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Abstract

We show that a triangulation of a set of n poinis in

the plane that minimizes the mazimum angle can be
computed in time O(n?logn) and space O(n). In the
same amount of time and space we can also handle the
constrained case where edges are prescribed. The algo-
rithm iteratively improves an arbilrary initial iriangu-
lation and is fairly easy to implement.

1 Introduction

Let S be a finite set of points in the Euclidean plane.
A triangulation of S is a maximal straight line plane
graph whose vertices are the points of S. By maximal-
ity, each face is a triangle except for the exterior face
which is the complement of the convex hull of S. Ocea-
sionally, we will call a triangulation of a finite point set
a general triengulation in order to distinguish it from
a constrained triangulation which is a triangulation of
s finite point set where some edges are prescribed. A
special case of a constrained triangulation is what we
call a polygon triangulation where S is the set of ver-
tices of a simple polygon and the edges of the polygon
are prescribed. In this paper only the triangles inside
the polygon will be of interest.
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For a given set of n points there are, in general, ex-
ponentially many triangulations. Among ther one can
choose those that satisfy certain requirements or opti-

- mize certain objective functions. Different properties

are desirable for different applications in areas such as
finite element analysis [BaAs76, Cav74, StFi73], com-
putational geometry [ShHo75], and numerical analysis
[Laws77, PoSa77]. The following are some important
types of triangulations that optimize certain objective
functions.

(i) The Delaunay iriangulation has the property that
the circumcircle of any triangle does not enclose
any vertex [Del34).

(ii) The consirained Delaunay triangulation has the
same property except that visibility constraints
depending on the enforced edges are introduced
[LeLi86).

(ili) The minimum weight triangulation minimises the
total edge length over all possible triangulations of
the same set of points and prescribed edges [Klin80,
PlHo87]. :

It is known that the Delaunay triangulation maximizes
the minimum angle over all triangulations of the same
point set [Sib78]. This result can be extended to a
similar statement about the sorted angle vector of the
Delaunay triangulation [Ede87] and to the constrained
case [LeLi86). The Delaunay triangulation of » points
in the plane can be constructed in time O(nlogn)
[PrSh8s, Ede87], and even if some edges are prescribed
its constrained version can be constructed in the same
amount of time [Sei88]. There is no polynomial time
algorithm known for the minimum weight triangulation
if the input is a finite point set, but dynamic program-
ming leads to a cubic algorithm [Klin80] if the input is
a simple polygon.

In this paper, we study the problem of constructing a
triangulation that minimizes the maximum angle, over




all triangulations of a finite point set, with or with-
out prescribed edges. We call such a triangulation a
minmaz angle triangulation. Although avoiding small
angles is related to avoiding large angles, the Delaunay
triangulation does not minimize the maximum angle —
four points are sufficient to give an example to this ef-
fect. Triangulations that minimize the maximum angle
have potential applications in the area of finite element
analysis [BaAz76]. Our main result is summarized in
the following statement.

Main Theorem. A minmax angle triangulation of a
set of n points in the plane, with or without prescribed
.edges, can be computed in time O(n?logn) and space
O(n). .

Curiously, our algorithm has the same complexity for
point sets and for simple polygons.” Prior to this pa-

per no polynomial time algorithm for constructing a

minmax angle triangulation for a finite point set was
known. On the other hand, if the input is a simple
n-gon then a cubic time and quadratic space solution
can be derived simply by substituting the angle crite-
rion for the ‘edge-length criterion in the dynamic pro-
gramming algorithm of [Klin80). Thus, it seemed that
the problem for simple polygons is much simpler than
for point sets._Indeed, our attempts to apply popular
techniques such as local edge-flipping [Laws72, GuSt85],
divide-and-conquer {ShHo75], and plane-sweep [For87]
to construct a minmax angle triangulation for a point
set were not successful. Instead, we design an iterative
improvement algorithm (section 2) to solve the problem.
Its correctness is guaranteed by what we call the “cake
cutting lemma” (section 3). The implementation of the
algorithm uses a linear time “ear cutting procedure” to
triangulate certain types of simple polygons (section 4).
We also consider extensions to the constrained case and
to the problem of minimizing the sorted angle vector,
thh large a.ngles most significant (section 5).

2 The Global Algonthm

In general there is more than one minmax angle trian-
gulation for a given set of points. Below we outline an
algorithm that constructs one such txia.ngulstion.
Input. A set S of n points in the plane.

Output. A minmax angle tna.ngulahon T of S.
Define. The maximum angle of a given triangulation
A is denoted by u(A).

Construct an arbitrary triangulation A of S.

repeat

(M1) Find a largest angle {pgr of A.

(M2) Apply the ear cutting procedure (section 4) to
modify A by adding a ‘suitable’ edge g¢s to

A, where s € S—{p,q,r} and prngs # 0,
removing edges that intersect gs (this step
creates polygons P and R which have gs as a
common edge), and constructing triangulations
P of P and R of R so that u(P),p(R) < Lpgr.

" until the ear cutting procedure fails to find such a gs.

The above algorithm is similaz in flavor to the edge-
fiip algorithm by Lawson [Laws72] that can be used
for constructing Delaunay triangulations. Both algo-
rithms start with an arbitrary triangulation and then
iteratively improve it until some optimal solution is ob-
tained. However, there are two significant differences
between the two algorithms. One is that in our al-
gorithm there is, in- general, a unique place of local
improvement, whereas in Lawson’s edge-flip algorithm
there are usually many such places, and it suffices to
pick one arbitrarily. Another one is that our algorithm
can change almost the entire triangulation in a single
iteration, whereas an iterative step in Lawson’s algo-
rithm replaces only one old edge by one new edge. To
show that our algorithm is correct, we need the follow-
ing two lemmas and the cake cutting lemma of section
3. We define Zzsy = 0 if any two of the three points
are identical.

Lemma 2.1 i z'y'is an edge in a triangulation A of a
point set S then u(A) > max,¢s Zzoy!

Proof. Let zy be an edge in A that maximizes .
max,cs Zash, over all edges ab of A, and let ¢ be a

point so that Zzty = max,¢s zsy. Thus, no pointsof § - . .

lies inside the triangle ziy. Clearly, if zty is & triangle
in A then there is nothing to be proved. Otherwise,
there must be an edge uv in A so that either u = 2,
v € S—{y, t}, and uv intersects ty oz u,v € S—{=, 3,1}
and uv intexsects both 2t and ty. But then Zutv > L=zt

which is a contradiction to the assumptions. j

The proof of the next lemma makes use of the cake
cutting lernma to be presented in section 3. We sug-
gest that the reader reads the statement of that lemma
(Lemma 3.1) and then returns to the current discussion
leading to Lemma 2.2. We call a triangulation B of S
an improvement of A if

(i) u(B) < n(A), or

(ii) 4(B) = u(A), every triangle abc in B with Zabc =
p(B) is also a triangle in A, and B has at least one
fewer maximum angle than A

The next lemma asserts that the algorithm makes
progress as long as the current triangulation is not yet
a minmax angle triangulation. It does this by proving
that there is at least one suitable edge gs. In its current
version, the algorithm can be thought of as trying all




.possible_ edges going out of ¢, so if there exist edges gs
that lead to an improvement of A, then the algorithm
finds one such edge.

Lemma 2.2 Assume that A is not yet a minmax an-
gle triangulation. Then an iteration of the repeat-loop
constructs an improvement of A.

Proof. Step (M1) of the repeat-loop finds a triangle
Pgr in A so that Zpgr = p(.A). The main observation
is that there is some edge gs that intersects pr and be-
longs to a minmax angle triangulation 7 of S. This is
because u(7") < u(A) implies that Zpgr cannot exist in
7, and consequently, pr € T (by the previous lemma).
Therefore, there exists a point s € S—{y, g, 7} such that
gsNpr # 0 and gs is an edge of 7. With this edge gs,
the cake cutting lemma (section 3) ensures that there
are polygon triangulations of P and R such that the

largest angle of any triangle within P and R is still -

smaller than Zpgr. The ear cutting procedure (section
4) of step (M2) indeed finds such a point s and pro-
duces triangulations P and R of P and R such that
B(P),n(R) < Lpgr.

The above two lemmas can now be used to analysze
the running time of the algorithm. First, we address
the number of iterations of the repeat-loop which is 1
plus the number of successful iterations of step (M2).

Lemma 2.3 The above &lgoxifhm reaches a minmax.

triangulation after at most O(n?) iterations of the
repeat-loop.

Proof. Each iteration produces a triangulation with
a smaller maximum angle than before, or with fewer
maximum angles of the same sise. Since the number
of diffezent triangulations is finite an optimum must
be reached. To get an upper bound onm the number
of iterations notice that the edge pr removed from A
during some iteration will not reappear in the future.
The claim follows because S allows only (’,‘) different

edges. . :

We are now ready to argue that the above algorithm
runs in time O(n?logn) and space O(n). There are
two data structures needed for the algorithm. First,
the quad-edge structure of Guibas and Stolfi [GuSt85]
is used to represent .A; it permits common operations,
such as removing an edge, adding an edge, and walking
from one edge to the next, in constant time each. Sec-
ond, the angles of A are stored in a priority queue that
admits insertions, deletions, and finding the maximum.
" Standard implementations support each such operation
in time O(logn), see e.g. [AHU74). The space needed
for both data structures is O(n).

"With these preliminaries we can give the analysis of
the algorithm. By Lemma 2.3, the number of times

the priority quene is consulted to get a largest angle is
O(n?), which implies that step (M1) takes total time
O(n?logn). Section 4 will show that the ear cutting
procedure performs only a total of O(n?) operations
on the quad-edge structure, each in constant time, and
only O(n?) insertions into and deletions from the prior-
ity queue, each in time O(logn). We conclude that the
running time of the algorithm is O(n2 log n) as claimed.
Remark. The actual time it takes to reach an opti-
mal solution of course depends on the initial triangu-
lation. In practice, the Delaunay triangulation should
be a good initial triangulation because it avoids very
small angles and therefore also very large angles. For
example, if the Delaunay triangulation hes no obtuse
angle then it is easy to show that it also minimises the
maximum angle.

This completes the proof of the Main Theorem, ex-
cept that we still need to discuss the cake cutting lemma
and the ear cutting procedure to fill the gaps in the cur-
rent argument.

3 The Cake Cutting Lemma

The result of this section is a technical lemma which is
nevertheless the heart of this paper. It assures that for
some edge gs the generated regions, P and R, can be
triangulated without angles that are too large. We first
discuss the shape of these regions and then state and
prove the lemma. A

The regions P and R are generated in step (M2) of the
algorithm by adding an edge gs and removing all edges
that intersect gs. It follows that P (and by symmetry
R) is very similar to a simple polygon, that is, it is sim-
ply connected and bounded by straight line edges. The
only difference is that there can be edges that bound
P on both sides; these are the edges contained in the
interior of the closure of P (see Figure 3.1). To simplify
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Figure 3.1: Regions P and R.

the forthcoming discussion we treat each such edgs as if
it consisted of two edges, one for each side. Effectively,
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this means the we can talk about P and R as if they
were simple polygons.

With this note we now state and prove the cake cut-
ting lemma. The intuition behind the proof is that we
look at a piece of an optimal triangulation 7" and argue
about its edges. Keep in mind, however, that during the
algorithm we have no way of knowing what 7 really is;
we only know that it exists.

Lemma 3.1 Let 7 be 2 minmax angle triangulation
of S, A a triangulation of S with u(A) > u(7), per
a triangle in A so that Zpgr = u(A), and ¢s an edge
in 7 that intersects pr. Let P and R be the polygons
generated by adding gs to A and removing all edges
that intersect gs. Then there are triangulations 7 and
R of P and R so that u(P), p(R) < pu(A).

Proof. We prove the claim for P - it follows for R
by symmetry. Imagine we have A and T on separate
pieces of transparent paper that we lay on top of each
otheér so that the points match. Following step (M2) of
the algorithm we add gs to A and remove intersecting
edges from A, thus creating P and R. Next, we clip
everything outside P. In A only P without intersecting
edges is left, and in 7 there will in general be many
edges that cut through P. By assumption, gs is also
in 7 which implies that none of these edges meets gs.
We define a clipped edge as a connected component of
such an edge of 7 intersected withk P. Since P is not
necessarily convex, some clipped edges can belong to
the same edge of 7. Given a point z on the boundary
of P, let the path from 2 to g (or z to s) be the part of
the boundary between z and q (or = and s) that does
not contain gs. We have four classes of clipped edges
zy, see Figure 3.2

1. Both endpoints, =z and y, are not vertices of P and
thus lie on edges of P.

II. Both e.;xdpoints are vertices of P.

. Endpoint z is a vertex of P, y is not, and y lies on
the path from = to .

IV. The same as class ITI except that y lies on the path
from z to gq.

At any vertex z of P the clipped edges with one end-
point at z define angles at z which are all smaller
than u(A), because the clipped edges come from 7 and
#(7) < p(A) holds by assumption. The only disadvan-
tage of the partition of P defined by the clipped edges
is that some of their endpoints lie on edges of P rather
than at the vertices. We will now construct a trian-
gulation of P based on the clipped edges. It proceeds
step by step where each step either removes or rotates
a clipped edges or introduces a new edge.
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Figure 3.2: The class I edges in this example are eg,
hj and nw, the class IT edges are ck, ¢/, cz and sp, the
only class III edge is cm, and the class IV edges are kd,
vi, zb and sa.

1. All class I edges are removed. This does not harm
any angle.

2. All class II edges remain where they are. .

3. Let zy be a class ITI edge with y on the edge af
of P, where a precedes £ on the path from z to s.
We replace zy by z8.

Notice that the angle at z that precedes zy in the coun-
terclockwise order increases in step 3. Still, the angle
formed by 28 is strictly contained in an angle at z in A
because all edges of A that intersect P also intersect gs. -
It follows that the angle formed by zf is smaller than
#(A). Another issue that comes up is that there can be
class IV edges 2'y/ with i/ on the same edge aff of P -
these edges now intersect z5. To remedy this situation
we replace z'y/ by z’z. By the same argument as above
the angle at 2’ that precedes z'y/ in the clockwise order -
and which increases as we replace z'y/ by z'z remains
smaller than u(.A).

4. If zy is a class IV edge with y on edge af of P,
where o precedes 8 on the path from z to g, then
we replace zy by z8.

5. After steps 1 through 4 we have a partial trian-
gulation of P which we complete by adding edges
arbitrarily. This finishes the construction of P.

We have p(P) < p(A) since we started out with all
angles smaller than p(A), each time an angle increases
it remains smaller than ;(A) as argued above, and step
5 decomposes angles thus creating only smaller angles.




Remark. Note that the only property of 7 used in
the proof of the cake cutting lemma is that p(7) <
#(A). The lemma thus also holds if we replace 7 by
an arbitrary triangulation B of S that satisfies u(B) <
#(A). In fact, it suffices if B is an improvement of A
and pgr is not a triangle in B.

4 The Ear Cutting Procedure

The cake cutting lemma in section 3 shows that if A is
not yet a minmax angle triangulation and g¢s is an edge
in 7, chosen by the algorithm to improve A, then there
are triangulations of the generated pelygons P and R
with all angles smaller than Zpgr. The two questions
that remain are how to find such an edge ¢s and how
- to quickly triangulate P and R. One obvious way to
find gs (not necessarily in 7 but in an improvement

of A) is to try all possible points s with gsNpr #

8. For each such s we add gs to A and remove all
edges that intersect gs. The thus created polygons P
and R are triangulated with minimum largest new angle
using dynamic programming. If the largest new angle
is smaller than {pgr we have an improvement of A and
thus a desired gs. .

Apparently, the implementation of an iterative step
sketched in the above paragraph is rather inefficient.
We improve the performance by a more clever way to
search for an appropriate point s and by a fast pro-
cedure for triangulating P and R. The two tasks are
woven together to the extent that it is not advisable
to look at them as separate steps. For a chosen point
s we attempt to triangulate P and R with all angles
smaller than Zpgr. If this fails we get some guidance
where to look for a better point s. Following this guid-
ance, a next point s is chosen so that we can reuse part
of the work done during the unsuccessful triangulation
attempt. The fundamental notion in all of this is that
of an ear of a polygon triangulation.

4.1 Ears

An ear in a polygon triangulation is a triangle bounded
by two polygon edges and one diagonal (where a diag-
onal is a line segment that connects two vertices and
lies inside the polygon). It is easy to show that any
triangulation of a simple polygon with more than three
vertices has at least two ears [High82).

In order to efficiently triangulate P and R, with all
angles smaller than p = p(A) = Lpgr, we need two
properties. The first guarantees that no expensive test-
ing is necessary to recognize when an edge is a diagonal.

Lemma 4.1 Let P’ be a polygon obtained from P by
repeatedly removing ears not incident to gs. I a, b, care
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three consecutive vertices of P’ with {g,s} € {a,b,c}
and Zabe < 7 then ac is a diagonal of P'.

Proof. By construction of P each of its vertices can
be connected by a straight line segment within P to a
point on gs. This property is maintained whenever we
remove an ear not incident to gs, so it also holds for
P'. In particular, it holds for the vertices a, b, and ¢
of P'. The edge ac can avoid being a diagonal only if
it intersects the boundary of P’ (it cannot lie outside
P’ because Labe < 7). But this contradicts the above
property for either @ or ¢ or for both.

By symmetry, Lemma 4.1 also holds for R. It is now
easy to identify ears because only one angle has to be
checked. This is a good place to remark that the angles
at a and c inside abc are always smaller than u because
they are properly contained in angles of A. Thus, all
three angles of abc are smaller than y if and only if
Labe < p.

The second property we need is that it does not mat-
ter which ears we remove, and in what sequence we
remove them, as long as their angles are small enough.
This property is implied by the following lemma whose
proof is omitted becaunse it is identical to that of the
cake cutting lemma.

Lemma 4.2 Let P’ be a polygon obtained from P by
repeatedly removing ears not incident to gs. If ¢s is an
edge of 7 then there exists a triangulation of P! without
angles larger than or equal to u.

The two lemmas suggest that we triangulate P and R
simply by repeatedly finding consecutive vertices a, b, ¢,
with Zabe < 4, and removing the ear abc. We remark
that this strategy can also be used to get an inductive
proof of the cake cutting lemma. The next two subsec-
tions show how ear cutting and the search for an ap-
propriate point s can be combined to yield an efficient
implementation of an iterative step.

4.2 How to Cut

The way we search for a point s (section 4.3) guarantees
a certain property of the polygons P and R which sim-
plifies their triangulation by ear cutting. To be accurate
we should mention that at the time we start the triangu-
lation process for P and R, some ears will already have
been removed as a result of earlier attempts to triangu-
late polygons generated for other points s. Consistently
with our earlier notation, we therefore denote the two
polygons that we attempt to triangulate by P’ and R'.
‘We state the mentioned property as an invariant of the
algorithm after introducing some notation.

As justified above we pretend that P’ and R’ are
simple polygons; by construction they share the edge




gs. Let k + 2 be the number of vertices of P’ and -

m + 2 the number of vertices of R’, and label them
consecutively as ¢ = Po,P1,--- Pk Ph+1 = 8 and ¢ =
20,71+ +»TmsTm+1 = 8 (see Figure 4.1). Define ¢; =

Figure 4.1: The circular arcs indicate angles that are
known to be at least as large as p.

{piapipiqr for 1 <4 < k and p; = Lrjaritin for
1 € 7 € m. We can now state the property of P’ and
R,

Invariant. ¢; > p for all i # k and p; > p for all
i#m

This implies that py—1,Ps, s are the only three ver-
tices that possibly define an ear of P’ that is not in-
cident to gs (provided k > 1) and has all three angles
smaller than p. Symmetrically, *m—1, *m, & aze the only
such three vertices of R'. I @3 < p then pr-1pas is
indeed such an ear and we can remove it from P’. This
operation decreases ¢y, the angle at px_3, and leaves
all other ¢; unchanged. Thus, P’ still satisfies the in-
variant after setting k := k — 1. Similarly, the invariant
is maintained if we remove Pm—1Tms from R’ and set
m:=m-1.

We now describe this process more formally as a pro-
cedure that alternates between removing an ear from
P’ and removing an ear from R'. It either completes
its task of triangulating P’ and R’ or it stops because
it encounters a situation wheze ¢y > p or pn > u. To
avoid repetition we separate out the code that tests an
angle and removes an ear if the angle is small enough.

procedure CUTEARP’,
if ¢» < p then
if k > 1 add pa—1s to the triangulation;
remove the triangle px_1p3s from P’;

setk:=k-—1
else set stop := true
endif.

Similarly, we define a procedure CUTEARR’ which ei-
ther removes Fm_17ms from R’ or raises the flag by

setting stop := true. The attempt to triangulate P!
and R’ first alternates between the two polygons and,
if one polygon is successfully triangulated, attempts to -~
complete the polygon that remains.

stop := false;

while k > 0 and m > 0 and not stop do
CUTEARP?; if not stop then CUTEARR’ endif

endwhile; :

while k£ > 0 and not stop do CUTEARP’ endwhile;

while m > 0 and not stop do CUTEARR’ endwhile.

If the procedure finishes without raising the flag
(stop = false) then we must have k = m = 0 and the
triangulation is complete. Otherwise, the flag is raised
cither while testing P’ or while testing R’ (so we should
really have used two flags to be able to distinguish the
two cases — and we pretend we did).

Assume the flag was raised because of ¢a > p. Let
gs be the half-line that starts at g and goes through s,
and let p’ be the point among py,...,p so that Zp/gs
is 2 minimum. Note that p’ is not necessarily equal to
s, but p’ = py if P’ is convex. We have the following
lemma which will be useful in searching for a new point
s.

Lemma 4.3 There is no point £ € S so that gt is an
edge in 2 minmax angle triangulation T of S, gtNpss #
0,and gtNp's#0.

Proof. Suppose there is 2 point ¢ that contradicts the
assertion. Because gt Npys # 0, this edge gf generates
a polygon P” so that ¢ = po,P1,.--,Px is a contiguous
subsequence of its vertices (after removing appropriate
ears). Let pat1,.. ., Pan, Pany1 =t be the other vertices
of P". By assumption we have /p;_1pipi41 2 # for
1 < i < k—1. Furthermore, Zpx_1psp; 2 p for all
k+1< 7 <k"+1 because all these angles are larger
than ¢, the angle at py in P’. Hence, any attempt
to triangulate P” by removing ears (not incident to gs
with angles all smaller than p) must fail to cut off eazs
atp; forall1<i<k.

Remark. Similar as in the remark after the cake cut-
ting lemma we can argue that Lemma 4.3 is also true
if we zeplace 7 by an arbitrary triangulation that is an
improvement of A. :

Lemma 4.3 suggests that the search for & new s con-
tinue between gr’ and gs if the flag is raised while test-
ing P’', where #' is the counterpart of ¢’ in R’ and s
is the old s. Thus, all ears removed from P’ are safe
and do not have to be considered again. However, all
ears removed from R’ have to be added back because
they will intersect any future edge gs. Simultaneously,
the value of m has to be adjusted. The amoun! of time
needed to add these ears back in is proportional to the




number of ears removed from P’, because the ear cut-
ting alternates between P’ and R'. Symmetric actions
are in order when the flag is raised while testing R'.

4.3 How to Search

Let us go back to the triangulation A4 of S that is not yet
a minmax angle triangulation, and as usual let p, g, » be
the points so that pgr is a triangle in A and pgr = p =
B(A). The first vertex s that we test is the third vertex
of the other triangle of pr (if no such triangle exists then
- pris an edge of the convex hull of S and no appropriate
- point s exists). Thus, we add gs and remove .
the new angles at p and » are Loth smaller than S
then we are done. If Zgps < p and Zgrs 2 4 then, by
Lemma 4.3, the edges we should test must intersect ps.
Symmetrically, if Zgps > p and Zgrs < p then we must
search for edges that intersect s7. If both angles are at
least p then no appropriate edge exists.

We now generalise and formalise this idea. For given
polygons P’ and R’ we define vertices p’ and 7' as above,
and we denct~ the open wedge between gp’ and q;' by
W. This wedge will get progressively smaller as we
proceed witk the search, and only points s within the
wedge will be considered as endpoints of new edges gs.
Initially, ’ = p and ' = r. We are now ready to
describe the algorithm that searches for an appropriate
point s. -
Input. A triangulation A of S with marimum angle
Lpgr = p = p(A). '

Output. An improved trianghlation or a message that
the maximum angle cannot be decreased. In the latter
case, the input triangulation is a minmax angle trian-
gulation of S.
Define. THIRD(a, b) is the vertex ¢ of the triangle abe
so that g and c lie on opposite sides of the line through e
and b. If such a vertex does not exist, which is the case
if ab is an edge of the convex hull of S, then TEIRD(a, b)
is undefined. As before, W denotes the open wedge
defined by p', q, and »'. :

~

Initialize k:=m:=1, p, :=p' :=p, and », := +' := ».
loop
if TRIRD(py, #m) is not defined then
return the message that the maximum angle
cannot be decreased and stop.
else set s := THIRD(pa, #rm), Temove py7y, from A.
if s € W then add ¢s to A and attempt
the triangulation of P’ and R’ as described
in section 4.2. . -
case 1. The attempt succeeds. .
Return the new triangulation and stop.
case 2. The flag was raised while testing P’.
Setk:=k+1landp:i=p :=s.
case 3. The flag was raised while testing R'.
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Setm:=m+1land ryp =7 :=s.
else (i.e. s g W)
if sr, intersects W then set stop := false;
while not stop do CUTEARP’ endwhile;
set k:=k +1and p; :=s. ’
else (i.e. pis intersects W) set stop := false;
while not stop do CUTEARR’ endwhile;
set m:=m+1and rp :=s.
endif
endif
endif
forever.

We would like to point out a subtlety of the algorithm
needed to prove its correctness. That is, the polygons
P’ and R’ defined by any edge gs are obtained from
A by removing only edges that intersect ¢s. Of course,
some edges not in A have been added already to remove
some ears. In other words, P’ is the polygon P (as
defined in section 2) with some ears removed, and the
same is true for R’ and R.

4.4 The Final Analysis

The running time of an iterative step (the above algo-
rithm) is proportional to the number of removed ears.
Because of the alternation between removing an ear
from P’ and one from R’ only one out of two removed
ears is added back to the polygon. This is also true if
one polygon is completely triangulated while ears are
still removed from the other polygon, because in this
case only the ears of the former polygons need to be
added back in, and their number is smaller than the
number of ears cut off the other polygon. If follows
that the total number of removed ears is O(n). A sin-
gle iteration therefore takes only O(n) time. Together
with Lemma 2.3, which states that there aze only O(n?)
iterations, this implies a cubic upper bound on the time-
complexity of our algorithm (if implemented without
priority quene).

Below we argue that its running time is actually
O(n*logn). To achieve this bound it is necessary to
store the angles of the current triangulation in a priority
queue, for otherwise finding all maximum angles costs
time Q(n®). The crucial observation is that the time
spent in an iterative step is proportional to the number
of edges in the input triangulation that intersect the
new edge gs. Each such edge has been removed and we
argue that it will never be added again because every
fature triangulation will have an edge gt that intersects
PaTm, the last edge before s. First note that every fu-
ture triangulation is an improvement of A By Lernma
4.3 and the remark following it, every improvement of
A has an edge gt in the final wedge W as maintained




by the algorithm. Both, pi and r,,, lie outside W (pos-
sibly on its boundary) and the edge pyrym intersects W.
The claim follows because all points of WS lie beyond
PiTm as seen from g. This implies the O(n? log n) bound
because we have only (3) = O(n?) edges to work with.
It should be noted that the maintenance of the priority
queue storing the angles is the sole reason for the logn
term in the O(n?logn) bound; all other operations take
only time O(n?).

5 Extensions

We address two types of extensions of our algorithm
for constructing minmax angle triangulations. The first
extension is to the constrained case where the input
consists of a set of n points plus some pairwise disjoint
edges that are required to be in the triangulation. The
second extension discusses the optimization of the entire
angle vector rather than just the maximum angle.

Only minor changes are necessary to adapt the algo-
rithm presented in sections 2 and 4 to the constrained
case. The most important change is that no prescribed
edge will be removed to give way to searching for 2 new
point s. This modification takes no extra time which
implies the part of the main theorem that deals with
prescribed edges.

Before we introduce angle vectors notice that for
a given point set S all triangulations (whether con-
strained or not) have the same number of triangles
and therefore the same number of angles. By Euler’s
formula for planar graphs the number of triangles is
t = 2n — h — 2, where n-= |S]| and A is the number of
points of S that lie on the boundary of its convex hull.
For any triangulation A of S we define its angle vector
Va=(a,0a3,...,ay), vitha; > a3 >...2> as the 3t

_ angles of the t triangles. If B is another triangulation

of S with angle vector Vs = (6,83, ...,5s) we define

"Va < Vqifthereisanindex 1 < j < 3tso that B; = o

forl1 <t < jandfB; < a;. Forexample, Vg < V4 if B is
an improvement of A, but the reverse is not necessarily
true. . '

The problem of finding a triangulation with minimum
angle vector is at least as difficult as finding & minmax
angle triangulation. If any two angles defined by three
points of S each are different we can construct the min-
imum angle vector triangulatiori — which is unique in
this case ~ as follows.

First, construct 2 minmax angle triangulation,
T;, and declare the three edges of the trian-
gle that contains the maximum angle as pre-
scribed. Second, construct a minmax angle
triangulation 73 for the thus constrained in-
put and introduce new constraints to enforce
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the second largest angle in future triangula-
tions. Continue this way and construct trian-
gulations T3, 74 and so on until the prescribed
edges add up to a triangulation themselves.
This triangulation minimizes the angle vector.

An O(n®logn) time bound for this algorithm is obvi-
ous because it just iterates the minmax angle triangu-
lation algorithm a linear number of times. Even better,
we have an O(n?logn) time bound if we use 7; as the
input triangulation for the construction of T;41. The
improved bound follows because an edge once removed
cannot appear in any future triangulation. We thus get
the following result.--

Theorem 5.1 Given a set of n points in the plane so
that no angles defined by three points each are equally
large, the trianguiation that minimises the angle vector
can be constructed in time O(n?logn) and space O(n).

Remark. In the presence of multiple angles it is not
clear how to adapt the approach of this paper without
requiring an exponential amount of time in the worst
case. We pose the existence of a polynomial algorithm
for minimizing the angle vector in the presence of mul-
tiple angles as an open problem. A case where multiple
angles can be handled relatively easily is that of a sim-
ple polygon. The straightforward cubic time algorithm
for minimizing the maximum angle, derived from the
dynamic programming algorithm of Klincsek [Kl1in80],
can be extended to an O(n*) time algorithm for mini-
mizing the angle vector as follows. Instead of charac-
terizing a (partial) triangulation by its maximum angle
we store its sorted angle vector. The best triangulation
of 2 sequence of vertices is then selected on the basis
of these vectors. The cubic time increases to O(n*) be-
cause comparing two angle vectors takes O(n) time in
the worst case, in contrast to constant time for compar-
ing maximum angles. '

6 Conclusions

The main result of this paper is an O(n?logn) time
algorithm for constructing a8 minmax angle triangula-
tion of a set of n points in the plane, with or without
prescribed edges. This seems fairly efficient considering
that it is the first polynomial time algorithm for the
problem and that it somehow avoids to look at all (3)

. angles defined by the n points. On the other hand, our

algorithm is a factor n slower than the best algorithms
for constructing Delaunsy triangulations, at least in
the worst case. We thus pose the question whether
a minmax angle triangulation can be constrr.cted-in
o(n?logn) time.




A problem related to minimizing the maximum an-
gle is to construct a triangulation that minimizes the
number of obtuse angles. It seems that the iterative
approach of this paper does not apply to this problem.
For a set of n points as input no polynomial time al-
gorithm is known. However, a straightforward dynamic
programming approach yields an O(n?) time algorithm
for simple n-gons.
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