ORDERING POINTS BY LINEAR FUNCTIONALS
PAUL H. EDELMAN

ABSTRACT. Given a set of points in Euclidean space, we say that
two linear functionals differ on that set if they give rise to different
linear orderings of the points. We investigate what the largest and
smallest number of different linear functionals can be as a function
of the number of points and the dimension of the space.

1. INTRODUCTION

The purpose of this paper is to investigate the number of different
linear orderings of point configurations which can arise from linear func-
tionals. This problem is related to work of Ungar [5] on the minimum
number of directions that a set of points in the plane determine.

This investigation has a number of interesting features. First, it
seems to be a natural question to ask. Second, it provides a framework
in which to extend the work of Ungar [5], which currently is almost a
curiosity (although a very beautiful one.) Our results can be applied to
give bounds on the number of monotone paths on polytopes. Finally,
we think that the technique used to establish the upper bound may
have broader applicability and should be more widely known.

The structure of the paper is as follows. In the next section we estab-
lish our terminology and prove the fundamental connections between
the various objects we study. The knowledgeable reader will recognize
a number of these constructions from matroid theory, but we have de-
liberately kept the terminology and definitions to a minimum. In §3
we prove an upper bound on the number of different linear functionals
that n points in R? can support. In §4 we present a lower bound in the
case of the points being in general position. We also give a conjecture
for the case in which the points are in slope-general position, a variant
on the notion of general position. We also discuss in this section the
relationship between the work of [5] and our own. In the last section we
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how the bounds we prove apply to counting the number of monotone
paths of zonotopes.

2. PRELIMINARIES

In this section we will establish our notation and define the principal
objects of study. We will also establish some base results that will be
used throughout the rest of the paper.

Let C be a collection of n points in R¢. For every v € R? let [, : R —
R be the linear functional such that l,(z) =< v,z > for all z € R?.
We also know that every linear functional [ on R? is of the form I, for
some v € R?. We will let H, = {z| < v,z >=0}.

We will say that a linear functional [ is generic with respect to C (just
generic if C is clearly understood) if I(z) # I(y) for all distinct z,y € C.
A generic linear functional [ gives rise to a linear ordering of the points
of C, oy =11 ... 3, defined by l(z,) < I(z2) < --- < I(z,). This allows
us to define an equivalence relation on generic linear functionals by

[l~m<< o0, =0p.

Let f(C) equal the number of equivalence classes of linear functionals
that are generic with respect to C. For brevity’s sake we will refer to
f(C) as the number of linear functionals on C. Note that around every
generic linear functional there is an open neighborhood of R? consisting
of equivalent functionals.

We will analyze the structure of the inequivalent linear functionals
by means of matroids and hyperplane arrangements. We will briefly
review the facts we need from these two areas.

Let V = {v;| ¢ € E } be a collection of vectors that span R? indexed
by a set E. A subset C C FE is called a circuit if the set of vectors
V(C) = {v;|j € C} is a minimal dependent set. We denote the set
of circuits of V by C(V). A subset F' C F is called a flat if it has the
property that if v; is in the linear span of V(F) then j € F. We can
partially order the flats of V' to get a geometric lattice L(V) of rank d.

Associated with the lattice L = L(V) is its characteristic polynomial,
x(L,t) defined by

(1) X(L,t) = Y p(0, F) t-renk?
F;L
(2) = (-1)Fwet*

k=0
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where p is the Mébius function of L and the numbers {w;} are positive
numbers call the Whitney numbers of the first kind.

Given the geometric lattice L = L(V') we define the truncation of L,
Trunc(L), to be the geometric lattice obtained by removing all of the
flats of co-rank 1 from L. Let Truncg(L) be the result of iterating the
truncation operator k times.

Lemma 2.1. Let V = {v;|i € E} be a set of vectors that span R?
and let w € R? be a vector that is not in any hyperplane spanned by
elements of V. If V! = {v|i € E} is the set of vectors obtained by
projecting the vectors of V into the hyperplane orthogonal to w, then
Trunc(L(V)) = L(V"). Moreover, we have that a set C € E is a circuit
of V' if and only if either C is a circuit of V or V(C) is a basis for RY.

Proof. This is the standard construction for truncations. See [2, Propo-
sition 7.4.9]. O

It is not hard to see how the truncation operator affects the charac-
teristic polynomial.

Lemma 2.2. If L is a geometric lattice and

d
X(L,t) =3 (—1)Fwytd*
k=0
then
d—2
x(Trunc(L),t) = (-1)%w)_, + Z(—l)k wy, 1471k
k=0
where
d—2
()Ml = Y (=1
=0

Proof. Since the lattice Trunc(L) is the same as L up through rank d—2
the characteristic polynomials must agree through those terms. The co-
efficient (—1)~'w/_, is determined by the condition that x(Trunc(L), 1) =
0. O

Given two sets of vectors V = {v;|i € E} and V' = {v/|i € E}
indexed by the same set E, we say that there is a weak map from
V to V' if for every subset D C F we have that V(D) is dependent
implies that V'(D) is dependent. Equivalently, we we have that V'(C)
is dependent for every circuit C € C(V). The significance for us of the
existence of a weak map is given in the following lemma.
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Lemma 2.3. Let V = {v;|i € E} and V' = {v}|1 € E} be two sets
of vectors both indexed by the same set E and both of which span RY.
Let

d
X(L(V),8) = 3 (=1) wyt*
i=0
and
d .
XLV, 1) = (1) w4,
=0
If there is a weak map from V to V' then wy > w}, for all1 < k < d.
Proof. See [4, Corollary 9.3.7]. O

Finally, let A = A(V) be the set of hyperplanes in R? given by
AV)={H,|veV}

where H, = {z € R*| < z,v >= 0}. Let T(A), the topes of A be the
set of connected components of R? — A. A fundamental property of
hyperplane arrangements is

Lemma 2.4. The cardinality of T(A) is equal to

Proof. See [6]. O

We are now ready to see how these facts from matroid theory can
be used to analyze the structure of linear functionals on point config-
urations. Let C = {zy,...,z,} be a point configuration whose affine
span is all of R?. Let the difference set of C, D(C) be the collection of
vectors

D(C) ={zp =zi—x;|1<i<j<n}

which is indexed by the set of ordered pair £ = {{%,j}}. Note that
D(C) could, in fact, be a multi-set. Let A = A(D) be the arrangement
related to D = D(C). The size of A will, in general, be less than (})
since some of the vectors in D(C) may either be the same or scalar

multiples of each other.

Theorem 2.5. A vector v is generic with respect to C if and only if it
lies in a tope of A. Two vectors v and w are in the same tope of A if
and only if I, ~ [,,.
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Proof. A vector v is in a tope of A if and only if it does not lie on any
hyperplane H, , ., and thus < v, z; —z; > 0 for any z;,z; € C. Hence
[, must be generic with respect to C. Moreover, if v and w are in the
same tope then < v,r; — x; >< 0 if and only if < w,z; — z; >< 0 for
all z;,z; € C, and so I, ~ 1. O

Corollary 2.6. The number of inequivalent linear functionals for a
point configuration C that spans R? is

£(€) = (=1)*X(L(D(C)), -1).

Proof. It follows from Lemma 2.5 that f(C) is equal to the cardinality
of T(A), which is, by Lemma 2.4 equal to (—1)¢x(L(D(C)),-1). O

In the subsequent sections we will put bounds on the size of f(C).

3. UrPER BOUNDS

In this section we will present upper bounds on the number of in-
equivalent linear functionals on n points in R¢. Our technique will
be to produce explicit point configurations for which we can compute
the number f(C) and then exhibit maps from these point configura-
tions to general configurations which induce weak maps on the related
difference sets.

Our fundamental point configuration will be

A1'1 = {617627"'7611}

where e; is the i** standard basis vector in R*. Note that A, has affine
dimension n — 1.
The difference set

is the set of positive roots for the classical root system A, _;. It is well
known that the lattice L(D,,) is isomorphic to the lattice of partitions
of a set of n elements. Hence

Lemma 3.1. The characteristic polynomial of L(D,,) is given by

X(L(Da),t) = ) (=1)'e(n,n — ) "',

i

i
1=

where {c(n,n — 1)} are the unsigned Stirling numbers of the first kind.

Let A¥ be a configuration of points in R*~1* obtained by k succes-
sive projections as in Corollary 2.2. We will let D = D(AF).
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Corollary 3.2. The characteristic polynomial L(DEF) is given by

n—k—2
X(L(Dy),t) = (-1)"*"1¢(n, k) + Z (=1)ic(n,n — i)t k-1t
i=0
where é(n, k) is chosen so that x(L(DF),1) = 0. In particular
n—k—2
3  fAY)=énmk)+ > cln,n-1i)
1=0
Zi:§_2 2¢(n,n—21) ifn—k even
(4) = Ln—k—-2J
Sio? “2¢(nn—2i—1) ifn—k odd

Proof. The proof follows from repeated applications of Lemma 2.2 [

The configurations A¥ will be the fundamental objects in this section.
In the rest of this section we will show that they have largest number of
inequivalent linear functionals among all configurations with n points
in R*~1=*. To do this we will show that there is a weak map from DE
to any point configuration C of n points that spans R**~1. To do this
we need to understand the circuits C(DF).

Lemma 3.3. The circuits C(D,,) are all of the form

{63} G kb (ks 2, o i),
Proof. O
Corollary 3.4. IfC' € C(DF) and |C| < n—k—1 then it has the form

{{s, 7}, {4, k}, {k, 1}, ..., {m, i} }.
Proof. This follows from Lemma 3.3 and Lemma 2.1. O

We can now prove our upper bound theorem for linear functionals

Theorem 3.5. IfC is a point configuration of n points in R¢, then
In—d—1/2]
O <FAY = Y 2¢(n,n—2i).
i=0

Proof. We will show that there is a weak map from D21 to D(C).
The result then follows from Lemma 2.3, Corollary 2.6 and Corol-
lary 3.2.

By Corollary 3.4 if C' is a circuit of D2~%~! for which |[C| < d — 1
then it has the form

C= {{'Ly]}’ {Ja k}? {ka l}a REE) {ma i}}.
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But it is clear that

{203} Tk TR -+ Tmai} b

is a dependent set in D(C). If |C| > d then {z( ;| {i,7} € C} is
dependent since C C R¢. Hence every circuit in C(DP~9"1) gives rise
to a dependent set of D(C) and hence there is a weak map from DP~4-!
to D(C). O

The argument in Theorem 3.5 is a special case of the following more
general framework. Suppose that V = {v;]i € E} C R? and V' =
{v{]i € E} CR? are two sets of vectors that each span their ambient
space with d > d'. If there is a linear map A such that Av; = v] for all
1 < i < n, then there is a weak map from V to V'. It follows from [4,
Lemma 9.3.1] that there is a set of vectors V = {%,...,%,} that spans
R? such that Truncy_g (L(V)) = L(V). Thus

(_l)dl X(L(V)’ _1) 2 (_1)d' X(L(V’)’ —1)'

4. LOWER BOUNDS

In this section we will prove some lower bounds for the number of
inequivalent linear functionals on n points in R¢. The main theorem
in this section only applies to point configurations in general position.
Lower bounds for general configurations seem quite difficult. Indeed
even in the case d = 2 complications arise. We begin with that discus-
sion.

Let C be a point configuration in R2. It is easy to see that if the
difference set D(C) has cardinality k£ then the related arrangement A
of lines in the plane has size k and that f(C) = T(A) = 2k. So the
question of finding a lower bound on f(C) for a point configuration in
R? is equivalent to asking what is the minimum size of the underlying
set to D(C) for a 2-dimensional point configuration.

Two vectors (53, 2,y € D(C) give rise to different hyperplanes
H, and Hg,, if and only if their slopes are different. Thus to
minimize f(C) we must minimize the number of different slopes that a
set of lines in the plane can determine. Thankfully this job was done
by Ungar [5].

Theorem 4.1. Every set of n points in the plane determines at least
23] different slopes.

Corollary 4.2. If C is a point configuration that spans R? with n
points then f(C) > 4 |5].
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Ungar’s proof, a true gem, relies on purely combinatorial arguments.
Jamison [3] has catalogued the extremal configurations. The fact that
for d = 2 we already are exhibiting quasi-polynomial behavior is a hint
that a closed form for a lower bound might be difficult.

On the other hand. If we make some assumptions to eliminate de-
generacies the problem becomes tractable. We will say that a set of
points C € R? is in general position if no point is in any hyperplane
spanned by the rest. Of course, in R2, this condition is equivalent to
there being no 3 point lines.

We will require the following lemma

Lemma 4.3. If C is collection of n affinely independent points in R?
then f(C) = nl.

Proof. Without loss of generality we will assume that n = d+1 and let
C ={ao,as,...,aq4}. f Ay ={0=eg,ey,...,eq} is a standard simplex,
where e; is the i*" standard basis vector, then there is an invertible
affine map T'(z) = Az + ao that takes e; — a; for all 0 < i < d.

Given any permutation 7 of the set {0,1,...,d} there is a linear
functional [ that gives rise to that permutation of Ay, namely the

linear functional [ = (I, [y, ..., l4) where

- ~(d+1-7"1@), ifn (@) <77L(0)
' i, if 771(2) > #~1(0).

It then follows that the linear functional (A~1)T 1 will give rise to the
related ordering on C. (]

In what follows ny is the falling factorial nn—1...n — k + 1.

Theorem 4.4. Letn > d+ 1 > 2 and suppose that C is a point con-
figuration in R?® in general position. Then f(C) > 2(ng_1).

Proof. For each subset X = {x1,z,...,24} of C we can produce d!
inequivalent linear functionals by doing the following: Suppose H is
the hyperplane spanned by X. By the assumption of general position,
no other point of C is on X. By adding a suitably small multiple of
the linear functionals guaranteed by Lemma 4.3 we can construct 2(d!)
linear functionals on all of C

1. that are generic with respect to C, and
2. have the points of X appearing consecutively

We can get 2(d!) different ones because we can always reverse the di-
rection of the normal to get a new ordering. If we enumerate the set
of ordered pairs O = {(m, X)} where 7 is one of the permutations of
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C arising from this construction associated with the subset X we see
that [O] = 24! (}) = 2ng.

Let IT be the set of permutations of C arising from the above proce-
dure. Given any 7 € II, we see that 7w can appear in an ordered pair
of O at most n — d + 1 times, since that is the number of different
consecutive strings of length d in 7. Thus we have that

| (n—d+1) > [0]=2ng
and hence |II| > 2ng4_;. O

Note that if d = 2 the lower bound is 2n which is sharp for n even
as Ungar’s theorem demonstrates.

There is another natural way to eliminate degeneracies in this prob-
lem. We will say that a point configuration C is in slope-general posi-
tion if no pair of the vectors xy; j3, (k13 € D(C) are linearly dependent.
Equivalently, C is in slope-general position if |A] = (}). If d = 2 then
slope-general position implies general position but not vice-versa. On
the other hand, if d > 3 then general position implies slope-general
position but not vice-versa.

Conjecture 4.5. Let n > d+ 1 > 2 and suppose that C is a point
configuration in R® in slope-general position. Then f(C) > ng.

5. MONOTONE PATHS ON ZONOTOPES

Theorem 3.5 and Theorem 4.4 can be applied to get bounds on the
number of monotome paths on zonotopes. In this section we will de-
scribe that application. We will employ the theory of fiber polytopes
as described in [1].

Let V be a set of vectors V = {v1,vs,...,v,} C R? which spans all
of R%. The zonotope Z(V) defined by V is the convex polytope defined
by

Z(V)=A{z = Zavv e <1, veV )
It is well-known that the number of vertices of Z is equal to |T (A(V))|

[6]
Let 7 be a linear functional on R¢ and then
1:7-Q={nz)|lzeZ}CR

is a projection of Z to the 1-dimensional polytope @ = [a,b] where
a = min{n(z)|z € P} and b = maz {n(z) |z € P}. Associated with
this map is the fiber polytope ¥.(Z, Q) [1], which in this case is called
the monotone path polytope of Z and m. The vertices of this polytope
are in bijection with the coherent monotone paths of Z with respect
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to m, certain paths on the boundary of Z that are monotone (strictly
increasing) with respect to the linear functional 7. For more details
see [1, Section 5.

It turns out that the monotone path polytope of a zonotope is itself

a zonotope which has an easy description. Let D be the collection of
vectors

D= {r(w)v—n(v)w|v,we V}.

Then from [1, Lemma 2.3] and [1, Theorem 4.1] we can conclude that,
up to a multiplicative constant,

%(%,Q) = Z(D),
and the number of coherent monotone paths is the same as |7 (A(D))|.
The combinatorial type of Z(D) is independent of the lengths of the
vectors that define it. For each v € V' let § = W_E;J Then if we replace
D by the set

D={p—w|v,weV}

we see that Z(D) has the same combinatorial type as Z(D). But
D =D(C) where C = {#|v € V} and thus

Theorem 5.1. With the notation as above, the number of coherent
monotone paths Z(V') with respect to m is equal to the number of in-
equivalent linear functionals f(C).

Thus the bounds of Theorem 3.5 and Theoreom 4.4 apply to the
number of coherent monotone paths on a zonotope.
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