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1 Introduction

A triangulation of a (finite) point set S in ®? is a maximally connected straight line plane graph
whose vertices are the points of §. Maximality implies that with the exception of the unbounded
. face each face of the graph is a triangle. The number of different triangulations of § depends on
n = |§] as well as the relative location of the points. As implied by a result in [ACNS82], 103" is
an upper bound on the number of tna.ngulat:ons of any set of n points in ®2. Furthermore, if S is
in convex position then it admits ; (2""‘) > 273 different triangulations. In order to choose an
optimal triangulation, under some cntenon, it is thus not feasible to exhaustively search the set of
all triangulations.

Indeed, except for a handful of particular optimality criteria, the problem of finding an optimal
triangulation for a given point set is hard, that is, no polynomial time algorithms are known. Among
these exceptions are the maxmin angle criterion [Sibs78], the minmax angle criterion [EdTW90], the
minmax smallest enclosing circle criterion [Raja91)], and the minmax circumscribed circle criterion.
The optimum under the first, third and fourth criterion is achieved by the Dela,unay triangulation
which can be constructed in time O(nlogn) [Dela34, PrSh85, Edel87).

In this paper we study the complexity of minimizing the maximum edge length. A triangulation
that minimizes the length of its longest edge is called a minmaz length triangulation. It is related to
the so-called minimum length (or minimum weight) triangulation that minimizes the sum of the edge
lengths. The latter problem has been studied by Plaisted and Hong [P1Ho87], Lingas [Ling87], and
others. In spite of the lack of a proof that the problem is NP-hard, no polynomial time algorithm
for constructing a minimum length triangulation is currently known. Even more annoying is the
lack of a constant approximation scheme, that is, an algorithm that in polynomial time constructs a
triangulation guaranteed to have total edge length at most some constant times the optimum. The
currently best approximation scheme is described in [P1Ho87] and guarantees a factor of O(logn).

In view of the apparent difficulty to compute minimum length triangulations, it is somewhat
surprising that we are able to give a polynomial, in fact quadratic time algorithm for constructing
a minmax length triangulation. It is the first polynomial time algorithm for this problem. There is
evidence for the potential usefulness of such a triangulation (see [BrZ170]). Still, the authors of this
paper consider the additional insight into optimum triangulations under edge length criterion as the

main contribution of this paper.

The reader might find it instructive to rule out seemingly promising approaches to computing
minmax length triangulations before diving into the occasionally involved developments of the forth-
coming sections. Note first that the Delaunay triangulation does not minimize the maximum edge
length (see also Section 2). Second, the incremental greedy method, that repeatedly adds the short-
est edge that does not intersect any previously added edge, also fails to minimize the maximum edge
length. Third, let us take a brief look at the decremental greedy method that throws away edges in
the order of decreasing length. It stops the deletion process if another deletion would render the set
of edges so that it does not contain any triangulating subset (see Wismath [Wism80, page 81)]). The
trouble with this approach is that it is not clear how to efficiently decide whether the evolving edge
set is still sufficient to triangulate the point set. Indeed, Lloyd [Lloy77] proved that the general ver-
gion of this problem (decide whether a given edge set contains a triangulation) is NP-hard. Finally,
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the iterative methods that use the edgé—ﬂip [Laws77] or the more general edge-insertion operation
[EATWY0] can get caught in local optima. The approach taken in this paper is entirely different
from the above paradigms.

The organization of this paper is as follows. Section 2 reviews a few results on relative neigh-
borhood graphs and other subgraphs of the Delaunay triangulation. Section 3 formulates the global
algorithm; its straightforward implementation using dynamic programming takes time O(n3). The
only intricate part of the algorithm is the proof of correctness provided in Section 4. Sections 5 and
6 present a specialized polygon triangulation algorithm that can be used to speed up the general
algorithm to time O(n?). While Sections 2 through 6 assume that the Euclidean metric is used to
measure length, Section 7 demonstrates that all results extend to general normed metrics. Indeed,
the arguments in Sections 2 through 6 are axiomatically derived from a few basic lemmas in order
to minimize the number of changes necessary to generalize the results. Finally, Section 8 briefly
discusses the contributions of this paper and states some related open problems.

2 Subgraphs of the Delaunay Triangulation

The approach to constructing a minmax length triangulation taken in this paper first adds enough
edges to decompose the plane into simple polygonal regions and then (optimally) triangulates these
regions. Both Plaisted and Hong [P1Ho87] and Lingas [Ling87] used this approach to compute
approximations of the minimum length triangulation. In our case, the initial set of edges is provided
by the (boundary of the) convex hull and the relative neighborhood graph of the point set S. The
remainder of this section formally introduces these graphs, along with the Delaunay triangulation
and the minimum spanning tree of S, and reviews some basic facts about their relationships. If
z,y, z are three points in R2 then zy denotes the relatively open line segment with endpoints z and
¥, |zy| is its length, and zyz denotes the open triangle with vertices z,y, 2.

The Delaunay triangulation of S, denoted by dt(S), contains an edge ab, a,b € S, if there is
a circle through a and b so that all other points lie outside the circle. If the points are in general
position then dt(S) is indeed a triangulation. '

' As mentioned in the introduction, the Delaunay triangulation does not minimize the length of -

the longest edge. Take for example the points a = (=2,0), b = (1,v3), ¢ = (1, -v3),d=(2-¢,0),

- with 0 < € < 1. They form a convex quadrilateral abdc and the Delaunay triangulation uses ad as
" the fifth edge. As € approaches 0 the length of ad approaches 725 times the length of the longest edge
in the alternative triangulation. Indeed, 725 is the worst possible ratio as can be shown using the
result of [Raja91] that the Delaunay triangulation minimizes the radius of the maximum smallest
enclosing circle, where the maximum is taken over all triangles. If the radius of this circle is 1 then
the longest edge of the Delaunay triangulation has length at most 2. By the optimality result every
minmax length triangulation has a smallest enclosing circle of radius at least 1 and therefore an edge
of length at least /3.

The convez hull of S is the smallest convex polygon that contains S. We define ch(S) as the
graph defined by the edges of this polygon. In the (degenerate) case where three or more collinear
points lie on the boundary of this polygon we think of each such point as a vertex of the polygon.
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Thus, edges are taken only between adjacent collinear points. Each convex hull edge is an edge of
every triangulation of S, and therefore also of every minmax length triangulation. Y,

An edge ab belongs to the relative neighborhood graph of S, denoted by rng(S), if /ew)(

b max{|za], |zd
@bl < __mip , max{leal, cbl}.

This definition goes back to Toussaint [Tous80] who modxﬁed a similar deﬁmtlon by Lankford
[Lank69] for use in pattern recognition. Alternatively, we can define the lune of ab as the set
{z € R? : max{|zal, |zb|} < |ab]}, and define rng(S) as the set of edges ab whose lunes have empty
intersection with S.

A minimum spanning tree of S, mst(S), is a spanning tree of § that minimizes the total edge
length; it also minimizes the maximum edge length.

All four graphs, dt(S), ch(S5),rng(S), mst(S), are plane and connected, and with the exception
of ch(S), they span S. Where convenient we will interpret these graphs as edge sets. Plainly,
ch(S) C dt(S), and as observed by Toussaint [Tous80], we also have mst(§) C rng(S) C di(S).
Obviously, ch(S) C ml(S), for every minmax length triangulation mit(S), and we will show in

Section 4 that there exists an mit(S) so that rng(S5) C mit(S). L
Mtk ek
FY |
3 The Global Algorithm AL v m it

As mentioned above there exists a minmax length triangulation mit(S) that contains all edges of
ch(S) and rng(S). Because ch(S)U rng(S) is a connected graph, it decomposes the convex hull of
S into simple polygonal regions, which we define as open sets, that contain no points of S. It is thus
natural to construct mi#(S) by computing ch(S) U rng(S) and then (optimally) triangulating each
polygonal region.

Strictly speaking, however, the polygonal regions are not necessarily simple polygons in the usual
sense of the term, although their interiors-are simply connected. The difference is that the interior of
the closure of a polygonal region is not necessarily the same as the region itself; it may contain edges
of the region and it may be non-simply connected. The most effective way to deal computationally
with this minor difficulty is to represent each edge by a pair of oppositely directed edges, and to
represent the boundary of each region by the collection of directed edges for which the region lies on
their left hand side. In effect, this means that we interpret each polygonal region as a genuine simple
polygon, simply by pretending that its zero-width cracks are opened up a tiny amount. In most cases,
this is a convenient interpretation and the notation will be adjusted accordingly. Only occasionally,
the difference between a simple polygonal region and a simple polygon will be uncovered.

Let us now formally specify the algorithm and give a preliminary analysis.

Input. A set S of n points in R2.

Output. A minmax length triangulation of S.
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Algorithm. 1. Construct ch(S) and rng(S).
2. Determine the polygonal regions defined by ch(S) U rng(S).
3. Find a minmax length triangulation for each such polygonal region.

Step 1 can be carried out in time O(nlogn) using results documented in [PrSh85] and [Supo83] (see
also [JaK'Y90]). Using the standard quad-edge data structure of [GuSt85] for storing the plane graph
ch(S)Urng(S), step 2 can be accomplished in time O(n). Finally, we can use dynamic programming
to compute an optimal triangulation for each polygon in time cubic and storage quadratic in the
number of its vertices (see [Klin80, Gilb79]). This adds up to time O(n®) and storage O(n?). The
correctness of the algorithm will be established in the next section. Sections 5 and 6 will show how
to speed up the algorithm to time O(n?) using a specialized polygon triangulation algorithm.

4 The Subgraph Theorem

The main result of this section is what we call the Subgraph Theorem which was announced earlier.
We begin with two elementary geometry lemmas about distances between four point in ‘convex and
in non-convex position.

O-Lemma. For a convex quadrilateral abcd, we have |ab] + |cd| < |ac| + |bd].

Proof. Let z be the intersection point of the two diagonals, ac and bd. Clearly, |ab] + |ed] <
(laz| + |zb) + (lez| + |zd]) = lac| + {bd]. :

In words, the total length of the two diagonals of a convex quadrilateral always exceeds the total
length of two opposite sides. This is true even if three of the four vertices are collinear. It implies
that if one diagonal is no longer than one of the edges then the other diagonal is longer than the
opposite edge.

A-Lemma. Let a,b,c,d be four distinct points so that the closure of the triangle abc contains d.
Then |ad| < max{|ad], [ac[}. '

Proof. If a, bfd’, d are collinear the result is obvious. Otherwise, let d’ ‘be the intersection of the edge
be with the line passing through a and d, and note that |ad| < |ad’|. Of all points on bc only the
endpoints can possibly maximize the distance to a. The assertion follows because if ¢’ is an endpoint
of bc then d # d’ and therefore ad is strictly shorter than ad'.

~— Note that the length of the longest edge of any minimum spanning tree is no longer than the

longest edge of any triangulation of S. This follows trivially from the fact that every triangulation
contains a spanning tree. It is not very difficult to prove that the same is true for the relative
neighborhood graph of S. First we need some notation. The circle with center z and radius p is
denoted by (z, p), and the bisector of two points p and g is the set of points equidistant to both.

Length Lemma. Every triangulation of S contains an edge that is at least as long as the longest
edge of rng(S).

Proof. Let pg be the longest edge of rng(S) and let #(S) be an arbitrary triangulation of 5. If
. {,7"‘j .
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pg € t(S) there is nothing to prove. Otherwise, pg intersects edges 131,725z, . ., Tksk of t(S5), sorted
from p to g, with all r; on one side of the line through p and ¢ and all s; on the other. If pg is
longer than all edges in ¢(S) then 7, and s; are both inside the circle C, = (p, |pg|), because pr; and
ps) are both edges of #(S). By the definition of rng(S), r1 and s; are thus outside or on the circle
Cq = (g, |pg|). Therefore, r; and s, lie in the half-plane of points closer to p than to g. Symmetrically,
i, and s lie inside Cq and outside or on Cp, and therefore in the half-plane of points closer to ¢ than
to p. For each 1 < i < k — 1 we have either r; = ;43 or s; = 8;43, which implies that there is an
index j so that r; and s; do not lie on the same side of the bisector of pg. But then the O-Lemma
implies that |r;s;| > |pg|, because |pg| is no longer than each of two opposite edges of the convex
quadrilateral pr;gs;, a contradiction. .

We are now ready to state and prove the Subgraph Theorem. Its proof is similar to, although
considerably more involved, than the proof of the Length Lemma. The basic idea is to assume an
extreme counterexample and to contradict its existence by retriangulating parts of it.

Subgraph Theorem. Every finite point set S in 82 has a minmax length triangulation mit(S) so
that rng(S) C mlt(S).

Proof. Let us assume there is a set S so that no minmax length triangulation contains rng(5). We
arbitrarily and independently index the points of S and the edges of rng(S). Let t(S) be a minmax
length triangulation of S that satisfies the following extremal properties, where later properties are
contingent upon earlier ones.

(i) t(S) maximizes the smallest index of any edge in rng(S) that is not in ¢(S). Let pq be the edge
with this index and let the index of p be smaller than that of g.

(ii) #(S) minimizes the number of edges that intersect pq.

In case t(S) is not unique yet we add two extremal properties that depend on points b and ¥’ to be
defined later. More precisely, b is an angle around a point, and so is &', but this will become clear
shortly. The two points (or angles) are uniquely defined by pq and 2 given triangulation.

(ii1) #¢(S) minimi;eé the number of edges incident to b that intersect pq.

(iv) t(S) minimizes the number of edges incident to ¥ that intersect pg.

It is conceivable that #(S) is still not unique, but it will be sufficient to assume that #(S) is any one
of the remaining triangulations.

Consider the edge pg of rng(S); it intersects the triangles t;,¢s,...,% of ¢(S), sorted from p
to g (see Figure 4.1 left). By deleting the edges that intersect pg we create a polygonal region.
As mentioned in Section 3 we interpret each edge in its boundary as a pair of edges with opposite

direction, and to trace the boundary of the region we traverse all directed edges that have the
~ region on their left side. This allows us to think of the polygonal region as a simple polygon. Any
two consecutive (directed) edges define an angle (see Figure 4.1 middle). Note that a vertex can
correspond to many angles, although the common situation is that it corresponds only to one. We
will therefore sometimes ignore the difference between vertices and corresponding angles.- Points
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p and g correspond to only one angle each. An angle is convez if the two defining edges form a
left-turn. Call the sequence of edges from p to g the lower chain and the sequence from ¢ to p the

Figure 4.1: To the left we see the triangles of 2(S) that intersect pg. If we remove the edges intersecting pg we
get a polygon whose boundary is oriented in a counterclockwise order. The prefix P and the suffix Q defined for
this configuration are illustrated to the right. Although b and a’ are the same point, they refer to different angles
of this point.

upper chain. Each chain contains at least one convex angle different from p and gq.

A prefiz is an initial subsequence of t,%3,...,%, and a suffiz is a terminal subsequence of
t1,12,...,tk. We say that a prefix (suffix) covers an angle of the polygon if it contains all triangles
incident to this angle. Let i be minimal so that the prefix P = #;,13,...,t; covers a convex angle
other than p, and let j be maximal so that the suffix @ = t;,%j41,...,% covers a convex angle
v/ other than g. P and Q consist of at Jeast two triangles each. We let b be the convex angle (vertex)
covered by P — it is incident to both t; and t;_; — and d be the other vertex common to t; and
t;—1. Furthermore, c is the third vertex of t;.; and a is the third vertex of t; (see Figure 4.1 right).
Symmetrically, define vertices b’,d’,¢,a’ of Q. We say that P (Q) is type 1 if the last (first) two
triangles of P (Q) are the only ones incident to b ('), and it is type 2, otherwise (see Figure 4.2). If

'Figure 4.2: The prefix P with vertices a,b,c,d and the suffix Q with vertices o’ ,0,¢,d’ are defined depending
on pg. P is type 1 and Q is type 2. For illustration purposes the constraint that all vertices must lie outside the
lune of pg has been ignored.

P is type 1 then a,b,c belong to the samé chain and d belongs to the other chain (this includes the
case that ¢ = p), and if P is type 2 then a,b belong to one chain and ¢,d to the other.
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Claim 1. P =1,,1,,...,t; and Q = tj,t;j41,. ..,k share at most two triangles, that is, i — 1 < j.

Proof (of Claim 1). We show that the suffix R = t;_1,1;, ..., tk covers at least one convex angle other
than g, so Q cannot be bigger than R. If P is type 1 then R covers b, which is convex. Otherwise,
R covers all angles between d and g, d included. Since all angles between p and d, p and d excluded,
are non-convex, at least one angle between d and g must be convex, and this angle is covered by R.
This completes the proof of Claim 1. m

In order to get a contradiction to the choice of (S) we attempt a retriangulation of the polygonal
region defined by pqg, using P and Q. Of course, the maximum edge length must not increase. We
show below that either bd, or b'd’, or both can be switched, which will lead to a contradiction except
in a particular case where P and @ share one triangle. The analysis of this case will conclude the

proof.

Call bd (¥'d") switchable if ac (a'c’) is no longer than the longest edge of #(S). We are able to
prove strong locality constraints for a and d (a’ and d') if bd (b'd’) is not switchable. Define

A= {z € R :|zp| > |pq| and |zp| > |zq|} and

D = {z € R :|zp| > |pq| and |zq| < |pgl},

with the understanding that A and a belong to one half-plane defined by the line passing through p
and ¢, and D and d belong to the other (see Figure 4.3).

Figure 4.3: The regions A and D as defined for the case when a is on the upper chain.

Claim 2. If bd is not switchable then a € A and d € D.

Proof (of Claim 2). Since bd is not switchable ac must be longer than the other five edges defined
by a,b,¢,d, and, by the Length Lemma, it must be longer than pg. We first show that |ac| < |ap|
and then derive the four inequalities needed to establish the claim.

(1) lac| £ |ap|. W_e can assume that ¢ # p. Note that ¢ is contained in the closure of triangle bdp.
Since the line passing through b and d separates a from p, the closures of the two triangles abp
and adp cover bdp completely, and therefore one of them contains c. If ¢ lies in the closure of
abp the claim follows from |ab| < |ac] and the A-Lemma for abp, and if ¢ lies in adp if follows
from |ad| < |ac| and the A-Lemma for adp.
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(2) |ap| > |pg]- From the Length Lemma we get |pg| < |ac| and from (1) we get |ac| < |apl.

(3) |dg| < |pg|- Assume |dg| > |pg|. The O-Lemma for pagd implies |ad| > |ap| and thus |ad| > |ac]|
because of (1), a contradiction.

(4) |dp| > |pg]- This is immediate from (3) because pq is an edge of rng(S).

(5) lap| > |ag|- Assume |ap| < Jag| and recall |dp| > |pg| from (4). By the O-Lemma for pagd we
get Jad| > |ag], which implies |ad| > |ap| by assumption, and |ad| > Jac| by (1), a contradiction.

The proof of Claim 2 is now complete because (2) and (5) are equivalent to @ € A and (3) and (4)
are equivalent tod € D.

Symmetrically, we define regions A’ and D’ which is where a’ and &’ must lie if ¥d’ is not
switchable. Using Claims 1 and 2 we can now show that there is always an edge that can be
switched.

Claim 3. It is not possible that both bd and b'd’ are non-switchable.

Proof (of Claim 3). If bd and b'd’ are both non-switchable, then ad lies on ¢’s side of the bisector of
pq and a’d’ lies on p’s side, by Claim 2. Because of Claim 1 and because ad is the last edge of P and
a'd’ is the first edge of Q we have {a,d,d’,d'} = {a,b,¢,d} = {d',¥',c,d'}. Furthermore, the fact
that bd and b'd’ are both edges of #(§) implies that they are the same and thus b=d’,d =¥,a = ¢/,
¢ = &' (see Figure 4.4). It follows that the polygonal region has the shape of a diamond with p,b,q,d

b=d’

Figure 4.4: Hf bd and §'d’ are both non-switchable then b and d are the only convex angles besides p and q.

as the only convex angles. This contradicts the locality constraints for a,b, ¢, d stated in Claim 2. In
particular, the chain from p to d € D (as indicated by the dotted chain in Figure 4.4) is concave or
straight and therefore enclosed by the circle (g, |pg|). It follows that this chain is disjoint from A,
which is where ¢ = a’, the predecessor of d in this chain, is supposed to lie. The proof of Claim 3 is
thus complete. @ :

Let us now see how Claim 3 can be used to contradict the existence of #(S) and thus of a
counterexample to the assertion of the Subgraph Theorem. If 3d is switchable and P is type 1 then
the number of edges that intersect pg decreases when bd is switched. This contradicts property (ii).
Thus;, P must be type 2 if bd is switchable, and, similarly, Q must be type 2 if ¥d’ is switchable.
When we switch bd the degree of b decreases, which contradicts property (iii). Thus, it must be
that bd is not switchable and ¥d" is. But switching ¥'d’ decreases the degree of b/, which would

 contradict property (iv), unless the degree of b increases at the same time. Remember that (iv) is
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contingent upon (iii), so if (iii) is not satisfied any more then we cannot draw any conclusion. Thus,
the configuration left for analysis is as shown in Figure 4.5.

Figure 4.5: In the final configuration bd is non-switchable, so a € A and d € D, and b'd’ is switchable, so Q is
type 2. Furthermore, switching b'd’ to a’c’ increases the degree of b, so @’ = b and therefore P and Q overlap in
exactly one triangle. The figure ignores that by rights all points should lie outside the lune of pq.

To reach the final contradiction, we switch &'d’ and redefine Q based on the new configuration.
Since all angles from (the old) d’ to g are non-convex, the new points ¥’ and @’ are the same as before,
and the new d’ is the old ¢/. Thus, we can again switch b'd’, and so on, until Q is type 1 or ¢’ = ¢ at
which point the next switch decreases the number of edges intersecting pg. This finally contradicts
property (ii).

Remark. A natural exténsion of minimizing the length of the longest edge in a triangulation is to
also minimize the length of the second longest edge, and so on. Let mvt(S) be a triangulation that
minimizes the entire vector of edge-lengths in this fashion. If the points of S are in general position
‘then muvt(S) is unique. Curiously, it is not always true that (there is an) mvt(S) (that) contains
rng(S) as a subgraph. The smallest example that illustrates this observation consists of four points
a,b,c,d so that ¢ and d lie fairly close to b, ab and cd intersect, and ¢ and d both lie outside the
circle (a, |ab]).

5 Triangulating rng-Polygons

The goal of this section and the next is to improve the cubic time algorithm of Section 3 to quadratic

time. This is done using a specialized polygon triangulation algorithm. The main part of the algo-

rithm, and the structural properties of minmax length tna.ngnla.tmns that guarantee its correctness,
are developed in this section.

Recall that the first two steps of the algorithm in Section 3 decompose the convex hull of S into
polygonal regions by drawing all edges of ch(S) and rng(S); these steps remain unaltered. Each
region is represented by a cyclic chain of directed edges that trace its boundary in a counterclockwise
order around the region. Because rng(S)is a connected graph which spans S, any polygonal region is
bounded by at most one edge not in rng(S); this edge is in ch(S)—rng(S). We call a polygonal region
a complete rng-polygon if all its edges belong to rng(S),-and an incomplete rg-polygon, otherwise.

Obviously, rrng-polygons are not as general as arbitrary polygonal regions because for each edge
ab, except possibly for one, the lune of @b, Ass = {z € R? : max{|az], |bz{} < |ad|}, is free of points
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of S. We call pq a diagonal of a polygonal region if it lies in the region entirely. For each diagonal
pq of an rng-polygon it must be that Ay contains at least one point of S. We further distinguish
between the cases where ), contains points of 5 on both sides of pg and where it does not.

For a directed edge py let hy be the set of points to the left of or on the directed line that passes
‘through p and g in this order. Define the half-lune of pg as

sy = Apg N by

By definition, Ay, = 7y U 73, and we have pg € rng(S) iff nz NS =napns = @. We call pg a
2-edge if both half-lunes contain points of S, and we call it a 1-edge if only one half-lune contains
points of S. For a l-edge pq, we say the side where the half-lune contains points of S is beyond pg,
and the other side is beneath pq. Note for example that if pq is a 1-edge bounding an incomplete
rng-polygon R then pg € ch(S) and therefore R is beyond pg. We will see later that 1-edges are
useful in triangulating rng-polygons. '

The first lemma of this section shows that when we triangulate an rng-polygon R, whether .
complete or incomplete, we can ignore all points outside R. More specifically, it shows that the type
of any diagonal or edge of R remains unchanged when we remove all points of 5 that are not vertices
of R. '

Reduction Lemma. Let pq be a diagonal or edge of an rng-polygon R. If 75 contains points of §
then it also contains vertices of R.

Proof. Assuming 7, contains points of S but no vertices of R, it must intersect edges of R without
containing their endpoints. Let yy’ be the edge closest to p and ¢, and let z be a point in 7,3NS. Since
z is not a vertex of R it must lie on the other side of yy’, as seen from p and ¢. So yy’ € rng(S)—ch(S),
and therefore max{|zy|,|z¥|} > |yy’]- Assume without loss of generality that |zy| > |yy/|. If ¥’ lies
outside or on the circle (p, |pg|) we consider the convex quadrilateral pyzy’. Otherwise, y’ lies outside
or on (g, |pg|) in which case we consider the convex quadrilateral gyzy’. But now we have |zy| > |yy’ |
and either |py’| > |pz| or |g¥’| > |gz|, a contradiction to the O-Lemma in both cases.

Using the Reduction Lemma we now address vertices visible from both endpoints of an edge. We

. need some notation. Two points z,y inside or on the boundary of a polygonal region are visible from

each other if zy is contained in the region. The distance of a point z to an edge pq is defined as the

infimum, over all points z € pg, of |zz|. If |pg| > max{|pz|, |gz|} then this distance is referred to as
the height of the triangle pgz.

Visibility Lemma. Let pg be a diagonal or edge of a.n rng-polygon R, and let z be a vertex of R
that lies in 7,3 and minimizes the distance from pg. Then z is visible from p and also from gq.

Proof. Consider the triangle pgz, let z' € pq be the point with minimum distance from z, and
assume without loss of generality that z is not visible from ¢. Let yy’ be an edge of R that intersects
gz. The proof of the Reduction Lemma implies that at least one endpoint of yy’ lies in 7,3, say
¥y € 7. In addition, y and ¥’ lie outside the triangle pgz because z is closest to pg (see Figure 5.1).
Hence, yy’ intersects zp, zq and all edges zz with z € pg. Thus, zyz'y’ is a convex quadrilateral, and
because of |yz'| > |z2’| by the choice of z, we have |yy/| > |¢/'z] from the O-Lemma. By symmetry,
if ¢ lies in 55 we have |yy’| > |zy|, which implies yy’ & rng(S). This is a contradiction because
yv € ch(S). Thus, ¢ must lie outside 7. If y’ lies outside or on the circle (p, |pg]) then |py’| > |pz|
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P ;l 19
Figure 5.1: The quadrilateral zyz'y is convex because 2’ € pg and ¥, ¥ € pgz.

and therefore |zy| < |yy’| by the O-Lemma for py’zy. Symmetrically we get |zy| < |yy/| from the O-
Lemma for qy’zy if ¥’ lies outside or on the circle (g, |pg|). Together with [zy'| < |yy/| this contradicts

vy € rng(S5).

We need one more elementary lemma.
Containment Lemma. If z € Ny then 13 C Apq.

Proof. Take a point z € 7,3 and consider the four points p,q,z,2. If z € pq there is nothing to
prove. Otherwise, pzqr or pgzz is a convex quadrilateral (possibly with three of the four vertices
collinear) or z € pgz. In each case |gz| < |pg| can be shown using the O- or the A-Lemma. This
implies z € Apq.

The following lemma is of fundamental importance to the quadratic time triangulation algorithm.

1-Edge Lemma. Let pg be a 1-edge of an rng-polygon R, and let z be a vertex of R that lies in 7
and minimizes the distance from pg. Then pz is either an edge of R or a 1-edge with pgz beneath
Pz, and the same is true for gz.

Proof. We have 55 C A, by the Containment Lemma. The part of 753 in 74 contains no point of
S because g NS = @ by assumption. For a different reason also the part of 7, in 75 contains no

pe- :;l g
Figure 5.2: Vertex z is visible from p and from g, so pgz is empty. It follows that if y € 155 N 5y, then pgyz is a

convex quadrilateral.

- point of S. This is because a point y € 73 N 7,3 would be closer to pg than z is, as can be shown
using the O-Lemma for pz’yz (see Figure 5.2). So pz is an edge of R if 7,3 contains no point of §
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either, and it is a 1-edge with triangle pgz on its beneath side, otherwise. The argument for gz is
symmetric.

5.1 Incomplete rng-Polygons

The above lemmas are sufficient for efficiently triangulating an incomplete rng-polygon. As defined
earlier, all edges of an incomplete rng-polygon R are rng-edges, except for one 1-edge, pq € ch(S) -
rng(S), which has R on its beyond side. The algorithm below can triangulate more general incomplete
rng-polygons, that is, it is not necessary that pg € ch(S), but it must be that pq is a 1-edge and R
lies beyond pgq.

Input. An incomplete rng-polygon R that lies beyond its 1-edge pq.
Output. A minmax length triangulation of R.

Algorithm. 1. Find a vertex z in Ap, that minimizes the distance from pq.
2. Draw edges pz and gz. This decomposes R into the triangle pgz,
and two possibly empty incomplete rng-polygons R; and Ra.
3. Recursively triangulate R; and R3.

The correctness of this algorithm follows from the 1-Edge Lemma. Indeed, it implies that if Ry
is non-empty then it lies beyond pz, which is the only 1-edge of R;. Similarly, R; lies beyond its
1-edge gz, provided R; is non-empty. Thus, the input invariant is maintained all the way through
the recursion. This implies that the algorithm successfully triangulates. By the choice of point
z, the edges pz and gz are both shorter than pg. It follows that the diagonals are monotonely
‘decreasing in length, down a single branch of the recursion, and therefore all diagonals constructed
by the algorithm are shorter than pg. A straightforward implementation of the algorithm takes time
quadratic in the number of vertices of R. '

Remark. Instead of choosing a vertex z that minimizes the distance to pg, step 1 of the algorithm
could also choose other vertices as long as they are visible from p and ¢ and lie in their lune. An
interesting choice among these vertices is the vertex y that minimizes max{|yp|,|yq|}. As long as
y is unique, which is the non-degenerate case, this choice leads to a triangulation of the polygon R
that lexicographically minimizes the sorted vector of edge lengths. Another possible choice is the
vertex z that minimizes |zp| + |2g|- This vertex is automatically visible from p and from g and might
be useful in actual implementations because it is often considerably less expensive to compute the
distance between two points than between a point and a line segment.

5.2 A Lemma on Polygon Retrianguiation

This subsection presents a technical lemma on retriangulating a polygonal region. It will find appli-
cation in Sections 5.3 and 6, and is also of independent interest. In order to conveniently distinguish
between boundary and non-boundary edges of a triangulation, we call a non-boundary edge a diago-
nal. Let X be a polygonal region, (X )ka triangulation of X, and zz’ a diagonal of X that is not in
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t(X). We say that zz' generates ¢(X) if it intersects every diagonal of ¢(X'). We give an algorithmic
description of a particular triangulation of X, called the fan-out triangulation f(X) with (fan-out)
center z. The triangulation is illustrated in Figure 5.3.

1. Connect z to all vertices of X that are visible from z. Call these vertices and also the two
vertices connected to z by edges of X neighbors of z.

- 2. Two neighbors of z are said to be adjacent if they are consecutive in the angular order around
z. Connect any two adjacent neighbors u,v of z, unless uv is an edge of X.

3. Every edge uv created in step 2 decomposes X into two parts, and the part that does not
contain z is called the pocket X, of uv. Assume that u is the endpoint of uv so that the other
incident edge of the pocket, uw, is partially visible from z. Recursxvely construct the fan-out
triangulation of X, with center v.

Figure 5.3: The polygonal regions X is triangulated by fanning out from z, connecting adjacent neighbors of z,
and recursing in the thus created pockets. The illustration of this process is schematic and ignores some of the
inherent shape constraints for X.

We introduce some terminology. Among the diagonals of f-(X) we distinguish between fan-out
edges constructed in step 1 and cut-off edges constructed in step 2 of the above algorithm. Each
_ call of the algorithm triangulates part of a pocket and recurses in each component (pocket) of the
remainder. We call a pocket V' a child of another pocket Z if V C Z and V is maximal. The
- original polygonal region, X, is also called a pocket and forms the root of the tree defined by the
child relation. This tree is exactly the recursion tree of the algorithm. Each pocket Z is associated
with a fan-out center z. The maximum distance between z and any other vertex of Z is called the
width of Z.

The lengths of the diagonals of f;(X) are constrained by the length of the longest edge of X, the
length of the longest diagonal of #(X), and the width of X. More specifically, we prove the following
result.

Fan-Out Lemma. Let X be a polygonal region, with §; the length of its longest edge, let ¢(X') be
a triangulation of X, with §; the length of its longest diagonal, let zz’ be a generator of ¢(X), and
let 83 exceed the maximum distance of z from any vertex of X. Then |ab| < ma.x{&l, 2,63} for every
diagonal ab of f:(X )
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Proof. Note that the assertion follows if we prove that max{é,, f2,83} exceeds the width of every
pocket Z created during the algorithm. To see this notice that the width of Z is an upper bound on
the length of any fan-out edge emanating from the center of Z. Each cut-off edge uv that creates a
child pocket V of Z is incident to the fan-out center of V which implies that the width of V is an

upper bound on its length.

The proof of the upper bound on the widths of all pockets proceeds inductively, from the top to
the bottom of the tree. The width of X is less than 83, by assumption, and therefore also less than
max{6;,82,03}. For the inductive step consider a pocket Z and a child V of Z. We show that the
bound on the width of Z is inherited by V, with some environmental influence from X and #(X).
Let z be the fan-out center of Z, § the width of Z, v the fan-out center of V', uv the cut-off edge .
that creates V, and w the other vertex of V adjacent to u. '

First, we prove |uv| < max{é;,fy}. By definition of fan-out center v lies inside the triangle
uwz. The A-Lemma thus implies |uv| < max{|uw]|,|uz|}, and we get the claimed inequality becaunse
luw| < é, and juz] < . Second, we show that max{é,,é} exceeds the maximum distance between
v and any vertex of V other than u. Let y # v,u be such a vertex and let yy’ be a diagonal
of t(X) that intersects zz’. Such a diagonal exists because zz’ generates #(X). It follows that
vy’ intersects uv and that therefore v lies inside the triangle yy’z. Using the A-Lemma we get
lyv| < max{|yy'], |yz|} < max{é;,é} because |yy’| < §; and |yz| < 6. The two bounds together
imply that the width of V is less than max{é;,d2,6}, and induction shows that it is less than
max{é;, 62, 83}.

Remark. The Fan-Out Lemma can also be formulated without the assumption of an initial trian-
gulation t(X'). The condition on the diagonal zz’ is now that each vertex of X must be visible from
some point of zz*!. The parameter §; needs to be redefined as the maximum, over all vertices y of
X, of the infimum, over all points a of zz’ visible from y, of the distance between y and a.

5.3 Complete rng-Polygons

. It will be convenient to assume that no two diagonals and edges of the rng-polygon R are equally long.
With this assumption we can show that every triangulation of R, and therefore also every minmax -
length triangulation, contains a 2-edge. To see this take the longest edge pq of a triangulation. It is
not an edge of R because the third vertex of the incident triangle lies in its lune A,,. It is therefore
a diagonal with incident triangles pgr and pgs, and we have r, s € A,, by maximality of pg. Since r

-and s lie on different sides of pg it follows that pq is a 2-edge.

We prove below that there is a minmax length triangulation mit(R) of R that contains only
one 2-edge pg. By the argument above pq is the longest edge of mit(R). We call pq ezpandable if
there are vertices r and s in Ap,, on different sides of pg and both visible from p and g, so that
E = {pr,qr,ps,qs} is a set of rng- and 1-edges and the quadrilateral prqs lies beneath the l-edges
in E. It should be clear that once we draw an expandable 2-edge we can complete the triangulation
- using the algorithm for incomplete rng-palygons (Section 5.1). The resulting triangulation uses no
2-edge other than pq which is thus the longest edge of the triangulation.

We first present the algorithm and then prove its correctness by showing that every complete
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rng-polygon R contains an expandable 2-edge. This, however, assumes that no two diagonals or
edges of R have equal length. If this non-degeneracy constraint is not satisfied it is necessary to run
the algorithm with a simulation of non-degeneracy, see [EAMii90]. The side-effects of this simulation
and how they can be undone will be discussed in Section 5.4.

Input. A complete rng-polygon R.
Output. ‘A minmax length triangulation of R.

Algorithm. 1. Find the shortest expandable 2-edge pg, together with
corresponding rng- and l-edges pr, qr, ps, gs.
2. Triangulate the incomplete rng-polygons defined by pr, gr, ps, ¢s.

As mentioned in Section 5.1, step 2 takes time that is only quadratic in the number of vertices of R.
In Section 6 we will see how step 1 can be implemented so it runs in quadratic time too. We now
formulate and prove the lemma that implies the correctness of the algorithm.

2-Edge Lemma. Let R be a complete rng-polygon with no two diagonals or edges of the same
length. Then there exists a minmax length triangulation mit(R) of R that contains an expandable
2-edge.

Proof. We assume there is no minmax length triangulation of R that contains an expandable 2-edge.
A contradiction to this assumption will be derived using an extreme minmax length tfiangulation t(R)
defined as follows. Let pg be the longest edge of ¢(R) and let pgr and pgs be the incident triangles.
By the non-degeneracy assumption, pq is the longest edge of every minmax length triangulation of
R. Choose t(R) so that the sum of heights of pgr and pgs (that is, the distance of 7 from pq plus the
distance of s from pq) is a minimum. We prove below that pq is expandable and that r and s are
witnesses thereof, that is, the quadrilateral prgs lies beneath every 1-edge in E = {pr, ¢r, ps, qs}

Case 1. Assume that prgs lies beyond at least one l-edge in E, say beyond pr. Then we can
retriangulate R on this side of pr using the algorithm for mcomplete rng-polygons. Among others,
this algorithm removes edge pg, and all new edges are shorter than pr, which itself is shorter than
pq. This contradicts the assumption that ¢(R) is 2 minmax length triangulation.

Case 2. Assume that one of the edges of E, say pr, is a 2-edge, and assume without loss of generality
that r € 7. Thus, there is a non-empty set of vertices z of R contained in the half-lune 7,3. By the
Containment Lemma these vertices z lie in A, and by the Visibility Lemma a non-empty subset S’
of the 2z are visible from both p and r.

If a vertex z is in S’ then either pzNrq # 0 or rzNpg # P, see Figure 5.4. Let S}, be the subset of
vertices z of the first kind, and let S/ be the subset of vertices of the second kind. If S, # 0 choose
z € 5, so that the number of edges of ¢(R) that intersect pz is a minimum. Next, remove all edges
from t(R) that intersect pr and denote by X the polygonal region thus generated. If, on the other
hand, 5, = @, then choose z € 5] # 0 so that the number of edges in #(R) that intersect rz is a
minimum, again remove all edges from ¢(R) that intersect rz, and denote the resulting polygonal
region by X. For convenient reference we set z’ = p in the first case and z’ = r in the second. In
either case, we construct a retriangulation f;(X) of X by fanning out from z, as described in Section
5.2.
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Figure 5.4: The points z lie in the interior of 5,5 — pgr. which consists of one or two connected components
depending on whether or not the angle at r in the triangle pgr is non-acute.

We show below that the new triangulation of R has properties that contradict the assumptions
of case 2. Most importantly, the Fan-Out Lemma of Section 5.2, together with a few claims which
we are about to prove, imply that the edges of fz(X) do not exceed pg in length.

Claim 2.1. Except for z, all vertices of X lie outside the half-lune 7.

Proof (of Claim 2.1). Let 11%2, ¥3¥4 - - - » Ym—1¥Ym De the edges, sorted from z’ to z, that are removed
from ¢(R) when X is constructed. Suppose the claim is not true. Then there is a smallest index
j £ m — 1 with y;41 € 73. Consider the polygonal region X; of t(R) that is created by removing
the edges 1y2, Y3V, .- -, ¥Yj—1Y; from t(R). Since y;41 is the only vertex of X; that lies in 73 it is
visible from p and from r, inside X;. But this means that y;,,2’ intersects fewer edges of ¢(R) than
zz'/. This contradicts the choice of z and completes the proof of Claim 2.1.

Claim 2.2. For each vertex y of X we have |zy| < |pg].

Proof (of Claim 2.2). Clearly, both pz and rz are shorter than pg. So let y be any vertex different
from p, r, z, and let yy’ be an edge of ¢(R) that intersects z'z. Because of Claim 2.1, z is visible within
X from p and also from r, so pyzy’ and ryzy’ are convex quadrilaterals. Since y’ lies outside 5,3 it
cannot lie inside both of the circles (p,|pr|) and (r,|pr|). If ¥ lies inside (r,|pr|) then |py'| > |pz|
which implies |yy’] > |zy| by the O-Lemma for pyzy’. Otherwise, we have |ry/| > |rz| which implies
lyy’l > |zy| by the O-Lemma for ryzy’. This conclndes the proof of Claim 2.2 because yy’ is.an edge
~ of t(R) and is therefore no longer than pq.

Claim 2.2 and the Fan-Out Lemma imply that all diagonals of f;(X) are shorter than pg. In
the case where pg N rz # 0 we now have a contradiction, because the retriangulating process of X
eliminates pg and all edges of the resulting new triangulation of R are shorter than pq. In the case
where rgNpz # 0 the new triangulation still includes pq. We show below that the height of the new
triangle incident to pq is smaller than the height of pgr and thus arrive at a contradiction.

So assume rqgN pz # §; in this case pg is an edge of the boundary of X and p is visible from z. If
g is also visible from z then the new triangle incident to pq is pgz with height |z2z’|, where z’ € pg
minimizes the distance to z. Analogously define ’ € pq that minimizes the distance to r. Since
|pr| > |pz| we have |rr'| > |zr’] by the O-Lemma for przr’. Together with |z7/| > |z2’| this implies
|rr’] > |zz'|. If ¢ is not visible from z then pg belongs to the pocket X, defined by a cut-off edge
uv. We have u = p, w = ¢, and the center v of X, lies inside pgz. So again, either pqv is a triangle,
and its height is less than that of pgz and therefore that of pqr, or g is not visible from v, in which
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case the argument can be repeated. Eventually, we arrive at a triangle incident to pg whose height
is less than that of pqr.

Remark. Recall that the assertion of the 2-Edge Lemma is made under the condition that no two
diagonals or edges of the complete rng-polygon R are equally long. Indeed, the assertion is false
without this condition. Take, for example, two equilateral triangles abc and abd and move d slightly
towards the common edge ab. For § = {a,b,c,d} we have rng(S) = {ac, cb, bd,da}, ab is a 1-edge,
and cd is a 2-edge. So acbd is a complete rng-polygon. There is only one minmax length triangulation
of acbd, namely the one obtained by drawing the diagonal ab. But ab is not a 2-edge. -

5.4 Undoing the Simulated Perturbation

For every finite point set S in R2 there is an arbitrarily small perturbation §’ so that S’ satisfies
convenient non-degeneracy assumptions (see [EdMii90]). For a point p € S we denote its perturbed
version by p/. In the case of relative neighborhood graphs and minmax length triangulations this
means that no two pairs of points in S’ define the same distance. Because the perturbation is
arbitrarily small, the non-degenerate properties of S are maintained, that is, for four not necessarily
distinct points p,q,r,s € S with |pg| < |rs| we have |p/¢| < |7'¢].

Let us consider the effect of the perturbation on the computation of a minmax length triangula-
tion. Clearly, if p'q’ € rng(S’) then pq € rng(S), but not vice versa. The fact that in the perturbed
setting the relative neighborhood graph has potentially fewer edges than in the unperturbed setting
does not adversely influence the triangulation algorithm since rng(S’) is still connected and spans
S’. When the edges of ch(S’) are added and the polygonal regions defined by ch(S’) U rng(S") are
triangulated, it can happen that triangles a'b’c’ are constructed whose unperturbed counterparts abe
are flat, that is, a, b, ¢ are collinear. Although this is not a problem for the algorithm, it is somewhat
distressing when this triangulation is interpreted as a triangulation of S. The remainder of this
section shows how to remedy this deficiency.

Let ¢(S’) be a2 minmax length triangulation of S’, and consider its unperturbed version #(5),
that is, pg € (S5) iff p'q’ € (5’). A longest edge of ¢(S) is no longer than a longest edge of any
minmax length trianigulation mi#(S) of S, since mi#(S’), the perturbed version of mit(5), is a valid
triangulation of 5§’ and would otherwise contradict that ¢(S’) is a minmax length triangulation of 5.
The reverse is also true, namely a longest edge of #(5) is no shorter than a longest edge of mit(S).
We show this by converting ¢(S) into a minmax length triangulation of S.

Consider the dual graph ¢*(S5") of ¢(S”) and call a node a'b’c’ flat if a, b, c, are collinear. Determine
the connected components of the subgraph of ¢*(S’) induced by the set of all flat nodes. Each
component corresponds to a collection of collinear points in S, interconnected by flat triangles, see
Figure 5.5. Carry out the following steps for one component at a time. Remove all edges of the flat
triangles of the component, sort the corresponding points along the supporting line, and add edges
connecting points that are adjacent in the sorted order. This produces regions bounded by more
~ than three edges, as shown in Figure 5.5. All vertices z of such a region are collinear, except for
one vertex y which is connected to the first and last of the vertices z. Triangulate this region by
connecting y to all other vertices z. By the A-Lemma the newly introduced edga are no longer than
the longer of the two original edges incident to y. :
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Flgure 5.5: The five points in the middle of the left triangulation are the perturbed versions of five collinear points
in the right triangulation.

6 Finding the Shortest Expandable 2-Edge

This section shows how the first step of the algorithm for triangulating a complete rng-polygon R
can be made to run in time O(n?), where n is the number of vertices of R. As in Section 5.3, we
assume that no two diagonals or edges of R are equally long; so the shortest expandable 2-edge is
unique. For convenience we also assume that no three vertices of R are collinear.

Input; A complete rng-polygon R.
Output. The shortest expandable 2-edge of R.

Algorithm. 1. Determine the type of each diagonal pq of R.
2. For each 2-edge pq find vertices p/, p”, ¢, ¢” that minimize the counterclockwise
angles Zp'pq, Lgpp"”, Lg'qp, Lpgq”, contingent upon pp/, pp”, ¢, qg” being
rng-edges or 1-edges with pq on their beneath sides (see Figure 6.1).
3. Return the shortest 2-edge pq for which pp/, q¢’, pp”, q¢” are such that
P=q"orpfNgg"#0,and p" =g orpp"Ngq # 0.

.q”

Figure 6.1: By the choice of p’ the counterclockwise angle Lp’pq contains no l-edge with pg on its beneath side.
Symmetric statements hold for ?.¢. and ¢". .

Below we give the algorithmic details of the above steps.

Step 1, classifying diagonals. For each vertex p of R, we compnfe all incident diagonals pq and their
angular order around p. Furthermore, we determine whether or not the half-lune 55 contains any
vertex of R. Recall that by the Visibility Lemma Ty contains a vertex visible from p if it contains
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a vertex of R at all. We can thus base the decision whether or not 7,7 is empty of vertices solely on
the vertices visible from p. As defined earlier, pq is a 2-edge if both half-lunes of pq contain vertices
of R. Otherwise, pq is a 1-edge and its beyond side is where the half-lune contains vertices of R. We
now show that the computation for p can be done in time O(n). It follows that O(n?) time suffices
for step 1.

Computing the sorted sequence of diagonals pp1,pps, - - -, PPm incident to p is a standard operation
for simple polygons and can be done in time O(n), see e.g. [ELIAv81]. Let ppy and ppm41 be the two
edges of R incident to p and assume that po, p1, P2, - - - » Pmy Pm+1 iS in 2 counterclockwise order around
p. To determine whether there is a vertex of R in the half-lune 7,5, for 1 < i < m, we scan the
list po,p1,---;Pm+1 ODCe, from smallest index to largest. During the scan we maintain a stack of
diagonals pp; whose half-lunes 7,3, are not yet found to contain any vertex of R. Before pushing
pp; onto the stack, we remove all diagonals pp; whose half-lunes contain p;. Using a straightforward
extension of the Containment Lemma we can show that the order of processing implies that the
edges whose half-lunes contain p; lie on top of the ones whose half-lunes do not contain p;. Thus,
the former can be removed simply by repeatedly popping the topmost diagonal. When the scan is
complete, the stack contains exactly all diagonals pp; whose half-lunes contain no vertex of R. Since
a diagonal can be pushed and popped only once each, the entire process takes constant time per
diagonal.

Step 2, finding rng- and 1-edges. For each vertex p, we scan ppy,pp2,...,PPm in this order. In the
process we keep track of the most recent rng-edge or 1-edge pp whose beneath side is in the direction
of the scan. Initially, pp = ppo. When a 2-edge pq is encountered then pp is the edge pp’ that belongs
to pg. A symmetric scan is carried out to find the edge pp” that belongs to pg. The total time, for
all vertices p of R, is clearly 0(132). .

Step 3, returning the solution. Step 3 is computationally trivial. It takes time O(n?) since constant
time suffices to test whether or not pp/, pp”, ¢¢’, g¢” satisfy the conditions of step 3. However, it is
not trivial to see that the edge pq returned in step 3 is also the shortest expandable 2-edge. First
note that the shortest expandable 2-edge is no shorter than pg. This is because all 2-edges shorter
than pq fail the test of step 3. The followmg stra.lghtforwa.rd topological lemma lmphes that these
2-edges are not expandable.

Crossing Lemnra. Let vy,v,,...,9, be the sequence of vertices of a simple polygon, and let v;v;
and v;v, be two diagonals. Then vv; N vju, # B iff j < i.

Proof. The edge vjv, decomposes the polygon into two disjoint polygons with vertex sequences
V1,02, .++y V5, Un a0d U, Vj41y.. .y Un- If j < i then neither of the two polygons has v, and v; on its
boundary. It follows that v, v; crosses from one polygon into the other, and because v, v; is a diagonal,
this is only possible by crossing v;jv,. To prove the other direction we assume »;v; N vjv, # @ and
observe that v; and v; belong to different polygons because there is no way that v;v; can enter the
second polygon and leave it again. Thus, j < i. N

So it remains to show that the edge pg computed in step 3 is indeed exﬁa.ndable.

Expandability Lemma. The shortest 2-edge pq of R that satisfies the conditions of step 3 is also
expandable.
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‘ Proof. We show below that R can be triangulated on both sides of pg using only edges shorter
than pg. If we now assume that pq is not expandable we get a contradiction to the 2-Edge Lemma,
because pq is the longest edge of the triangulation and all expandable 2-edges are longer than pg.

We describe how to triangulate the part of R to the right of pg; the other part is symmetric.

Case 1. p’ = ¢". Assume |gg”] > |pp/|- Then |gq”] < |pq| for otherwise p € 7 57, and gq” would neither
be an rng-edge nor a 1-edge with pg on its beneath side. If we apply the triangulation algorithm for
incomplete rng-polygons (Section 5.1), once for pp’ and once for g¢”, we get a triangulation with the
desired properties. '

Case 2. pp'Nqq” # 0. In this case pp’ and g¢” are 1-edges. Because pp’ and gg” intersect, it must be
that p’ is closer to ¢ than to p or that ¢” is closer to p than to ¢. Assume without loss of generality
that |¢”p| < |¢"q|. As in case 1 we also have |¢"q] < |pg]|, but note that we do not necessarily have

|77’ < Ipal-

We now describe the tria.ﬁgula.tion process. It takes three steps illustrated in Figures 6.2 and 6.3.

Figure 6.3: The shaded portion of the pocket Y, represents the part of the triangulation ty,, beyond uuy that .
is retained for the final triangulation. The remaining portion is triangulated by fanning out from v. :

1. Construct the triangulation t,o» of R beyond g¢”, using the algorithm for incomplete rng-
polygons (see Figure 6.2). :
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2. Find the subset V of vertices of R that lie inside the triangle pg¢” and compute the convex hull
C of VU {p,q"}. Add the edges of C that are diagonals of R to the triangulation, and connect
g to all vertices of C (see Figure 6.2).

3. Step 2 creates nntna.ngﬁlated pockets Yy, one for each edge uv of C that is a diagonal of R.
Assume that u precedes v on the clockwise path from p to q” on the boundary of C. The
pocket Yy, is triangulated as follows.

3.1 Set uy := v if uv is a 1-edge and pq lies on the beneath side of uv. Otherwise, find a
vertex ur, so that |uuz] < |pg|, vur is a 1-edge, pq lies beneath uur, and uur does not
intersect C. (The existence of such a vertex uz will be established shortly.)

3.2 Construct the triangulation Z,,, of R beyond uug, again using the algorithm for incom-
plete rng-polygons, but retain only the triangles that lie completely inside the pocket Y,,.
Let X, denote the untriangulated part of Yy,.

3.3 Construct the fan-out triangulation f,(Xyy).

The remainder of the proof establishes that all diagonals of the thus constructed triangulation
are shorter than pg. This is indeed obvious for ¢,4v, as constructed in step 1. We now prove an.easy
extension of the A-Lemma which implies that all edges created in step 2 are shorter than pq.

Claim 1. Let abc be a triangle and d, e two points inside abc. Then |de| < max{|ab|, |ac|, |be]|}.

Proof (of Claim 1). Assume without loss of generality that e lies inside abd. The A-Lemma
for abd implies |de] < max{|ad],|bd|}, and the same lemma for abc implies max{|ad],|bd]} <
max{]abl, |ac|, |bc|}. This completes the proof of Claim 1.

I wur = uv then |uur| < |pg| which implies that all edges of ¢, , as constructed in step 3.2, are
shorter than pq. In this case the proof is complete as X, = @ and no edges are added to Y,, in step
3.3. For the remainder of the proof we thus assume that ur # v which is the case only if 3 contains
at least one vertex of R. We show that a vertex uz, satisfying the conditions of step 3.1 indeed exists,

-and that all edges of the fan-out triangulation f,(X,,) are shorter than pg. Assume the sequence of
vertices of the part of R beyond pp’ is p = u1,u3,...,¢" = K,...,Un = P (see Figure 6.3).

Claim 2. There exists a 1-edge uug that satisfies the conditions of step 3.1.

Proof (of Claim 2). Construct a triangulation ., of R beyond pp’ using the algorithm for incomplete
rng-polygons. This triangulation contains at least one edge uu; disjoint from C. The main invariant
of the algorithm (described in Section 5.1) implies that uu; is a 1-edge and pg lies on its beneath
side. If |uy;| < |pg| then u; satisfies the conditions for uz and we are done.

So assume |uy;| > |pg|. Similar to the Containment Lemma we can show that the part of 7,
to the left of u%; is contained in 7,3, and thus contains no vertex of R. It follows that the vertices
in 7,3 must be among ux 41, ¥K+3,- .-, %i-1. By the Visibility Lemma at least one of these vertices
is visible from u. Let W be the subset of these vertices that are visible from u (including the ones
outside 7,3 ), and let uy, € W minimize the distance to u. We have |uur| < |uv| < |uy] and, as
above, the part of 7,3, to the left of u%; is contained in 7,5,. Therefore, this part contains no vertex
of R. The part of 7,3, to the right of u%; contains no vertex of R by the choice of ur. It follows that
uur is a diagonal that satisfies the conditions of step 3.1, which completes the proof of Claim 2.
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We now show two easy facts about t,,, before examining the edges constructed by step 3.3.
Claim 3. If u;ujui, with i < j < k, is a triangle of ?,,, then u;u; is its longest edge.

Proof (of Claim 3). The ﬁrst triangle constructed is uyujuz, for some I < I < L, and its longest
edge is urur because u; € Ay, . The general assertion follows by induction, wluch completes the

proof of Claim 3.

Claim 4. The edges of t,,, that intersect uv, sorted from u to i:, are monotonely decreasing in
length.

Proof (of Claim 4). If u;ujug, with i < j < k, intersects uv, v = u; and v = uy, then either
I<i<j=i+1<J<korI<i<J<j<k (see Figure 6.3). In both cases u;u; intersects
uv closer to u than the other intersecting edge, u;ux or u;u;. By Claim 3, u;u; is longer than both,
which implies the assertion.

In order to finish the proof we just need to show that all vertices of X, are closer to v than |pg|,
and the rest follows from the Fan-Out Lemma. Indeed, we prove a stronger bound on the maximum
distance from v to a vertex of X,,.

Claim 5. For each vertex z of X, we have |vz| < |vu|.

Proof (of Claim 5). Consider the vertices of X, in turn from u = u; to v = uy, and assume
inductively that |vu;] < |vu|, for all I < i < j. Consider u; and the triangle u;j_jujui in ty,,. By
Claim 4, we have |uj_jug| > |ujug|. If uj_3ujvu is a convex quadrilateral then the 00-Lemma implies
[vu;—1] > |vu;l, as desired. Otherwise, u; is contained in vuxu;_; and therefore also in vuu;_,. The
A-Lemma implies |vu;] < max{|vu|, |vu;—,|} which completes the proof of Claim 5.

So a direct application of the Fan-Out Lemma to f,(X,,) would imply that each diagonal is
shorter than pg. There is, however, 2 minor technical difficulty, namely that uv does not generate
exactly Xy, as defined in Section 5.2. Indeed, if we delete all edges from ?,, . that intersect uv, then
we get a polygonal region of which X, is only the part on one side of uv. The trouble is that for the
vertices on the other side of uv we do not have any reasonable upper bound on the distances from v.
Fortunately, the proof of the Fan-Out Lemma applies also to X, directly; see also the remark after
the Fan-Out Lemma. We thus get the desired upper bound on the edge lengths.

The following theorem summarizes the algorithmic implications of all of this.

MinMax Length Theorem. A minmax length triangulation of a set of n points in 82 can be
constructed in time O(n?).

The algorithm that constructs a minmax length triangulation in the claimed amount of time
is a combination of the algorithms given in Sections 3, 5.1, 5.3, and 6. Its correctness has been
demonstrated in Sections 4, 5.3, and 6.
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7 Arbitrary Normed Metrics

An open convex region D C R? that is symmetric with respect to the origin can be used to impose
a norm on R2: for a point z € R? define ||z|| = ||z]lp = a if z lies on the boundary of aD =
{ay € R? : y € D}. The norm can then be used to impose a (normed) metric on £2: for two points
z,y € R? define |zy| = |zy|p = ||y — zllp- D is the unit-disk of the metric and the boundary of D is
its unit-circle. Notice that the three requirements for a metric are indeed satisfied. First, |ab| = 0 iff
a = b because ||z|| = 0 iff z is the origin. Second, |ab] = |ba| because D is centrally symmetric and
“therefore |jz|| = ||— z||- Third, the triangle inequality, |ac| < |ab] + |bc|, follows from the convexity
of D. Examples of normed metrics are the l,-metrics, for 1 < p < oo, and the so-called A-metric
discussed in [WiWW85] for its applications to VLSI.

In this section we assume that the triangle inequality is strict unless a, b, ¢ lie on a line in this
order. This is the case iff the defining convex region D is strictly convex, that is, no line intersects the
boundary of D in more than two points. This assumption is convenient and in fact without loss of
generality as every convex but not strictly convex region D’ can be approximated arbitrarily closely
by a strictly convex region D. Computationally, this approximation can be simulated by defining

lzllp = llzllpr + ellzll2,

where ||z||2 is the Euclidean or l;-norm and € is an arbitrarily small but positive real number.
Clearly, if ¢ is sufficiently small then a minmax length triangulation under D is also a minmax length
triangulation under D’.

In the remainder of this section we point out where the developments in Sections 2 through 6
need to be adjusted when the Euclidean metric is replaced by an arbitrary normed metric. Most
importantly, the graphs defined in Section 2 can be extended in a natural way. More specifically, the
definition of ch(S) remains unchanged as it makes no reference to any distance notion. If we now
stipulate that “circle” means a homothetic copy of the unit-circle as defined above and “|ab|” means
the distance under the normed metric defined by D then the definitions of mit(S), dt(S), rng(S),
and ms(S) can be taken verbatim. The minimum spanning tree, mst(S), is connected and spans

- §, and the Delaunay triangulation, d¢(S), is plane because any two circles intersect in at most two-
points. Since we still have mst(S) C rng(S) C dt(S) we conclude that all three graphs are connected
and plane and they span S. We remark that these three graphs are not necessanly plane if D is not
strictly convex.

As mentioned in the introduction, the developments in Sections 2 through 6 are all based on a
small number of basic facts, namely the distance relations expressed by the O-Lemma and the A-
Lemma, the convexity of the lune of an edge, and the straightness of the bisector of two points. The
O-Lemma and the A-Lemma are direct consequences of the triangle inequality and hold in the stated
form (with strict inequality) for arbitrary normed metrics as long as D is strictly convex. The lune of
two points is clearly convex as it is the intersection of two homothetic copies of D. Unfortunately, the
bisector of two points p # ¢q, &,y = {2 : |zp| = |zq|}, is not necessarily straight. Nevertheless, £,, is
still a simple curve that partitions 2 into two unbounded regions, called half-planes, one containing
p and the other ¢g. The two half-planes are star-shaped with respect to p and g, that is, any line
through p or ¢ intersects £, in at most one point. In addition, {,¢ is symmetric with respect to m
because D is centrally symmetric.
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There is only one place where the straightness of the bisector is used in a substantial way, and
that is in the proof of Claim 3 which is part of the proof of the Subgraph Theorem in Section 4.
We restate this claim and show how to prove it without the use of the straightness of the bisector.
We suggest the reader go back to Section 4 and scan through the initial part of the proof of the
Subgraph Theorem. Recall in particular that bd (b'd’) is said to be switchable if ac (@'c’) is no longer
than the longest edge of the triangulation (S5). .

Claim 8. It is not possible that both bd and ¥d’ are non-switchable.

Proof. As established in Claim 2, if bd is non-switchable then a and d are contained in the open
half-plane defined by £,, that contains g. Symmetrically, if ¥d’ is not switchable then a’ and d’ are
contained in the other open half-plane. Unlike in the Euclidean case, it is possible that ad and a’d’
intersect £p,. It is thus also possible that ad precedes a’d’ in the order of edges sorted from p to ¢
by their intersections with pg (see Figure 7.1). Below we argue that if this is the case then ad (and
symmetrically a'd") is switchable. In particular, we show |ad| > |ap| which, together with |ap| > |ac]
from Claim 2, implies that ad is switchable.

Fi 1g'ure 7.1: Although a and d lie on g's side of the bisector and @’ and ' lie on p's side, ad intersects pg closer
" to p than @’d’ does. This is not possible if the bisector is a line as for the Euclidean metric, see Flgure 4.4,

One characteristic of the described situation is that ad intersects £y, in at least one point inside
the lune of pg. Let z be such an intersection point closest to a. If pgN dz 7 0 then pdgz is a convex
quadrilateral with |pd| > |pg| by construction. The O-Lemma thus implies |dz| > |gz| = |pz|. It
follows that |ad] = |az|+|dz| > |az|+ |[pz| > |ap|. On the other hand, if pgndz = @ then consider the
point y = adNpg and note that |py| < |qy|. We derive |[dy| > |py| from |py|+|dy| > |pd] > |pq| > 2|py|
Therefore, |ad] = |ay| + |[dy] > |ay] + |py| > |ap| as desired.

All other steps of the proof of the Subgraph Theorem go through unchanged for arbitrary normed
metrics. We thus get the following generalization.

General Subgraph Theorem. Let S be a finite point set in R2 equipped with a normed metric with
‘strictly convex unit-disk. Then § has a minmax length triangulation mlt(S) so that mit(S) C rng(S$).
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So the algorithm for computing a minimum length triangulation is clear - it is the same as for the
Euclidean metric, only that the length of edges is now measured in terms of a normed metric possibly
different from the Euclidean metric. We assume that the length of an edge in this metric can be
computed in constant time. A careful reexamination of Sections 5 and 6 shows that the specialized
_ polygon triangulation algorithm works also in the context of arbitrary normed metrics. We remark,

however, that it includes the distance computation between a point and a line segment. Although it
is certainly reasonable to assume that this can be done in constant time too, the observation in the
remark at the end of Section 5.1 can be used to avoid this computation. We thus have the following
“algorithmic result which generalizes the MinMax Length Theorem of Section 6.

General MinMax Length Theorem. Let S be a set of n points in R? equipped with.a normed
metric with strictly convex unit-disk. Given the relative neighborhood graph a minmax length
triangulation of S can be constructed in time O(n?).

The algorithmic result extends to arbitrary normed metrics. As mentioned above, a norm with
non-strictly convex unit-disk can be simulated by one with strictly convex unit-disk. It follows that
the quadratic time bound also holds for arbitrary normed metrics. The result stated in the General
MinMax Length Theorem raises the question of how fast rng(S) can be constructed. The trivial
algorithm tests all (3) edges, each in time O(n), and therefore takes time O(n®). Faster algorithms
are known for the /,-metrics where O(nlogn) time suffices (see [JaKY90] and [Lee85)).

8 Discussion

The main contribution of this paper is the first polynomial time algorithm for computing a minmax
length triangulation of a set § of n points in ®2. Given the relative neighborhood graph of S, the
algorithm takes time O(n?). The algorithm works for arbitrary normed metrics. The polynomial
time bound follows because the relative neighborhood graph of S can be found in polynomial time.
The question remains whether or not a minmax length triangulation can be computed in less than
quadratic time.

. The results of this paper are an out-growth of our general efforts to understand triangulations that
optimize length criteria. There are, however, still many related problems whose complexities remain
open. These include the problem of minimizing the entire vector of edge-lengths, the minimum length
triangulation problem, and the maxmin length triangulation problem.
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