°Y in the first part,

1 1+o0(1)
= <~> no) in the final step.

Nl

€

It follows that the algorithm is polynomial. Note that the running time is only
marginally worse than the running time of the volume estimator. In fact, suppose
that the volume algorithm (after rounding) has complexity

o) (;Fnl log(%)) :
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Then the running time of our mixed volume algorithm is bounded by

L o) 1
0 (o™ 1o8(3) )

Since by Lemma 6 the initial assumption that K; and K, are proper is irrelevant, we
have completed the proof of Theorem 10.

3.3. Extension to more than two bodies. Now we extend the algorithm
to the case of more than two bodies, thus proving Theorem 11. So, let-us consider
approximating

miy ma My1 N
A A
7 N,

V(K. KKy Koy Ky, Koy K, -0 Ky),

where Zf:l m; = n. We may assume again that K;, ..., K, are proper.
Suppose, recursively, we have an approximation procedure whenever only s — 1
different bodies occur with 3 < s < n. We want to extend it then to all s bodies by

considering the polynomial
m
m
@) = Y (7 Jass®

k=0
for m = mgs_1 + my,, where
my msa m—k k
Ny . ™ — -

’ ™~ 7

ap = V(,I{la"'7K;7---1Ks—2v-")KS—-Z‘vKS——la--'7Ks-—17KS7"'7K;)7

and using estimates of

miy ma m
q(éj) = V(kl, - ,Kl‘, ey Koo, ... s Ks—;,ks—l + ijs, L Ke 1+ §JKS‘) )
for suitably chosen interpolation points &, ...,&,,. Note that for the coefficients ay,

we still have the Aleksandrov-Fenchel inequality (1.2).

Suppose, now, that 1 satisfies the condition given in Theorem 11, and let my >
n — ¥(n). Then the degrees of the corresponding mixed volume polynomials are
bounded above by 4 (n). This allows us to simplify the procedure by using the whole
coefficient matrix. There is, however, one additional difficulty now. We do not have a
polynomial-time procedure for obtaining a “good” initial scaling of the sets anymore
(as Lemma 4 for s = 2) such that the ratio am—; /am of successive coefficients in the
polynomial is suitably bounded. We leave it as an open question whether there is
an analogue of Lemma 4 for s > 3 (with a bound that is independent of the well-
presentedness parameters p;, R;). However, the input yields vectors b; and numbers
p, Rt such that for each K; we have

b; + p]B" CK; Cb + RB"™,

and we may assume without loss of generality that all b; are 0. Using the monotonicity
of mixed volumes we obtain
tmt B
am P
and this implies that the number of iterations in the binary search part of the proce-
dure is bounded by O(log(R/p)). Moreover it follows that for each & > 0,

p(L+EB™ C K,_1 + &K, C R(1 +&)B™.

Hence, we have an additional factor log(R/p) as part of the input to the volume
approximator. With these modifications, Theorem 11 is just a corollary to Theorem
10.

<

f=vT S
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4. Related problems and applications. The present section contains vari-
ous applications of our results to problems in discrete mathematics, combinatorics,

computational convexity, algebraic geometry, geometry of numbers, and operations
research.

4.1. Counting integer points in integer polytopes. A polytope is called
integer if all vertices are integer vectors. We denote by P™(Z) the set of all integer
polyopes of R™. The lattice point enumerator G : P*(Z) — N is counting the number
of lattice points of lattice polytopes P, i.e., G(P) = |PNZ"|. The following polynomial
expansion of G(kP) is due to [Eh67], [Eh77].

PROPOSITION 5. There are functionals G; : P*"(Z) — Ny such that for every
PeP*(Z) and k € N,

G(kP) = i KGy(P).
=0

The polynomial on the right-hand side is often referred to as Ehrhart-polynomial,
see [St86] for basic facts on this polynomial. In case of lattice zonotopes one can
give an explicit formula for the Ehrhart-polynomial; this was used in [St91] to find
a generating function for the number of degree sequences of simple m-vertex graphs.
(In fact, there is a one-to-one correspondence between these degree sequences and
the integer points of a suitable zonotope.) The functionals G; have some interesting
properties; see e.g., the survey [GW93]. They may be viewed as “discrete” analogues
of the quermassintegrals

What is particularly important for our purpose is the fact that G,(P) is just the
volume of P. Hence, it follows from Proposition 5 that determining the number of
integer points of an integer polytope (that is presented in any of the standard ways)
is (at least) as hard as computing its volume. In fact, it is easy to obtain from any
standard presentation of an integer polytope P the same kind of presentation for kP
of size that is bounded by a polynomial in size(P) and size(k). Hence, if we had a
polynomial-time procedure for determining the number of lattice points of an integer
polytope, we could run the algorithm for each polytope 0- P,1- P,...,n- P, and
we would then obtain vol,(P) = G,(P) by computing the leading coefficient of the
Ehrhard-polynomial, just by solving the corresponding system of linear equations.
Hence, we obtain the following #P-hardness result as a consequence of the hardness
results for volume computation of [DF88] (for V- and H-polytopes) and of Theorem
1 (for S-zonotopes).

THEOREM 12. The problem of evaluating G(P) is #P-complete for integer V-,
integer H-polytopes, and for integer S-zonotopes.

Let us remark that in fixed dimension G(P) can be computed in a polynomial
time, [Ba94]; see also [DK97]. Note, further, that while this task is easy for V-
polytopes, deciding whether a given H-polytope P is an integer polytope is coNP-
complete; see [PY90]. For a survey of various other results on lattice point enumera-
tion see [GW93].

4.2. Some determinant problems and their relatives. We will proceed
by determining the complexity of the following determinant problems (using similar
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methods as in the proof of Theorem 1), and then draw some consequences for a
problem in computational convexity.

Let x be an integer constant. Then k-DETERMINANT is the following decision
problem: given positive integers n,s with s > n, and an integer n x s-matricz A, is
there an n X n-submatriz B of A such that det B = k?

#(x-DETERMINANT) asks for the number of different such matrices.

THEOREM 13. The problem # (k-DETERMINANT) is #P-complete for any s € Z;
Kk-DETERMINANT is NP-complete for k # 0.

Proof. Clearly, the first problem is in #P while the second is in NP. To prove the
hardness results, we use reductions from # SUBSET-SUM and SUBSET-SUM, respec-
tively; see the proof of Theorem 1. _

Let (m;a1,...,0m,a) be an instance of SUBSET-SUM (or, equivalently, of its
counting version), and define the matrix A} as in the proof of Theorem 1, but with
each a; replaced by 3; = (Jg| + 2)a; for j = 1,...,m, @me1 = —a replaced by
Bm+1 = —(I&| +2)a + 1, and § = k — 1. It follows readily that for each maximal
square submatrix B; of A} whose determinant does not depend on § we have

det By € {0,£061,...,£8m, £Bm+1}-
In particular, det By # k, unless x = 0.
Now, suppose & # 0. Recall from the proof of Theorem 1 that in the remaining
cases the index sets I of the matrices Bj in the determinantal expansion of vol,(Zs)
are in one-to-one correspondence with the subsets J of {1,...,m + 1} via

jeJ=2j—1el.

Further, it is easy to see that det B; =  implies m +1 € J, and, hence, det By = & if
and only J\ {m + 1} is a solution of the given instance of SUBSET-SUM. This settles
the problem for k # 0.

Now, let x = 0, and let us use the original matrix As of the proof of Theorem 1.
Among the (27’::23) — 2™+! subdeterminants for which det B; is independent of 8, we
have for each i = 1,...,m + 1 exactly 2™ + m2™~! subsets I of {1,...,2m + 3} of
cardinality m+-2 such that | det B;| = |a;|, and all other cases give det B; = 0. Hence,
with the choice of § = 0, the number of singular (m + 2) x (m + 2) submatrices would
allow us to compute the number of subsets J C {1,...,m+1} for which >, o; =0,
and this is the number of solutions of #SUBSET-SUM. 0

Let us point out that the (seemingly) similar problem of finding an nxn submatrix
B of maximal determinant of a given n x m matrix A with entries in {0, +1} is also
NP-hard even for quite small classes of such matrices A; [see GKL95, Theorem 5.2].
Clearly, this problem is closely related to the problem of finding a largest (with respect
to the volume) n-simplex in a V-polytope, while the NP-hardness result of Theorem
13 implies that, given a V-polytope P and a positive integer %, finding an n-simplex
S with vertices at vertices of P and vol,(S) = k is NP-complete. )

We remark that Theorem 13 stops short of proving that SINGULAR-SUBMATRIX,
the case k = 0 of k-DETERMINANT, is also NP-hard. To extend Theorem 13 to
SINGULAR-SUBMATRIX would be interesting since, in a geometric context, the exis-
tence of singular submatrices corresponds to configurations which are not in general
position. However, general position assumptions are made frequently and it would be
useful to know whether these assumptions can be checked efficiently; see [CKM82] for
some related results.

4.3. Volume of zonotopes and mixture management. The following mix-
ture management problem from the oil industry is studied in [GV89]. A seller has
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a stock of m bins which contain a mixture of chemical substances. Suppose that for
i€ {1,...,m} and j € {1,...,n}, the ith bin contains a nonnegative rational z;; of
volume units of chemical j. To satisfy the customer’s demand of a special mixture of
b; volume units of each chemical j, the seller takes a proportion A; with 0 < A; <1
of volume from each container such that

m
= Z)‘izij for all j € {1,...,n}.

i=1
Typically, the mixtures in each bin come with associated costs, and a linear program-
ming approach is used to satisfy the customer’s demand at minimum total cost. It
is pointed out in [GV89], however, that this is not a reasonable optimality criterium
if all bins have (approximately) the same costs, and this is the case for particular
applications in the oil industry.

Therefore [GV89] suggest the followmg approach Clearly, the zonotope

Z = Z[O, 1)z;, where z; = (zil,...,zm) fori=1,...,m,
i=1
describes all possible demands the seller can satisfy. Now, typically, there are many
possibilities to satisfy a demand b = (by,...,b,)7, and the question is how to do it
in such a way that “the widest possible variety of possible future demands” can still
be satisfied. More precisely, [GV89] suggests choosing for each b € Q™ a vector

A1 At m
L= : | eL):= el mib =) Nz
such that after taking A; volume proportions from bin i, respectively, the set
m
Z(l) = Z[O, 1](1 — /\1,)21
i=1

of the remaining possible mixtures has maximal volume. The volume as objective
functions is justified by the fact that if the seller has no information about the future
demands, it is reasonable to assume that the future demand is uniformly distributed.

Note that the function f(I) := vol,(Z(l)) is a homogeneous polynomial in the
(1 — A;)'s and (due to the Brunn-Minkowski theorem) has nice analytic properties.
But as we have seen in Theorem 1, evaluating f(\) is #P-hard. This means that,
while intriguing, this approach is not practical for large numbers of bins. However,
Proposition 1 suggests that a randomized varlant of the algorithm presented in [GV89]
may be worth considering.

4.4. Two applications of mixed volumes in combinatorics. Two interest-
ing applications in combinatorics can be found in [St81].

For the first, suppose that M is a unimodular matroid of rank n with represen-
tation vy,v2,...,vm € R™ over the reals; see [We76], [Wh87]. Let Sy,...,5s be a
partition of {1,2,...,m} into proper subsets, and let t,...,t; be nonnegative inte-
gers such that Ele t; = n. Then the number of bases of M with £; elements in S;
equals

131 ts

(t t)V(Zl,...,Zl,...,Zs,...,Zs),
1,---yls
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where Z; is the zonotope

Zi=>_[0,1y;.
JES:
Note that the total number b of bases of M can be computed easily because the
corresponding matrix A with columns vi, ...,V is unimodular and hence, by (2.1),

b= |detB;| =Y _(det By)® = det(AAT).
Ieg Ieg

As we will see now, this polynomial-time computability is destroyed for mixed volumes
of unimodularly generated zonotopes (unless #P = P).

THEOREM 14. The following problem is #P-hard:

Instance: n,s € N and my,...,ms; € N such that Zle m; = n, S-zonotopes
Zi = (n,84;Ci; 21, -+, 2i,s;), Jor @ = 1,...,s such that the (n X r)-matrizc A with
columns z; j is unimodular, where r = Zf=1 8.

Task: Compute the mized volume

my ma Mg
V(Z1,.... 20,22y 22y Dy s Zs)

Proof. We reduce the problem of computing the number of perfect matchings
in bipartite graphs to the given problem. For i = 1,2, let V; = {vi1,...,vin}, let
VinVa=0,let EC {{v1j,v2k}:5,k=1,...,n}, and set V =V; UV;. Let us now
consider the bipartite graph G = (V, E). Since it can be checked in polynomial time
whether G admits a perfect matching, we may assume that the number of perfect
matchings of G is not 0. We add an additional vertex vs n+1 to V2 and the edges
Eni1 = {{v1j,v2n41} : 5 = 1,...,n} to E and obtain a new bipartite graph G’ =
(V',E’). The node-edge incidence-matrix A’ of G’ is totally unimodular. It has
2n + 1 rows but is only of rank 2n. So we delete the row that corresponds to the
new vertex vsn+1, and we obtain a totally unimodular matrix A” of rank 2n with
2n rows and |E’| = |E| + n columns. The nonsingular (2n) x (2n)-submatrices B of
A" are in one-to-one correspondence with the spanning trees of G’. (Note that in
the totally unimodular case GF(2)-singularity is equivalent to R-singularity; see, e.g.,
[Sc86, section 21.1].) Now, we partition E’ into E,;, and the n subsets Ei,..., E,
where E; is the set of those edges of E which contain va; (j = 1,...,n). Further, for
j=1,...,n+1, let Z; be the zonotope that is generated by the column vectors of
A" that correspond to E;. Then by (2.3), the mixed volume

n
! [P A —
'(—2:;')—'V(Z1,Z2,...,Zn,Zn+1,...,Zn+1,)
is just the number of those spanning trees of G’ that contain all edges of E,41 and
for j =1,...,n exactly one edge of E;. :

It is easy to see that the spanning trees with this property are in one-to-one ,
correspondence with the perfect matchings of G. ]

For the second application let P = {p1,p2,...,Ps,q1,42,---,qn-s} De a poset,
and suppose that py < ps < --- < ps. For j =1,2,...,s let N(é1,42,... ,is) denote
the number of linear extensions ¢ of P such that o(p;) = i;; see [St86]. Then, with
io =0 and is+1 :n-l-l,

i1—i0—~1 dap1—is—1
~ A

N(iy,ig,... is) = (n—s)W(Ko,...,Ko,-..,Ks, ..., Ks),
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where K; C R*™° (j = 0,1,...,s) are the order polytopes, i.e., x € K if and only if
foralli=1,2,...,n—s,

0<z; <1,

o <zpifg<q (k=1,2,...,n—3s),
z; = 0if 7 > 0 and ¢; < pj,

z; =1if j <sand g > pjsi.

These polytopes reflect the poset “between” p; and p;4 on the subset {q1,...,qn—s}-
By the Aleksandrov-Fenchel inequality (applied to in the case s = 1) it follows that
N(i)2 > N(i—1)N(+1) fori = 1,...,n—1 and, hence, the sequence N(1),...,N(n)
is unimodal. Observe that the evaluation of N(iy,i5...,1,) is #P-complete even when
s = 0, [BW92]; in this case, N is the number of linear extensions of the poset. It
follows that computing the volume of H-polytopes is #P-hard in the strong sense.

4.5. An application of mixed volumes in algebraic geometry. Let
S1,82,...,8, be subsets of Z", and consider a system F = (fi,..., f,) of Laurent
polynomials in n variables such that the exponents of the monomials in f; are in S; for
all i =1,...,n. Suppose, further, that F is sparse in that the number of monomials
having nonzero coefficients is “small” as compared to the degree of the f;. To fix the
notation, let, fori =1,...,n,

f'L(x) = Z C((]'i)xq,

qES;

where f; € C[ml,zl'l,...,xn,x,jl], and z7 is an abbreviation for z¥' --.z; z =
(z1,...,zpn) are the indeterminates and ¢ = (q1,...,gn) the exponents. Further, let
C* =C\ {0}.

Now, if the coeflicients c,(;) (g € S;) are chosen “generically,” the number L(F) of
distinct common roots of the system F in (C*)™ depends only on the Newton polytopes
P; = conv S; of the polynomials (see [GKZ90]); more precisely,

(4.1) LIFy=n!-V(P,P,, ..., P).
Moreover, if F has less then n!V{Py, ..., P,) distinct roots, there must exist a nonzero
integer vector a = (a1, ...,a,) such that the “homogenized” system

Fa:(flaa"'vfr?)v

where

o) = Z c((j)xq, Sy = {q €S;:alg=min{aTq:qe Si}}
q€ST

has a root in (C*)™. These results become more intuitive by noting that both sides
of (4.1) are invariant under unimodular transformations of the exponent vectors and
under translations by integer vectors. (Each translation of a set S; by a vector p(*)
corresponds to a multiplication of f; with the monomial 22 .) Observe, further, that
the Minkowki sum of the Newton polytopes Pj, ..., P, is the Newton polytope of the
product of the corresponding polynomials whence both sides of the equation are also
additive in each component.

The above theorem was first proved in [Be75]; see also [BZ88, Chapter 27].

A convex geometric approach (utilizing the above connections) was recently de-
veloped for computing the isolated solutions of sparse polynomial systems; see [HS95],
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[VG95], and [Ro94]. The mixed volumes are determined by computing a “mixed sub-
division” of the P; using lifting methods similar to those of [Sc94] stated in subsection
2.3. See also [GKZ90] and [GS93] for further results on Newton polytopes and [VC92],
[PS93], [CE93], [CRI1], [VVCY4], [ERY4], [EC95], [LRWI6], [Ro94], [R097], and the
papers quoted therein for further results on counting the roots of polynomial systems.

Acknowledgment. We are grateful to Mark Jerrum for providing the proof of
Lemma 2.
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