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Abstract

In this paper a Markov chain for contingency tables with two rows is defined.
The chain is shown to be rapidly mixing using the path coupling method. The
mixing time of the chain is quadratic in the number of columns and linear in the
logarithm of the table sum. Two extensions of the new chain are discussed: one
for three-rowed contingency tables and one for m-rowed contingency tables. We
show that, unfortunately, it is not possible to prove rapid mixing for these chains
by simply extending the path coupling approach used in the two-rowed case.

1 Introduction

A contingency table is a matrix of nonnegative integers with prescribed positive row
and column sums. Contingency tables are used in statistics to store data from sample
surveys (see for example [3, Chapter 8]). For a survey of contingency tables and related
problems, see [8]. The data is often analysed under the assumption of independence. If
the set of contingency tables under consideration is small, this assumption can be tested
by applying a chi-squared statistic to each such table (see for example [1, 7]). However,
this approach becomes computationally infeasible as the number of contingency tables
grows. Suppose that we had a method for sampling almost uniformly from the set of
contingency tables with given row and column sums. Then we may proceed by applying
the statistic to a sample of contingency tables selected almost uniformly.

The problem of almost uniform sampling can be efficiently solved using the Markov
chain Monte Carlo method (see [13]), provided that there exists a Markov chain for
the set of contingency tables which converges to the uniform distribution in polynomial
time. Here ‘polynomial time’ means ‘in time polynomial in the number of rows, the
number of columns and the logarithm of the table sum’. If the Markov chain converges
in time polynomial in the table sum itself, then we shall say it converges in pseudopoly-
nomial time. Approximately counting two-rowed contingency tables is polynomial-time
reducible to almost uniform sampling, as can be proved using standard methods. More-
over, the problem of exactly counting the number of contingency tables with fixed row
and column sums is known to be #P-complete, even when there are only two rows
(see [11]).

The first Markov chain for contingency tables was described in [9] by Diaconis and
Saloff-Closte. We shall refer to this chain as the Diaconis chain. For fixed dimensions,



they proved that their chain converged in pseudopolynomial time. However, the con-
stants involved grow exponentionally with the number of rows and columns. Some
Markov chains for restricted classes of contingency tables have been defined. In [14],
IKannan, Tetali and Vempala gave a Markov chain with polynomial-time convergence
for the (-1 case (where every entry in the table is zero or one) with nearly equal margin
totals, while Chung, Graham and Yau [6] described a Markov chain for contingency ta-
bles which converges in pseudopolynomial time for contingency tables with large enough
margin totals. An improvement on this result is the chain described by Dyer, Kannan
and Mount [11]. Their chain converges in polynomial time whenever all the row and
column sums are sufficiently large, this bound being smaller than that in [6].

[n [12], Hernek analysed the Diaconis chain for two-rowed contingency tables using
coupling. She showed that this chain converges in time which is quadratic in the num-
ber of columns and in the table sum (i.e. pseudopolynomial time). In this paper, a new
Markov chain for two-rowed contingency tables is described, and the convergence of the
chain is analysed using the path coupling method [4]. We show that the new chain con-
verges to the uniform distribution in time which is quadratic in the number of columns
and linear in the logarithm of the table sum. Therefore our chain runs in (genuinely)
polynomial time, whereas the Diaconis chain does not (and indeed cannot). In the final
section we discuss two extensions of the new chain. The first applies to three-rowed
contingency tables and the second applies to general contingency tables with m rows.
It is not known whether these chains converge rapidly to the uniform distribution, and
it is quite possible that they do. However, we show that it is seemingly not possible to
prove this simply by extending the path coupling approach used in the two-rowed case.

T'he structure of the remainder of the paper is as follows. In the next section the path
coupling method is reviewed. In Section 3 we introduce notation for contingency tables
and describe the Diaconis chain, which converges in pseudopolynomial time. We then
outline a procedure which can perform ezact counting for two-rowed contingency tables
in pseudopolynomial time. A new Markov chain for two-rowed contingency tables is de-
scribed in Section 4 and the mixing time is analysed using path coupling. The new chain
is the first which converges in genuinely polynomial time for all two-rowed contingency
tables. In Section 5 two extensions of this chain are introduced and discussed.

2 A review of path coupling

In this section we present some necessary notation and review the path coupling method.
Let € be a finite set and let M be a Markov chain with state space Q, transition matrix
P and unique stationary distribution x. If the initial state of the Markov chain is & then
the distribution of the chain at time ¢t is given by P!(y) = P!(x,y). The total variation
distance of the Markov chain from 7 at time ¢, with initial state z, is defined by

drv (Pl m) = 5 Y 1P asy) = 7).
yesf

A Markov chain is only useful for almost uniform sampling or approximate counting if
its total variation distance can be guaranteed to tend to zero relatively quickly, given
any initial state. Let 7,(c) denote the least value T such that drvy (P%, 7) < ¢ for all



t > T. Following Aldous [2], the mizing time of M, denoted by 7(¢), is defined by
() = max {r.(¢) : z € Q}. A Markov chain will be said to be rapidly mizing if the
mixing time is bounded above by some polynomial in log(|©2]) and log(¢~!), where the
logarithms are to base e.

There are relatively few methods available to prove that a Markov chain is rapidly
mixing. One such method is coupling. A coupling for M is a stochastic process (X, Y;)
on QxQ such that each of (X¢), (Y%), considered marginally, is a faithful copy of M. The
Coupling Lemma (see for example, Aldous [2]) states that the total variation distance
of M at time ¢ is bounded above by Prob[X; # ¥}], the probability that the process has
not coupled. The difficulty in applying this result lies in obtaining an upper bound for
this probability. In the path coupling method, introduced by Bubley and Dyer [4], one
need only define and analyse a coupling on a subset S of Q x €. Choosing the set S
carefully can considerably simplify the arguments involved in proving rapid mixing of
Markov chains by coupling. The path coupling method is described in the next theorem,
taken from [10]. Here we use the term path to refer to a sequence of elements in the
state space, which need not form a sequence of possible transitions of the Markov chain.

Theorem 2.1 Let § be an integer valued metric defined on Q x Q which takes values in

{0.....D}. Let S be a subset of Q x Q such that for all (X;,Y;) € Q x Q there ezists a
path

‘Xt:Z07 Zl7"'7Z7‘:}/t

between Xy and Yy where (Zy, Ziy1) € S for 0 <1< r and Y12 8(Z1, Zi31) = 6(X,, ).
Define a coupling (X, Y) = (X', Y') of the Markov chain M on all pairs (X,Y) € S.
Suppose that there exists 3 < 1 such that

E [5(X’, Y')] < A5(X,Y)
Jor all (X, Y) € S. Then the mizing time 7(¢) of M satisfies

log(De1)

3 Contingency tables

Let = (ri....,ry) and s = (sy,...,s,) be two positive integer partitions of the
positive integer N. The set 3, ; of contingency tables with these row and column sums
is defined by

T m
V.= 2 e N :ZZU =r; for 1 <:< m,ZZ,-j =s;for 1<j<n,y. (1)

7=1 =1

The problem of approximately counting the number of contingency tables with given
row and column sums is known to be #P-complete even when one of m, n equals 2



(see [11, Theorem 1]). However the 2 x 2 problem can be solved exactly, as described
below.
For 2 x 2 contingency tables we introduce the notation

ac7b = 2(a,c—a),(b,c—b)

where 0 < a, b < ¢. Now

e, = {[ (b_i; (CH_(Z:Q ] : max {0,a+ b — ¢} gigmin{a,b}}.

Hence
¢ |= qmin{abllifatbse (2)
YT e - max{a, b} + 1 ifatb> e

Choosing an element uniformly at random from T3, is accomplished simply by choosing
i € {max{0.a4+b—c},... ,min{a,b}} uniformly at random and forming the corre-
sponding element of 17 p; that is, the element of T, with 7 in the north-west corner.

For the remainder of the section, we consider two-rowed contingency tables. Here
m =2 and r = (r{,ry), $ = (s1,...,8,) are positive integer partitions of the positive
integer \,

We now describe a well-known Markov chain for two-rowed contingency tables. In [9],
the following Markov chain for two-rowed contingency tables was introduced. We refer
to this chain as the Diaconis chain. Let r = (ry,r;) and s = (sq,...,s,) be two positive
integer partitions of the positive integer N. If the current state of the Diaconis chain
18 X € ¥, ;. then the next state X’ is obtained using the following procedure. With
probability 1/2 let X’ = X otherwise choose two columns uniformly at random, choose
1 € {l.—1} uniformly at random and add the matrix

(£

to the chosen 2x 2 submatrix of X. If X' ¢ ¥, ; then let X’ = X. It is not difficult to see
that this chain is ergodic with uniform stationary distribution (see, for example [12]).
This chain was analysed using coupling by Hernek [12]. She proved that the chain is
rapidly mixing with mixing rate quadratic in the number of columns n and in the table
sum N. Hence the Diaconis chain converges in pseudopolynomial time.

To close this section, we show that |%, ;| can be calculated ezactly using O(n N?)
operations. Hence exact counting is achievable in pseudopolynomial time, and approxi-
mate counting is only of value if it can be achieved in polynomial time.

Now |, .| can be calculated using

'ST‘,S| = Z |E(T1—I,T2+sn—x)y(sh”.73"_1)|7 (3)

where the sum is over all values of z such that max{0,s, — r;} < z < min {ry,s,}.
This is a dynamic programming problem (see for example, [15]). We can evaluate |3, |



exactly using (3), first by solving all the possible 2 x 2-dimensional problems, then using
these results to solve the 2 x 3-dimensional problems and so on. This procedure costs
O(n N?) integer additions, and so |5, ;| can be calculated exactly in pseudopolynomial
time. Moreover, the cost of calculating |, 5| in this manner is O(n) lower than the
best-known upper bound for the cost of approzimating |Z, 5| using the Diaconis chain.

4 A new Markov chain for two-rowed contingency tables

For this section assume that m = 2. A new Markov chain for two-rowed contingency
tables will now be described. First we must introduce some notation. Suppose that
X € Y, where r = (rq,r2). Given (ji,J2) such that 1 < j; < jo < n let Tx(J1,72)
denote the set T, where a = Xy ; + Xy, b=sj, and ¢ = s;, +s;,. Then Tx(j1,j2)
is the set of 2 x 2 contingency tables with the same row and column sums as the 2 x 2
submatrix of X consisting of the jith and jyth columns of X. (Here the row sums
may equal zero.) Let M(X, ;) denote the Markov chain with state space X, ; with the
following transition procedure. If X is the state of the chain M (%, ;) at time ¢ then
the state at time ¢ 4+ 1 is determined as follows:

(i) choose (j;1.J2) uniformly at random such that 1 < j; < jy < n,
(ii) choose & € Tx (J1, j2) uniformly at random and let

x(k,) if j=y forle {1,2},
Xi(k,j) otherwise

Xep1(k,j) = {

for 1 <k<2,1<j<n.

Clearly M (X, ;) is aperiodic. Now M (3, ;) can perform all the moves of the Diaconis
chain, and the Diaconis chain is irreducible (see [12]). Therefore M(%, ;) is irreducible,
so M(X, ;) is ergodic. Given X, Y € X, ; let

S(X,Y) = X1, — Yl
j=1

Then ¢ is a metric on ¥, ; which only takes as values the even integers in the range
{0.....N}. Denote by £(X,Y) the minimum number of transitions of M(X, ;) required
to move from initial state X to final state Y. Then

0 < u(X,Y) < 6(X,Y)/2

using moves of the Diaconis chain only (see [12]). However, these bounds are far from
tight. as the following shows. Let K(X,Y) be the number of columns which differ in X
and Y. The following result gives a bound on (X, Y) in terms of K(X,Y) only.

Lemma 4.1 If XY € &, , and X #Y then [K(X,Y)/2] < p(X,Y) < K(X,Y) - 1.



Proof. Consider performing a series of transitions of M(X,,), starting from initial
state X and relabelling the resulting state by X each time, with the aim of decreas-
ing K(X,Y). Each transition of M(X, ;) can decrease K(X,Y) by at most 2. This
proves the lower bound. Now X # Y so K(X,Y) > 2. Let j; be the least value of j
such that X and Y differ in the jth column. Without loss of generality suppose that
A1 > Yi;,. Then let jy be the least value of j > j; such that X;; < Yi;. Let
ro=min{Xyj, =Yy, Y1, — X1} In one move of M(X, ) we may decrease X ;,
and X ;, by x and increase X ;, and X, j, by z. This decreases K(X,Y) by at least
I. The decrease in K(X,Y) is 2 whenever X ;, — Yy ; =Yy, — X1 j,. This is certainly
the case when K(X,Y) = 2, proving the upper bound. 0

This result shows that the diameter of M(%, ;) is (n — 1), while the diameter of the
Diaconis chain is N/2. In many cases, N is much larger than n, suggesting that the new
chain M(X, ;) might be considerably more rapidly mixing than the Diaconis chain in
these situations. The transition matrix P of M(Z, ;) has entries

Yiicn (NTx (i) X =Y,
S ((g)}TX(‘jl’jQ)D_l if X,V differ in jith, joth columns only,

0 otherwise.

Il all differences between X and Y are contained in the jith and j;th columns only then
Tx(j1-J2) = Iy (j1, J2)- Hence P is symmetric and the stationary distribution of M (3,5)
is the uniformn distribution on 3, ;. The Markov chain M (X, ;) is an example of a heat
bath Markov chain, as described in [5]. We now prove that M (X, ;) is rapidly mixing
using the path coupling method on the set S of pairs (X,Y) such that ¢(X,Y) = 2.

Theorem 4.1 Letr = (rq,ry) and s = (s1,...,5,) be two positive integer partitions of
the positive integer N. The Markov chain M(X, ;) is rapidly mizing with mizing time
7(2) satisfying

n{n — 1)

7(e) < log(Ne™1).

Proof. Let X and Y be any elements of ¥, ;. It was shown in [12] that there exists a
path

X =2y Z1,....24=Y (4)

such that ¢(Z), Zi41) = 2for0 <l < dand 7, € &, ;for0 < [ < d, where d = P(X,Y)/2.
Now assume that ¢(X,Y) = 2. Without loss of generality

. -1 10 --- 0
e I T T R

We must define a coupling (X,Y) — (X", Y) for M(Z, ) at (X,Y). Let (ji,52) be

chosen uniformly at random such that 1 < j; < j, < n. If (J1,72) = (1,2) or 3 <



Ji < Ja2 < n then Tx(j1,72) = Ty (j1,j2). Here we define the coupling as follows: let
v € Tx(J1,J2) be chosen uniformly at random and let X’ (respectively Y’) be obtained
from X (respectively Y') by replacing the j;th column of X (respectively Y) with the /th
column of @, for [ = 1,2. If (5, j2) = (1,2) then ¢(X',Y’) = 0, otherwise ¢(X',Y’) = 2.

[t remains to consider indices (j1, j2) where j; € {1,2} and 3 < j; < n. Without loss
of generality suppose that (ji,j2) = (2,3). Let Tx = T'x(2,3) and let Ty = Ty (2,3).
Let « = X354 X1 3, b= s and ¢ = s, + s3. Then

Ty = }f,b and Ty = TC+1,b-

a

Suppose that @« 4+b > ¢. Then, relabel the rows of X and Y and swop the labels of the
second and third columns of X and Y. Finally interchange the roles of X and Y. Let
a' V. ¢ denote the resulting parameters. Then

d+b=(c—a-1+(c=b=c—(a+b-—c)—1<c=".

Therefore we may assume without loss of generality that a + b < c. There are two cases
depending on which of @ or b is the greater.
Suppose {irst that a > b. Then

T‘\':{[ (b—if\j (c-l—iX(—aa_—i)z; ] :OSiXSb}

and

N 1y (a+1—1y) ) .
Iy = {[ (b—iy) (c+iy—a—-b—1) ] sy 5"}'
Choose iy € {0....,b} uniformly at random and let iy = ix. Let X' (respectively Y”)
be obtained from X (respectively Y) by replacing the jith column of X (respectively Y)
with the /th column of @ (respectively y) for I = 1,2. This defines a coupling of M(3, )
at (X.Y') for this choice of (ji,j2). Here ¢(X’,Y') = 2.
Suppose next that a < b. Then

S (PR R

and
' ty (a+1—iy) .
T :0 <L < .
h {[(b—iy) (c+iy —a—b—1) 0<iwy<a+l
C‘hoose iy € {0,...,a} uniformly at random and let

- 3% with probability (a — ix + 1)(a + 2)71,
ty =
) ix +1 with probability (ix + 1)(e+2)7L.

{fee{0,....a+ 1} then
Probliyy =i] = Problix =1]-(a =i+ 1)(a+2)7"
+Problix =i —1]-((i = 1)+ 1)(a+2)7"
= (@+ D) ((a—i+)(a+2)" +i(a+2)7")
= (a+2)"N



T'herefore each element of {0,...,a+ 2} is equally likely to be chosen, and the coupling

is valid. Let @ be the element of T'x which corresponds to ix and let y be the element of

1y which corresponds to iy. Let X', Y’ be obtained from X, Y as above. This defines

a coupling of M (X, ;) at (X,Y) for this choice of (ji,j2). Again, ¢(X',Y’) = 2.
Putting this together, it follows that

E [6(X',Y")] =2 (1 — <Z>_ > <2=9¢(X,Y).

Let 3 =1~ (g’)*l. We have shown that E[¢(X',Y')] = B ¢(X,Y), and clearly § < 1.
Therefore M(X, ;) is rapidly mixing, by Theorem 2.1. Since ¢(X,Y) < N for all
XY € Y, ¢ the mixing time 7(¢) satisfies

o n(n—1)
7(g) < 5

as stated. a

log(Ne™h),

-

5 Two extensions of the two-rowed chain

[n this section we describe two natural extensions of the Markov chain M (X, ;). The first
is to three-rowed contingency tables and the second is to general m-rowed contingency
tables. We show that the above path coupling approach cannot be successful for either of
these chains without major modifications. This does not imply that a different argument
might not be found to establish rapid mixing of either chain.

By analogy with the above, we will work with the metric

VIXY) =0 X = Vgl (5)

=1 j=1

Note that, when m = 2 we have ¢(X,Y) = 2¢(X,Y) for all X,Y € ¥, ;. Also
»(X,Y) > 4 whenever X # Y and X,Y € ¥, ,. Consider the Markov chain which
acts on ¥, o by replacing a 2 X 2 submatrix of the current state, chosen uniformly at
random, by another 2 x 2 matrix with the same row and column sums. This chain is

not irreducible: for example, the chain cannot move from X to Y using any sequence of
H‘Z‘lllﬁiti()ll&. where

100 0 01
X=101 0], Y=110 0}. (6)
0 01 6 1 0

Therefore we must define different Markov chains for contingency tables with more than
fwo rows. We shall use path coupling with respect to the metric ¥». The set S used in
the path coupling is defined below.

Definition 5.1 Let S C X, x ¥, be the set of all pairs (X,Y) € ., X T, 5 which
satisfy both of the following conditions:



(i) there erists k > 2 such that Y(X,Y) = 2k,

(ii) there exist indices 1 < iy,...,ix < m, 1 < ji,...,Jr < n such that the {i1} are
pairwise distinct, the {j;} are pairwise distinct,
Y =X, +1 for 1 <1<k, Y; =X —1for 1 <I<k,

14+1:J 1.l

and Y; ;. =X — 1.

Nk

5.1 A Markov chain for three-rowed contingency tables

Consider the following natural extension of the Markov chain M(E, ) to the case of
three-rowed contingency tables. Here r = (rq,rp,73) and the state space is Yrs A
transition of the extended chain is performed as follows: given a 3 x n matrix X, choose
three columns of X uniformly at random to give a 3 x 3 matrix with certain row and
column sums. From the set of all 3 x 3 matrices with these row and column sums, choose
a matrix uniformly at random and replace the three selected columns of X with this
matrix.

It is not difficult to show that this Markov chain is ergodic and the stationary
distribution is the uniform distribution on the set 2, s of 3 X n contingency tables. Note
that selecting an element uniformly at random from a set of 3 x 3 contingency tables
can be easily achieved in polynomial time. Let us investigate the mixing time of this
chain using path coupling. We use the metric ¢ defined in (5), and the set S of pairs
given in Definition 5.1 (where m = 3).

We now describe a case which is critical in designing a coupling of the extended
chain on elements of S. Let r = (ry,ry,r3) and s = (s1, 52, 83) be two partitions of a
positive integer, where the r; are nonnegative and the s; are positive. Let y = Y s and
let Yy = N #1r2—1,0),5- Suppose that we could define a joint probability distribution
f Yy x Xy —= R such that

CUy=Y > fl@yiley <2 (7)

re€lx yEly

In order to establish rapid mixing of the extended chain using the path coupling method
with the set S and the metric 1, it suffices to establish (7). Conversely, if we cannot
establish (7) then we cannot establish rapid mixing of the chain by path coupling using
S and ¢. We do not prove this statement, but instead show that (7) fails.

A joint probability distribution f for ¥x x ¥y corresponds to a solution of a related
transportation problem, as described in [5]. A joint probability distribution f which
minimises C'(f) corresponds to an optimal solution Z of the transportation problem.
"The coupling corresponding to f is called an optimal coupling, and C'(f) is referred to
as the cost of an optimal coupling. (Note that an optimal coupling is not the same as a
minumal coupling referred to in the literature.) The cost of an optimal solution of the
related transportation problem is |Yx||Sy| times the cost of an optimal coupling.

We now give a concrete example of such a pair where the cost of the optimal coupling
is greater than 2. Let x be the set of 3 x 3 contingency tables with row sums (2,2, 1)
and column sums (2,2,1), and let &y be the set of 3 x 3 contingency tables with row



sums (3.1, 1) and column sums (2,2,1). Then |¥x| = 11 and |Xy| = 8. The cost of
an optimal solution of the related transportation problem is 180, as can be verified by
direct computation. Therefore the cost of an optimal coupling is 45/22, which is greater
than 2. This example shows that we cannot easily prove that this chain for three-rowed
contingency tables is rapidly mixing using path coupling on the set .S with the metric
. We cannot conclude from this that the chain is not rapidly mixing or that it might
not be possible to prove rapid mixing using another set of pairs .S or another metric.

5.2 A Markov chain for m-rowed contingency tables

Here let r = (ry,....r,) and s = (s1,...,8,) be two positive integer partitions of the
positive integer V. Consider the Markov chain for ¥, ; with the following transitions:
from current state X, choose two rows of X uniformly at random and replace them by
a 2 X n matrix with the same row and column sums, chosen uniformly at random. It
is not difficult to show that this chain is ergodic and that the stationary distribution is
the uniform distribution on %, .

We will investigate the mixing time of this chain using path coupling, using the
metric ¢* defined in (5) and the set S of pairs given in Definition 5.1. As in the previous
subsection, there is one case which is critical in defining a coupling on elements of S.
et r = (ri,ry) and s = (s1,...,8,) be two partitions of a positive integer, where
the r; are positive and the s; are nonnegative. Let ¥y = ¥, and let ¥y = %,
where ¢ = (s + 1,82 — 1,83,...,8,). Suppose that we could define a joint probability
distribution [ : ¥y x ¥y — R such that

ChH=>d Y flayiley <2 (8)

r€Xx yELy

If we cannot establish (8) then we cannot prove that the chain is rapidly mixing using
path coupling on the set .S and the metric ¢». We now demonstrate that (8) fails. As
above, a joint probability distribution f for ¥y x Xy corresponds to a solution of the
related transportation problem.

We now present a concrete example where the cost of the optimal coupling is greater
than 2. Consider the set Y x of contingency tables with row sums (3, 2) and column sums
(2,2,1), and the set Xy of contingency tables with row sums (3,2) and column sums
(3.1,1). Then |Xx| = 5 and |Yy| = 4. It may be verified by direct computation that
the cost of an optimal solution of the related transportation problem is 44. Therefore
the cost of an optimal coupling is 11/5, which is greater than 2.

This example shows that it is not possible to prove that the Markov chain described
in this subsection is rapidly mixing, using the path coupling method on the set S with
the metric ¢. It may of course be possible to establish rapid mixing using path coupling
with a different set S or a different metric. Note that transitions of this chain may be
approximately performed using the Markov chain M(X, ;) to sample almost uniformly
from two-rowed slices of m-rowed contingency tables. This introduces an uncertainty
into the transition procedure which results in an increase in the mixing time. Whether
this approach is of any practical use depends critically on whether the Markov chain is
rapidly mixing, which remains to be seen.
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