MINIMAL RESOLUTIONS OF IDEALS ASSOCIATED TO
TRIANGULATED HOMOLOGY MANIFOLDS

by
John A. Eagon

The Roberts-Weyman bicomplex is useful in studying minimal resolutions over A of
A/I where A = k[z1,...,2x], z; an indeterminate, k a field, is graded in the usual way and
I is a proper homogeneous ideal (see [Rob]). We present a description of this bicomplex
and also a closely related bicomplex with which we construct minimal resolutions of I,
when I is minimally generated by polynomials of the same degree. We present examples of
this latter bicomplex where I is a square free monomial ideal. We associate to I a certain
abstract finite simplicial complex, (not the usual “Stanley-Reisner” association) and note
what happens when it is a triangulated homology n-manifold without boundary. We look
at the classical case of 2-manifolds, with special reference to the well-known six vertex .
triangulation of the real projective plane. tovus with 7 aud Kley pellle cwidb g yevtices.
The bicomplexes turn out to be “partially split” in the sense of [Eag] and we use the
machinery described in that paper.

I. The Roberts-Weyman bicomplex and a related bicomplex

Let I, denote the k-vector space of homogeneous polynomials in I of (total) degree
g and (A/I), the k-vector space of cosets of I that can be represented by homogeneous
polynomials of degree ¢, so that as vector spaces we have the short exact sequences for all
q:
0— I — Ay — (A/I)g =0

and ®,I, = I, ®,4, = A, &(A/I); = A/I as direct sums over k. Let Z; = z; + I be
the coset of I containing z; in A/I. From now on all tensor products are over k, unless
otherwise stated.

We now consider the ring AQ A/I. In thisring 2; ®1+1®%1, 22 ®1+1®%2,...,Tn®
|t| ® Zn, is a regular sequence. This is because A ® A/I is isomorphic to A/llzy,...,Zx]
and in R[zy...z,], z1+a1,...,Zn+anisa regular sequence for any R and any elements
a;. Thus the Koszul complex K, corresponding to the above sequence over A Q® A/I has
all its homology concentrated in degree 0, and

N A®A/I
Ho(k) = (z:1®1+1®%1,2, @1 +1®32s,...)

which is isomorphic to A/I over A ® A/I under the isomorphism which takes the coset of
2;®1 to —Z;. Thus K is a resolution of A/I over A® A/I. We want a minimal resolution
over A. The general result in [Eag] permits us to construct one via spectral sequences if
we have bicomplexes with certain properties. The bicomplexes we shall present have these
properties.



The modules of the above mentioned Koszul complex K may be represented as follows:
Let V be a k-vector space of dimension n with selected basis denoted by z,...,z,. Then
Km = A® A/I @ A™V, where A™V is the mth exterior power of V over k. We will
denote the basis of A™V corresponding to the basis zy,...,z, by “square free monomials”
T = Ty Tiy..-Tip, 11 <l < ...< tm. The usual wedge symbols are omitted. Exterior
multiplication is denoted by juxtaposition. We have the usual “face operators”

9 : AN™V — A™TLY

s = {#7fee =i )

where the signs are chosen in any manner so that
0;0; =0, 0;0; + 0;0; = 0.

Composition of operators is also denoted by juxtaposition. The maps 0 : K, = Ky of
K may be described as

a=Z(x,~®1+1®x,-)®6,-
=1
where z; ® 1 + 1 ® z; denotes multiplciation by that element of A® A on A® A/I and §;
is the ith face operator on AV.

We now consider the following two doubly indexed arrays of vector spaces which are
also A modules by left action for all integral values of p and g: :

Kpq=A®(A/I)_q ® NPTV

and

E,,=A®I_,® ATV

Note that these arrays are non-zero only in a certain portion of the “fourth quadrant,”
namely ¢ <0, 0 < p+ ¢ < n and hence p > 0. This is indicated by the shaded portion of
the following diagram:




Each of these arrays becomes a bicomplex (in the sense of [McL] page 340) by intro-
duction of the A-module maps

do=zn:1®$i®ai

i=1
= zn:m ®R1Q 0
=1

e.g.
do: A® (A/D)_q @ NPTV = A® (A/I)—g1 @ NPTV

(We use the symbols dy and d; as in [Eag] instead of &' and 0" as in [McL].)

One checks easily that Tot(K..) is the Koszul complex K above, since clearly 0 =
do + di. Since the two bicomplexes are in the fourth quadrant the spectral sequences
obtained by filtering each by “columns” is convergent (see [McL], Chapter XI, Prop. 3.2).
The spectral sequences obtained by filtering by “rows” will be ignored throughout.

Thus the E* term of K. . (denoted X°°) has the property that K;° = 0 unless p+¢g =0
and K5°_, provides a filtration of H, (Tot(K..)) = A/I.

Note that the map dy is the same as 1 ® d where d is the k-vector space map Sor,Ti®
0;. As explained in [Eag) there exist (many) k-maps

dt : (A)D)_ 11 @ NPTV — (A/D) g @ APYTV

with the three properties

1.) dd*td =d
2.) dtdd+ = d*
3) (d*)2 =0

Similarly for E... Such a map d* is called a differential quasi-inverse of d. The three
properties

1.) do(1 ® dt)do = do
2) (1®dN)dy(1®dT)=1Q@d*"
3)(1®d*t)2 =0

follow immediately, and thus both bicomplexes are partially split. By the main theorem
of [Eag, page 346] the derived wall complex of K.. provides a minimal resolution of A/l
over A. This is proved in [Rob]. A key fact is that ICl _p =0 unless p= 0, and K§_o=A
where ICI, is the E' term of the above mentioned spectral sequence associated to K..
Thus the E* term is non-zero only at K§% which implies that Kg% = ~ A/l

From this point on we will concentrate on the bicomplex E... As noted above it 1s
partially split once d* is chosen. The needed properties of Tot(E .) may be derived from
those of Tot(K..). It is clear that for ech p, g we have exact sequences

0— Epq— Kpg— Kpg—0
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where /Cp g =ARA_4® APT9V . These are bicomplex maps with dy and d; described
as before and K. . corresponds to the ideal I = 0. Thus the homology of Tot(K..) is

concentrated in degree 0 with H°(TotK..) = A/(0) = A taking the Tot of these exact
sequences we have

0 — Tot(E..) — Tot(K..) = Tot(K..) = 0

The corresponding long exact sequence on homology is all 0 except for degree 0 where it
is0 > I — A— A/I — 0. Thus all the homology of Tot(E...) is concentrated in degree
0 and H 0(ToiE(E )) & I. Thus the E* term of the spectral sequence associated to E..
denoted E*° is 0 except for EJ°_, Wh1ch provides a filtration of I. We need to calculate
E, 1 The appropriate part of E

Ep_pr1=A® L1 ® NV
n
11® Z i @ O;
i=1

E, ,=ARL ANV
!
0

and we need to see the deviation from exactness at E, Wthh turns out to be

IP El

A
® (a:l,...xn)fp_l PP

As we stated at the beginning, we will assume that I is minimally generated by
polynomials of fixed degree b. This implies that I, = 0 for p < band I, = (21, yZn)Ip—1
for p > b. Thus E; _, =0 for p # b and E! _, 2 A® I;. Thus the E* term is 0 except
Eye, =1 It then 'follows from [Eag] that the derived wall complex provides a minimal
resolutlon of I. Note that the map

o ]
D =(I—dd* —d*d)) di(d*d1)’
=0

is only formally infinite because (d+d;)? = 0 for j > n.

II. Monomial Ideals and the Notion of Content.

From now on we will assume I is minimally generated by monomials of fixed degree
b. In that case I_, ® APT9V has a k basis of the form {m ® 7} where m is a monomial in
I of degree —¢q and T is a square free monomial in z1,...,Z, of degree p 4 ¢ (remember
g < 0).

Note: The product (in A) m7 of these two monomials has degree —¢ +p + ¢ = p.
The k-span in I_4 ® APTV of all m ® 7 such that mr = = C for fixed C will be said to
have content C, as will every element in this k-span. The submoduleof AQ I, ® APy
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generated by this k-span will also be said to have content C, as will every element in this
submodule.

The point is that

(Zm,- x &)(m@T)=

= Z:txim@)’r/zi +0

r;lT
and z;m 7/z; = mr = C so that the map d preserves content. Thus the pth column
E,. = A®I..® APtV of E.. is the direct sum as complexes over all monomials C' of

degree p of its submodules of content C. Let ¢ = {r|r is square free, 7|C and C/t € I}.

Then we have the following:

Remark 1. C/r ® 7 has content C, C/T ® T is a basis element of I_; ® AP*V where
¢ = —deg(C/1) and p = degr — ¢ = degC, and C/7 isin I.

Remark 2. If C/7 € I and p|r then C/u = C/7-7/pu € I so Q¢ is an abstract finite
simplicial complex.

Remark 3. (3, 2:®8;)(C/r®71) =Y, ,(C/T)z; ® 0i(7) and thus the subcomplex
of E, . of content C is isomorphic to Ch(.), the augmented A-chains on the simplicial
complex ., since C/7 € I implies (C/7)z; € I. Since this is a direct sum of complexes
we have the following:

Fact 1. We may construct d* on each subcomplex. For if we take the direct sum of such
d*t’s the three equations of a differential quasi-inverse will still hold.

Fact 2. The homology of each column, from which the wall complex is constructed, will be
the direct sum of the reduced homology H(€¢) of the simplicial complexes, over A. Le.

Wn= @ B,
ptg=m

® H,(E,.
i Hy(Ep,)

@ ® Hpio1(Q
ptq=m degC=p p+e-1(€c)

Egﬁm_l(ﬂc) over A

IR

IR

1R

where W, is the mth module of the wall complex (see [Eag]).

Fact 3. For all but finitely many C, Q¢ is a cone and so H(Q¢) vanishes identically.
Indeed we have the following;:

Proposition: Let G(I) be the minimal set of monomial generators of I. If C #

l.c.m. .
G|C,CGTQG(I)G then Q¢ is a cone.



Proof: The hypothesis means that there is an indeterminate z; whose exponent in C
is larger than in any G € G(I) such that G|C. Let 7 be a maximal face of Q¢. Suppose
vy f7. 3G € G(I) with G|C/7 = 7G|C. Then z;7G|C since z;’s exponent is larger in C
than in 7G. Thus G|C/z;7 so z;7 € Q¢ contradicting the maximality of . So z; 1s in
every maximal face so Q¢ is a cone. : -

This fact means that H(Qc¢), the reduced homology 1s identically 2€T0 most of t}}e
tirme. But the modules of the Wall complex which is the minimal resolution of I as in
[Eag| are formed from the E! term which is a direct sum of the above reduced1 h(?mol‘ogy.

When appropriate indices are kept track of, it turns out that a'll Q¢ are sub-simplicial
complexes of Q¢c, where Cy is the least common multiple of all G in G(I).

Thus if we let Cy = l-GCéZl(IC); we have H(Q¢) #0 = C = cgécégzég) so C|Cy. Thus

W, & %gm_l(Qc). The direct sum is over such C that C = Gl'ec.érgc'g) for some subset

5 C G(I). Furthermore, di (a@m®7) = 3 | 7;0186; (a®@m®T) = Y. | +7,a@m®7/z;.
So the map d; takes elements of content C to elements of content dividing C. If we
choose d* to preserve content as indicated above, then even for the map D = (I —dd* —
dvd) Zjil dy(d¥d;)’ we need only consider contents dividing Cy. Let py = degCl.

Ig#0=—q2b=>q<-b=p+qg<p-0b

Then our original diagram may be amended as follows:

-h +

(PO) V"ﬂ()}

DT [Fo)”ﬂo)

4

To construct the modules of the minimal resolution we need only consider E},,q for
(p,q) in the shaded trapezoidal region.

If the degCy = p, is less than or equal to n 4+ 5 where n is the number of variables,
the region becomes triangular.




To construct the map we need only consider Ej, (= Ej ) in the same region.
) s

£ EP/’ o Q/)%@“‘b)

-\(}Do = Pc))

" (Pos~Pe)

As remarked before the pth column E, = deg@c Ch(f¢) with E, , =
=p v

s By Chirt=1(20)

Proposition: If C'|C are two monomials then Q¢ C Q¢ and in fact if T = C/C’ then
Qe = {7 € Q¢ such that T7|C, C/Tr € I}

- Proof: 7|C" = C/T = Tr|C = 7|C and if C'/r = C/T7 is in I then C/7 =
(C/T7)T isin I.

Corollary 1. C|Cy implies ¢ C Q¢, so all simplicial complexes we need consider are
subcomplexes of Q¢,.

F 1nally, if we assume that I is generated by square free moniomials, thé subcomplexes
Qc of Qco turn out to be hnks of faces of {1¢, in the usual sense. [

T e

Corollary 2. If T = C/C", then Q¢ is something like the “link” of T in Q¢ and in fact
if C is square free then T is a face of Q¢ and Qo = €k(T,Q¢) where £k(o,Q) = link of o
in Q is defined as usual, i.e. k(0,Q)={r€Q:0N1=¢, cUT € Q} for any face o of
any abstract finite simplicial complex §

Proof: T|C = T square free and 7T|C = T and 7 have no variable in common. C/T'T €
[ = C/Tel=TandT7 e Qc.

Corollary 2 suggests that we further restrict our attention to ideals I generated by
square free monomials such that every monomial G € G(I), the minimal generating set
of I. has a fixed degree b. We will assume further that every variable “occurs” in some

(¢ € G(I) in the sense that Cy = [GCETCT;I(IC); = £,Zy...T,, the product of all the variables.



Ine reztion between G(I) and -@ -, is that 7 is a maximal face of Q¢, if and only
5= for some G & G(I). Notice that A/l is not the Stanley-Reisner ring of
e butof a kind of “canonical simpiicial Alexander dual” of Q¢ 1. embed Q¢ in the

i
[
f
b

canomcel minnnal rlangulation of a sphere (of dim n — 2) consisting of &l proper subsets
ol {oye oy

Tuke the simplicial Alexander dual of this embedding i.e. the set of all ¢ in the sphere
such that #52 & Qc . Then A/I is the Stanley-Reisner or face ring of this dual.
In this case py = n, the diagram becomes the triangle

[ b-b) Ep,- (n,-b)

(h, -h)

From now on let {k(o,Q¢,) = €k(o) and Q¢, = Q. Then

El = @ H(Lk(o))

Py dimo=n—-p—1
and W, = %}ffm_l(fk(a).

Homology Manifolds without Boundary

S Arparticuléﬂy simple case 1sthat of a tr‘}%ngulatéd'hqmbﬂjgfﬁ@ifold without
N bodﬁdajgfp;r_’ the links of non-empty faces iré thén homology spheres.

We follow the notation and conventions of [Mun] beginning on page 374. From now
on assume ¢, = () is a triangulation of a homology manifold (without boundary). It
then follows that its dimension is n — b — 1. By Theorem 63.2 and Exercise 2 page 377 of
[Mun] it follows that if o # 1 (i.e. not the empty set in the augmented chains), Lk(o) is
a homology sphere of dim(p — b — 1) whendimo =n—p—1. fo =1 Lk(c) = Q and its
reduced homology is that of the manifold.

Thus if o # 1 and dime = n — p — 1 then ﬁp_b_l(ﬁka) = A and all other reduced
homology is 0. This implies that E},,_b = Af(n=p=1) where f(z) is the number of faces of

€ of dimension z. If ¢ = 1 so dimo = —1 so n = p and El , = I;T,H_q_l(Q) (this is only
possibly non-zero for —n < ¢ < —b). Thus W, = Af(n-m~=b-1) @ﬁm_l(ﬂ). The maximal
faces of © are the {7 : 7 = f=2a G € G(I)} so deg(r) =n — b and dim(7)=n—-5-1

Wy = A/ "D g F_,(Q)

H (€2} =0 except in the trivial case where Q = {1}, which we ignore.

-~
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Thus Wy = AN where N is the number of maximal faces of 2, the same as the minimal
number of generators of I, or the Betti number b;(I) (bo = 1 always). The Betti number
by = dimW;_; = f(n —b— i)igimﬁi_g(ﬂ) for 1 > 1 so, for example, if the manifold is
connected b3 = f(7 = b — 2), the number of submaximal faces of 2. The diagram for the
relevant terms E;’q 1S now

o~

(h-k) (h,-b)

- @ ﬁ[)—b‘l/jklr}>

é)liml?’.:M—P*/ /ﬁ

/ ke 74
Ehj 3 Hh—i—%-_/())

E@%-b}

p[hj-”)

For the map D in the minimal resolution we need E, , in the region

(b, ) (h,—b)

\JI/A*
Jl;\;‘“

d

o)
nHf~

I

-

b (h,-h

whenever there is non-zero homology, Hn4-1(Q) # 0.



Low-Dimensional Cases

[t is easy 1o work out the cases of 1-dim manifolds Q¢, i.e. n-gons. These have Betti
aumbers 1.n,n. 1.

For 2-manifolds we are looking at triangulations of spheres with various “handles”.
and “cross-caps” attached. The well known six-vertex triangulation of a single cross-cap is
quite easy. (It is self-dual in the above canonical duality). Its Betti numbers are 1, 10, 15,
§ except 1n characteristic two and 1, 10, 15, 7, 1 in characteristic two. The characteristic
two case is the first case where construction of d¥ is necessary, but construction of suitable
d*’s is easy for triangulations of 2-manifolds since the links of vertices are just k-gons for
various k.

For dim(Q2) = 1 we have n-gons. 1 =n —b—1son = b4 2 and the diagram for E]

(b (beh=b)  (hip,-h)

18

b (bﬂg'b—d

' (bf‘)/ - /3 '2>

Ej_y= © H.i(1)

dim o=1
Bt = , & Hy(twopoints)
’ im o=0
Eg+2,—b = I-Ifl(ngon)
Eiyg 1= Ho(ngon) =0 (connected)
E(1b+27_b_2) = H_;(ngon) =0 (non — empty)
Of E, 4 all we need is

A®A®MV?A®&®NV;A®A®MV
1 1
The minimal resolution will be the maps induced on homology by d;.

Co=12z1...2n Q=Q¢, ={2172,2223,T3T4,.-.,Tn—1Tn,TnT1}

SO
I_((I,'l...(L'n L1 ...Tp Ty ...Tpn T1...Tp
- b y e 9
T1Z2 273 Tn-1Tn InlT1
Let G, 4y = %lz—il (Read subscripts mod n). The basis of the A-module of content Cjy
- 1 t

1S
{1® G @212, 1®Gas @ 7223,...,1QGCGn1n @ Tpo1Tn, 1QGn; @ Tnzy}

A basis for the homology in €2¢, may be taken to be represented by the cycle 1 ® G2 ®
T2 + 132G @azes +...+1® Gn—l,n Q@Tp—1Tn +1Q Gn,l K Tpry =c¢

difc) =21 9G1202 — 22 @G 12 Q1 + 29 @Go3 @ 23
~ 230G QT+ ... 42, 0G0z —21 QG DTy
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Rearranging by content get

di(¢) =21 @ (G12 ® g — Gn1 @ Tn) + T2 ® (G23 @ 3 — G12 @ 71)
+... .+, @ (Gn,l QT — Gn—l,n by xn—l)
Qzy ...z, ={Ti-1,Tiy1}, two points. So a basis for homology of Qz; ...z, in AQLA'V

by T
is 1 ®(G1y ® ¥ — G 0z, ) ete. Thus the last matrix in the resolution is
I
T2

Tn

Computing di(1 ® G12 ® 22 —1®Gn1 ®Tn) =220G12Q01 -2, ®Gr1®1. di(1®
Gy @23 —10G12®21) =23 G23®1— 11 ® G2 ®1 etc. Taking the ordered basis
10G1201,10G3®1,...of A® I ® A°V we get the n by n matrix below. The ideal is
generated by the 1 by n matrix given below.

Z1...Tpn T1...Tp 1...Zp T1...Tn

b PR 3
T1T2 I2T3 Tpn-1Tn Tnll

><.Z/—‘X/ ]
X7/‘“X2' OS

_><U\ XP)/ ‘>(V\’l



% pres S Na('ag/:L? /71/"[1,4‘{l~0u_r 'Ical»-/ /’\é’x.afoﬂ,-
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For dim(f2) = 2 we have 2 =n — b — 1 so n = b + 3. The diagram for Ell,’q is

(b, —b)(b+ 1,-b)(b+ 2,-b)(b+3,~b)

() o ® L
o(b+3,-b-3)
Ei_,= .9 H,1
b=t dime = 2 (1)
E;+1’_b = dim?: Ho(two points)
Eiig_y= dim? _ 0I~{1 (various q — gons)

E;+3,—b = ﬁz(ﬂ)
El:)l+3,—b—1 = ﬁl(Q)
Epprs _png = Hy () = 0 (connected)
El}+3,—b—3 = ﬁ—l(Q) = 0 (non — empty)
Of E, 4 all we need is

A®h®NV;A®A®NV;A®A®MV;A®A®MV
1 1 1

Td*
AR L1 ® Alv(d_A ® Iyy1 ® A2V
1

If we now took 2 to be a triangulation of a 2-sphere, the situation would be quite
analogous to the n-gons. We would only need the top line above, since H;(2 sphere) = 0

More interestingly, we will take © to be the well-known six point triangulation of the
real projective plane.

We denote the vertices by u,v,w,z,y, z, so Cy = uvwzyz. Here is the picture




If one computes ¥E¥EYZ for each of the ten faces one gets
p face g

I = (uvz, uwy, uTz, UVY, UWZ, VWT, WTY, TYZ, VYZ, VWZ2)

If we take k to be any field of characteristic # 2, the real projective plane has no
reduced homology whatever. In this case all we need of E, ; is

A®A®MV;A®A®MV;A®A®MV
1 1

Here =6 b=n-3 =75

For

) %°
on T_Ale

V~/?4f d§/’l/17 éagég 074 7‘&16

.@Ovvm / e C/ZL@?' aund “&zkzn} map ’/mﬁl({(bﬁ(
own how Zu’jj u,/.—/h af/’lm/? VZCLYLP Qé_’{fc?é/ow a?ﬁ
C7C/Pj V{o[)U“?OSPQ{L:M9 U bag/g ﬁy Mawa [077
we gdThe 15 by b e Trsx
» | | o
J@%J‘g Jk u Jicv o ;,0/4;4 ﬁ/«y I =z
u?l/ - u u:‘
U W ~U >
U X X —u _
Uy Y _ :
uz — 2 | 1
T — 57( w wXY
wx “ ; _
"4 -7 Y _
9; -V V&
v | —
Ty | —Y > —
- %
w#Z | ] _
o " Y : W
?; - ~2 -7 x &
13




‘ ]l;/lics‘ 01[‘ Ez!;eg
dilinlu V iw X
iyl 2l x ’

Dinics 05/
face 5/
2| £

yvvwvw
Yyt z

"’W"v "'M M‘/W

X |—W -U | U WX

z Y U | u g

aid -u Uy 2

9] o | VT wwy

* —X w W XZ

| x| |7 v VX &

; ‘ v x| kY T

g:l;w&/am (a[(qZAc?ém;g Fein J[
6 The /é’ﬁé |ead o The
aboye 10 by 15 st

[()w .oﬁye welh  Twe |
Macczu/a7 OM;WL o ut- on Tl

M@;QL g)afff
Iy



C Nab F2

J

Mél[ﬂu/aj PV/I\A"?L%)\HL fo 1 /)P

% pres S

UVX UWY UXZ UVY UWZ VWX WXY XYZ VYZ VWZ

N
|l O POOOOOOO
>4
|l OO XOOOOOO

2
O PO 1 OOOOOO

N
O 1 OO >HNOOO OO

»
OO RO | OOOQOOO

2
| OO0 30000

>
cocooOCO | POOO

»
Ol 0000 OO0

N
[e¥eloloNoNoll ik NoNe]

>
[oNeollNeoNoNoNollis Nl o)

b
coooO0oOoOoO P I O

N
[eNeRoll e o Neo No iR

>
OO0 OQO X |

N
OO0 O |l OO0 X

>
[eYoloNoll NeoNoNeNolla]

5 k4
| DOOOOOOO NPOOCO |

3
NO 3 | O0OO0O0CO0OO0O0O P NOO

fod >
COO X B3I OOOODODOOO N I

> X
Ol I ©O1OPONODODOOOO

X >
CoOOOD |l PNOO I OO0

> X 3z
oocococoooco | oo | 1o

% lpr -Pcicle -h Z

command not found: lpr

.
’

% exit



Th  Fre Charactenst: Fwo Case
both H(D) aul (D are | -dimessiiva
awld we need +ue Full dzc(zjmw\
Cpn Tthe widdle R page 12, Fu

T ue %/o\ﬂan Flowr we weed b clhose
& wmap AT, TE s 99’00,414{20 Yo Constyuct

(. €V 1't4 Wapvs 5{1_ /7&61?1 7Bt m (”QO[;'E

¥ 7[V0w\ a 7/‘090\

ot a "maximal tree
ibc’zefs “r The woedylog E/)}ﬁ" A subsst

»'7_‘ oF The [74945 's (a//cé( awmayiuee |

7L_VC6 ' /’VL d ('T’) 15 a //h;ay/) /ld(azé/)ﬁu/&fz*
cet of Cﬁ\wiws aund T s W&)cn;««a/ aﬁ‘&;
[/’09/’t047[~ o The T (Plrep Pﬂ‘?}( Ty, 7ue

(o6 e ot~ a gkapbu (gud lUove we
[ &



(st"w.j These /v a Wm‘vc;@
ey we Get The Coluwn  labellaf
Clhar 2 gn page 13 whea we
celealat e T Attt Y, '

Folly  calealatey 4 ou tre an

(/\l‘q}ﬂ“ i 7/1;(’14 CI'VOI;F o1 %M’/077 fe/w'eo;f«?ém;

we ?67" ﬂ’!e Co/umm v@cfolm’

OCNeK< ¢



References

‘Eag] Eagon, John A., “Partially Split Double Complexes ... etc”, Jour. of Alg., Vol. 135
No. 2, Dec. 1990.

(McL] MacLane, Saunders, “Homology” Academic Press, Springer, 1963.

AMuni Munkres, James R., “Elements of Algebraic Topology”, Benjamin/Cummings 1984.

'Rob] Roberts, Joel, “Ainimmal Resolutions Derived from Bicomplexes and Other Wall Com-
plexes”, In preparation.






7 revtes fwamﬁufdﬁo},l ol Tobr S

. ; ‘ -
C. 1 —4 c
CQ L A
¥ L
a b c a
Dfd;ram.’ .
/ i 2/ 7 [
| /
Faces; abe  bde bAE bk, fee , qce, feg

ged ; acd, gde, beg,agb, agt, atd

Oﬁl/l?l/ﬂ?é(/‘g 07L /p/pa/,' <gb—i;/§;§2

c/wff/ aczfjj aceq, adey, abdj/ AJ#}/ 2 bed
qbcﬁ ée%j , aééﬂfj adlef Cc/ef écJe/ Aff’j






C

[L(q yac?lewéﬁ

6{%7

: /M(zzué/y ouzéfo/f) Tovrus

cdfg acfg aceg adeg abdg bdfg abcd abcecf befg abef adef cdef bcde bceg

T
[ NeNeoNelololololololoNoNe]

Y
OV I OO0 OO OCOOOo

T

OO | DOOCO OO ODOO0o

Q

OO Q1 OO ODDODOOO0O

&
QOO | OO0 OOOO

U
ODOOO | TOOODODOOOO

o)

OCOOCO DO I OO OO

o

C QOO0 | ODOOOOO

Y4
OO0 I TOODOOOO

0]
OO0 I OOTVTOOCOODOD

el
o000 d |

Q
OO OOO !

OO OO

(=R 6 N e N Na)

@)
DOOHOOODDOO | OO

T

OO0 OOOOO | QOooo

o
VOO OODOODOOOO | OO

9]
ODOODOOOOD OO0t WOD

Y-
OO LN O

[}
OOODOOOO | OO0 D

4y
DOODO DO VODOD |

o
cleoleoloNoleloNoloNoNeNoREe)

Q

OO I OO0 OOOOO T

f U
oL om o 0 @)
OO0 ULAQTUOO PO 1 OO 1 OO0
[ 0] [
QT wH 4 Qg
OO0 OO0 1 1 oo U ! QO
o] ) 0
"aOgOOOOOOOOOO*OO_bOO
Q v T @
OO T O O OO ! OO0 CcCOoo
o O Q

HO TBOOOOOO | | o oo | O

T Q
O OO QOO0 O0O0 DO OO | OO0 O

3 w
OO OO0 MO0 ! TOOO PO t OO

&) W

OO ODTO | OO OOOO W

gd b
OO0 OO0 OO DD OO ) I 4 O WO O O )






g pevtex fwz&u;a@(fké% Lt Klelw b (Tle
o b . a

D(Q}iﬁom (&4(/\ z27
i /6 2 ¢ g ©

D!a7b\qm (’//Mxlp:z
[ [ 6 27 5 !

/[:4[205[' QAP/ 5@7&) (/)4,‘16 J?OCJ ac/(;/ f‘/@/fﬁ‘f/ "’Cﬁh
d’#h/ del ) aé)d_'/ 5;/7/ [)9@ th/ Ceéj ace

/xfmpmizttg oF /;/pg/ : (Miﬁ:éf—é)

Ky
CJ#jAZ QCJ7 ) ad@j/aéefé /581[74 d/)m/ll abca”)
bcd@ aé(@j Qbé’?éj} (@‘pfﬁ 4(@7% acdﬂ[ddféﬂpj/

Q/)é[\lfj/ éoh[fél






K le1u %ﬁ/fv) Clhoy F2

Ou%ﬂtﬂj

Ma pauZ@

cdfgh acdgh adegh abegh befgh abcfh abcdh abcde abceg abcfg cefgh acefh acdef

adefg abdfg bdifgh

H

B I OO0 OD

|
)
=l eNoReNolalaoolololoNoRole]

T
OO Q 1 OO0 OODOOOOOO

4
SOOI TOOOOOOOOOO OO

o
CQOOCOO OO0 QOO

H
OCOOOCOT I OO OOOO

Mo
COCOCOO VU I OOODODDOO

e
OO DODOOO I OOOODODOO

o
OO0 OO | TOODOOOOO

Ko
OO DOOO | OO OO

W
OO0 I OO OO

Q
I OO0 O0ODOOOOCOTOOODOOOD

O
OOO0OO0 1 OO OOC QOO0 OO

o)
D000 B I OOOO

Q
DO OO I OO QOO O0O

e
OO0 OOOOOT I OO

4
OO0 | OO QOO0

Hw
COHOODOOODDODODOOD | OO

o

QDO ODOODOOOOOO |1 LOO

Q
OO0 OOO L 1O

T
OO0 OOOO I OO0 LO

Q
OO OO TVTO OO OODOOO OO |

-C

OO0 OO0 DO

Ko
ODOOODODOOODOOOOOOOD | O

S 0 .C
OO OOOOOOOOOCOTTHO

T ']

i |

[GNe]

P QO DOoOO O OO oo
Lo] -

elololoNeoleNelolo BN eNoeNoN RNl RE R

o Q S0
OO ODODODOOO !t | WO I I OHOOO DLOOO

&) o]
OP I ODODDODDOOO I QOO0 OOOO0O

o T 4
OO OO LU O I OO0 oo + O

OO O i o

s} - D2
VDTOO0DDODOOTOOD 1 QOO Dt OOD |

Q8 ke
PO WO 1 O 1 COSOOCOOOOCOO | HDO

Kwikio] 8}
OO0 OO OO O OO0 OOO0O |1 I e o 1 O






2.

oy

C U v~

beitle )

(U

,‘14 a4 lay (47 1z u?é)ﬂu

pres

YL/ Kle

gh abegh befgh abcfh abcdh abcde abceg abcfg cefgh acefh acdef

cdgh ade

=
o

cdfgh

adefg abdfg bdfgh

CUHO D OOODODODOOIDOOOO
O PULUOOODOODODOOOOOOO
OO QU OO0 ODOOODODOTOOO
OOOH TOOOT OO OOOO
OCQOOODOoO DO OO0
COOOOOTVHOODODODOODDODOOO
OO PLOODODODODOOO
OO VOO OO OOD
OO0 DTOODODODOOO
COoODOO DO OO0
OCODDOODOOHPOOODODOO
VPOOOOODDOOOODTOOOOO
[eYololeoNoleolelelaoNeiNoNeNeo NNl
OO0 OO0 @ DO OOO
OO0 PO QOO0
OO0 OODOOOOT.LOO0O
OO OOHOODOODOD QOO O
COHOOODODODODOOOOD OO
OO0 OOODODOOOO DHTUOOD
el TolololeNoleNoReloNoNoR) Rw]
OO OO OO OO TO OO D VO
OO0 TOOOOOOODO OO D
NOODOOODO O OO OO OO 0

OO OOONOOOOODOO OO d

1
|
t
I
!
!
1
1
|
|
|
|
I
!
!
i
|
!
|
|
|
!
1
|
i
|
!
|
'

S 0.
CODOODOOOOOOOO T TH

g .9 @] o (=] [T
OOO@C,\UbOOQ.\UAUO‘QOOdOQOOCOO

oo
oW Qoo OO

OO0 PLAOOCDDOOCOODOTOHOODOOODO OO
OO0 L QTOOOOOOOH oo OO
OO0 OO DO OO0 POHDODOO OO OO
OPLDOODOOOOOO T OO0 O
OO0 TO OO0 O U
U MOOCOo OO0 O0O00O TOoOO e O o0
DO BO OO OQOODOOOOOOOOOOO TN OO

OO0 O0OO0OO0OODODOOOO AT o Vo LA

~

(

b

a
g






