el of n weighted points in general postiion in R4 de-
ies a unique regular triangulation. This paper proves
at if the points are added one by one then flipping in
opological order will succeed in consiructing this iri-
ulation. If, in addition, the points are added in ¢
dom sequence and the history of the flips 1s used for
ting the nect point, then the algorithm takes ezpected
¢ ai most O(nlogn+nl421). The second term is of
he same order of magnitude as the mazimum number

f possible simplices.

Introduction

elaunay triangulations, and their dual Voronoi dia-
:fa,ms, play an important role in a variety of different
!iéciplines of science (see e.g. the survey of Aurenham-
ner [2]). The computational aspects of Delaunay tri-
ngulations have been studied in the area of geometric
lgorithms [6, 18], and a large number of different con-
truction algorithms have been produced. This paper
onsiders the class of regular triangulations which in-
Iudes the Delaunay triangulations [17]. A finite point
in R¢ defines a unique Delaunay triangulation, but
here are many regular triangulations of the set. A
ique regular triangulation is implied if each point is
gsigned a real number as its weight. If all weights are

he same then the regular triangulation is the Delaunay
rangulation of the set. T

s oo
.. *Research of both authors was supported by the National Sci-
ence Foundation under grant COR-8921421 and under the Alan
T Waterman award, grant CCR-9118874. Any opinions, findings,
ronclusions, or recommendations expressed in this publicationare
those of the authors and do not necessarily reflect the view of the
National Science Foundation.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
PUblic_:ation and its date appear, and notice is given that copying is by
P?mussion of the Association for Computing Machinery. To copy other-
wise, or to republish, requires a fee and/or specific permission.

8th Annual Computational Geometry, 6/92, Berlin, Germany
©1992 ACM 89791-518-6/92/0006/0043 ... ...... $1.50

Incremental Topological Flipping
Works for Regular Triangulations®

H. Edelsbrunner and N. R. Shah
Dept. Comput. Sci., Univ. Tlinois, Urbana, IL 61801, USA.

Several algorithms proposed for Delaunay triangula-
tions are based on the notion of a local transformation
henceforth referred to as a flip. Historically the first
such algorithm can be attributed to Lawson [14], see
also [15]. Given a finite point set in the real plane,
%2, the algorithm first constructs an arbitrary triangu-
lation of the set. This triangulation is then gradually
altered through a sequence of edge-flips until the De-
launay triangulation is obtained. The generalization of
this method to R2 has difficulties, and Joe [12] demon-
strates that it is indeed incorrect if the flips are applied

,p,lsadded to

[20] considers Delaunay triangulations in arbitrary di-y
mensions, ¢, and argues that a single point can always«
be added by a sequence of flips. However
priority queue to find the approp
takes €

Guibas, Knuth and Sharir [11] study the complexity of

}

a different pa- —

{thrmic time per flip. On a different front, =

the incremental algorithm in 2 when the points are -

added in a random sequence. While ©(n?) edge-flips = = o
are required in the worst case, they prove that under a />~

random insertion sequence the expected number of flips
is only O(n). They also provide an elegant and in the
expected sense efficient technique for the initial location
of the point to be added. This step is a sore point of all
incremental methods.

This paper unifies and extends the algorithmic results
of Joe [13], Rajan [20], and Guibas, Knuth, Sharir [11].
In particular, we show that many different sequences of
flips can be used to add a single point to a regular trian-
gulation in ®¢. This eliminates the need for a priority
queue that sorts flips. The priority queue is replaced
by a stack that computes a topological ordering of the
flips in constant amortized time per flip. We use this
result to generalize the incremental method of [11} to
regular triangulations in R4, The resulting algorithm
runs in expected time O(nlogn + nld4/21). The expec-
tation is computed over all input sequences of the same
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n points and is thus independent of the point distribu-
tion. However, the actual expected time, which could
be much less, does depend on the distribution. Without
assumption on the distribution, we cannot expect any
better time bound because there are sets of n points in
R4 with regular triangulations that consist of @(nl4/21)
simplices.

Outline. Section 2 defines regular triangulations and
introduces related terminology. Section 3 explains the
relationship between regular triangulations in %4 and
convex hulls in £4+1, This relationship provides a some-
times enlightening alternative view of all concepts and
techniques discussed in this paper. Section 4 discusses
the anatomy of flipping in R¢. A counterexample to
a non-incremental method that attempts to construct
regular triangulations in R? by flipping is presented in
section 5. A minimalist data structure for storing tri-
angulations is described in section 6. The incremental
algorithm is given in section 7, and its correctness is
proved in section 8. Section 9 analyzes the algorithm
under the assumption of a random insertion sequence
and derives the complexity result mentioned earlier.

2 Regular Triangulations

Triangulations.. We begin by defining the notion of
a triangulation used in this paper. For 0 < k < d,
the convex hull of a set T" of k + 1 affinely independent
points is a k-simplez, denoted by Ap. A collection of
simplices, C, is a stmplicial cell complex if it satisfies the
following two conditions.

-(i) If Ar € C-then Ay € CforallU CT.

(ii) H Ar, Ap: € C then Ay ﬂ’ A = Apape.

Condition (ii) implies that the intersection of any two
simplices in the cell complex is either empty or a face
of both. If it is a face then condition (i) implies that it
also belongs to the cell complex. The underlying space
of C is the pointwise union of its simplices. Let S be a
finite point set in ®4. Usually, a triangulation of S is
defined as a simplicial cell complex so that S is the set
of 0-simplices (vertices) and the underlying space of the
complex is the convex hull of S. It will be convenient to
relax the first condition and to only require that the set
of vertices is a subset of 5. Notice that the second con-
dition implies that all extreme points of S are vertices
of every triangulation of S.

Power distance and power diagrams. Again, let S

be a finite set of points in R¢, and assign a real valued |

weight w, to each point p € S. For each p, define
mp : Y — R so that

mp(z) = I‘EPP — Wp,

o 45
3 find

U\.)g? UJV\J

z from p; It is easy to see that for points-p,q € S,

cell complex P(S) in $4, known as the

"Orthogonal centers. For the remainder of the pa er,

‘text, ‘means that for ex?ery d +'1 weighted points in.

| weighted points

wi

where |zp| is the Euclidean distance between points ¢ =
(z1,22,...,24) and p= (p1,p2, - .-, Pa), given by |zp| =

Vv v, (a:, pi)?. We call wp(m) the power distance of .

the locus of points £ € R¢ with m,(z) = m,(z) is the
hyperplane

d d
Xp,q * 2Za:;(qi ~pi) +Z(P1 —¢f) —wp +wy =0.
We Call{X}z,‘q'f' the ‘;”c‘hq;d?qylcfof the weight'edfpéints p.and "

" Sometimes it is convenient to interpret a point p with
weight wp.as a sphere centered at p and with radius
\/Wp- If wy is negative we obtain a sphere with imagi-
nary radius.

Let H, , denote. the half-space of points z € R? for
which 7,(z) < m,(z). For each p € S, define its pou

Observe that P(p) is a convex polyhedron, the inter-
section of the interiors of any two power cells is empty,
and the union of all power cells P(p), p € S, covers ®¢
The collection of power cells and their faces defines the

' see e.g. [1]. ¢

we assume that the _weighted . points..of .S..are..in..

there is a unique unweighted point =z € R4 with t
same power distance from all d 4 1 points, and for
ery d + 2 weighted points of S, there is no such poin
Two weighted points p and z are said to b
if

2

|pz|® = wp +w,.

Note that this is.equivalent to my(2) = w, and = (p)
wp. A subset T:of d + 1 (weighted) points of S defines
a unique d-simplex A = Ap = conv(T"). There is a
_unique weighted point z = z(A) that is orthogonal to all
€ T. We=call'Z the orthogonal cente
. If the he weights of all p € T are zero then the sphere
1 center z and radius ,/w; is the circumsphere of
Local and global regularity. Observe that (p)
wp for allp € T. .Call A (globally) regular if w;{q) >
forallg e S—T. Clearly, if A is regular then z
vertex of P(S), the power - diagram’ of 5. The regl
51mphces together with their faces, define a smlphmal :
cell complex known as the regular triangulation Of, ;
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" a line-shelling of its faces, see {3]. Computing the line-

- shelling is closely related to computing the ordering of
the flips for Delaunay triangulations mentioned in [20].
The result of this paper can also be interpreted as find-
ing a “topological line-shelling”.

4 Flipping in d Dimensions

Definition -and classification of flips. Consider a
set T' of d + 2 points in R?. ‘According to Lawson [16],
there are exactly two ways to triangulate T'. Indeed, the
two ways correspond to the two sides (lower-and upper)
of the (d+1)-simplex that is.the convex hull of the cor-
responding lifted points in R4+, Because.of Radon’s
theorem (below) and because the (d + 1)-simplex ex-
hausts all d + 2 d-simplices as facets, there can be no
other triangulation of T. A flip is the operation that
replaces one triangulation of 7' with the other.

In R?, we distinguish two cases depending on whether
the tetrahedron of the lifted points in ®3 projects to a
triangle or a.quadrilateral, see Figure 4.1. A 4-simplex

‘3 t0 1’

e .

‘1to 3

2t0 2

Figure 4.1: There are three types of flips in ®2, and we de-
-note a flip by the number of triangles before and after the flip.
So the flips are of type ‘1 to 3’, ‘2 to 2’, and ‘3 to 1'. The
first type introduces a new point,. and the last type removes a
point. The last type of flip is not needed for Delaunay trian-
gulations because no point is redundant, and so no point has
‘to be removed -from the triangulation.

in ®* projects to a single or a double tetrahedron (the

zﬁ\ ‘gonvex hull of four or five points) in ®3. Flips in %2 are

s¢lassified accordingly, see Figure 4.2.

7 Given d + .2 weighted points in ®¢, one of the two
; : tnangula.tlons is the regular triangulation of t!

! other is not regular. In the construction of R(S),
Al ps are applied in this directional semse, replacing a

"wﬁ)ﬁf&gﬂar triangulation of d 4 2 points by the regurr

.one.

“Flippability. Let A= Ay be a (d — 1)-simplex of an
arbitrary triangulation 7 of 'S, and let A’ = Ayy{a)
and A" = Ayyqsy be the two incident d-simplices. The

of the points,..
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Figure 4.2: The flips in R° can be classified as ‘4 to 1', 3 to
2', ‘2to 3’,-and ‘1 to 4’.

induced subcomplez of T = U U {a,b} consists of all
simplices in 7 spanned by points in 7. Clearly, A, A’
and A belong to the induced subcomplex of T'. We call
T (and A) flippable if conv(T') is the underlying space
of the induced sub cornplex of T.

Assume that if A is given then A’ and A", and there-
fore T, can be computed in constant time. ThlS requires
that d be a constant. Consider the d:(d ~ 2)-simplices
of A. Call such a (d — 2)-simplex convez. if there is
a hyperplane that contains it:and A’ and A” lie on
the same side of this hyperplane; otherwise, call:the
(d — 2)-simplex reflez. The underlying space of the in
duced subcomplex of T is equal to conv(T) iff all reflex
(d — 2)-simplices of A have degree 3; that-is, each is
incident to exactly three (d — 1)-simplices. These are
A and one other (d — 1)-simplex each of A’ and A"
Thus, given A, it is possible.to test in comstant tim
whether or not it is flippable. Recall, however, that our
algorithm would :attempt to flip A only if it is flippa
“and it s Tocally Bon-regular, ’

R,

* contains conv(V).

A convex geometry theorem. The above discussion
is closely rélated to.a classical result in.convex geometry
known as Radon’s theorem [19].

Theorem 4.1 Let T be a set of d + 2 points in
Then there exists a partition T = UUV so that |
conv(U) Nconv(V) # 0.

Every subset of d 4 1 points of T either contains U .
as a subset, or V, but not both. In the former case, the
d-simplex spanned by the subset belongs to the triangu-
lation of T that contains conv(U) as a simplex. In-the
latter case, it belongs to the other triangulation that

Assume that [U] < |[V]. Then [U| < &2 and Ay isa
k-simplex with k.= [U|—1 < 4. When T is flipped then
Ay can only belong to one of the two trlangulatlons of
T, the one before or the one after the flip. This implies .
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nientally, that is, points are added one at a time. It

_is convenient to first construct an artificial d-simplex,
" As, = conv(So), with So = {p-d4---,Po}, so that S
is contained in it. We should also require that every
d-simplex of R(S) is also a d-simplex of the regular tri-
angulation of S U So. The d + 1 artificial points can
be conveniently chosen at infinity. For example, set
wp; =0, and

0 if—i>j
pij=1§ +oo H—-i=j ,
—o0 if—-i<j

where p;; denotes the j-th coordinate of p;, for —d <
i < 0. The symbol ‘co’ is a place-holder for a large
enough number, and this is the easiest way to think
of the artificial points and their effect on the computa-
tions. The particular choice of points guarantees that
R(S) is a subcomplex of R(So U S). In fact, R(S) con-
sists of all simplices of R(Sp U S) that are not incident
to any point of Sq.

Global algorithm. Define S; = {p—4,P-d+1,---,Pi}-
We proceed as follows. Given R(S;_1), let A = Ar be
the d-simplex that contains p;. If, even after adding p;,
A is still regular then R(S;) = R(Si-1). Otherwise, flip
T U {p;}. This is a flip of type ‘1 to d+1". Continue
flipping locally non-regular (d — 1)-simplices until none
remain. The resulting triangulation is R(S;).

We need some more terminology. A (d — 1)-simplex
Ay of a triangulation belongs to the link of vertex p; if
Ayugp,} is a d-simplex of the triangulation. The (d —
1)-simplices of the link of p; are called link facets. In
the algorithm given below only locally non-regular link
facets are flipped.

1 Construct R(So) = As,;
2fori:=1tondo
3 locate the d-simplex A in R(S;-1) that
contains p;;
if R(T"U{pi}) # Ar then
flip T U {p:};
while there exist locally non-regular link facets do
find a locally non-regular link facet A
that is flippable;
flip A
endwhile
endif

endfor.

-~ O U

oo

In section 8 we will argue that it is indeed sufficient to
restrict our attention to link facets when we search for
a remaining non-regular (d — 1)-simplex in step 7. The
details of the while loop (steps 6, 7, 8) and the point
location operation (step 3) are explained below. As we
will see, the implementation of steps 3 and 4 is slightly
different than indicated above.
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Finding and flipping link facets. We now describe
a way to efficiently implement steps 6 and 7. A stack
of link facets is maintained. Bach time a link facet A
is flipped, all new link facets are pushed onto the stack.
The search for a link facet that is locally non-regular
and also flippable begins at the top of the stack. If the
topmost link facet is not flippable or it is locally regular
or it is not part of the current triangulation then it is
simply popped from the stack. In the first case, it could
be that this link facet becomes flippable later as the re-
sult of some changes in:its neighborhood. If this hap-
pens then a neighboring link facet will be added whose
flip implies the flip of the popped link facet. Consider
the case where the link facet A is no longer in the cur-
rent triangulation. A is stored in the stack as a pair
of pointers to the two d-simplices incident to it. Both
d-simplices are no longer part of the current triangu-
lation. To handle this -case, whenever a flip removes a
d-simplex, it is marked. If the two d-simplices incident
to a link facet are marked, it is discarded. In fact, the
d-simplices destroyed by flips are maintained in a struc
ture called the history dag, see below. Each flip adds at
most d facets to the stack. This implies that the total
time required by the while loop is preportional to-the -
number of flips performed. ;
Point location. The method we use to implement step
3 is a generalization of the two-dimensional -technique_
of [11]. The history of performed flips is used as an'aid
in the search. More specifically, as:points are adde :
and flips are carried out, we maintain the collection o
discarded d-simplices in a directed acyclic graph, called
the history dag. ,

The history dag has a unique root, which is the d-
simplex Ag,. At any moment, the d-simplices of-the
current triangulation are the sinks of the dag. Recall
that a flip replaces some k d-simplices of the curren
triangulation with some other d + 2 — k d-simplices. -
Before the flip, the k d:simplices are sinks of the dag.
Performing the flip means to add the d + 2 — k new d--
simplices as successors:to the k old d-simplices. Thus,:
the k sinks become inner nodes, and d+2— k- new sinks
are added to the dag.

The search with a point p; proceeds as follows. Start--
ing at the toot of the history dag, we follow the path
of d-simplices that contain p;. Before proceeding from
a d-simplex A to the: next :one, we check whether
wp; < T,(pi), where z = z(A). If it is, then: the search
terminates because this implies that p; is redundant in
S; and therefore also in S. ‘

8 Correctness

The algorithm of section 7 could fail for two reasons.
First, if all link facets are locally regular although there



Let L’ be the subset of d-simplices in L that are inci-
dent to locally non-regular link facets. By assumption,
L' # (. For each A € L' consider f(A) fp (A) and
let Amin = Ay be the d-simplex that minimizes f. We
prove below that T'= U U {p;} is flippable.

By choice, f(Amin) < f(A) for all A € L'. All
A € L — L’ are incident to locally regular link facets.
Therefore, wp, < 7,(p;), where z = z(A). This implies

f(Amin) < wp; < Wz(pi) = f(A)

In other words, Apin minimizes f over all A € L. Con-
sider a half-line, r, emanating from p; that intersects a
link facet in its relative interior. Before intersecting any
other d-simplex outside star(p;), r intersects d-simplices
in L. By Lemma 2.2 f increases along the sequence of d-
simplices intersecting r. Thus, if r intersects A, then
it cannot intersect any other d-simplex outside star(p;)
before Amin. This implies that the subcomplex induced
by T'= U U{p;} has underlying space equal to conv(T).
In other words, T is flippable.

9 Randomized Analysis

If the points of S are added in a random sequence we can
show that the expected running time of our algorithm
is O(nlogn + nl#?). The analysis follows the same
pattern as in [11]. We begin with a brief worst-case
analysis of the number of flips performed.
Maximum number of flips. The d+2 points involved
in a flip.define d + 2 d-simplices, each occurring either
in the triangulation of the d+2 points before the flip or
the one after the flip. So one of the two triangulations
has k > %2 d-simplices. The k d-simplices intersect
ina(d- k + 1)-simplex, with d — k +1 < 4. Set
o= |_ J This implies that each flip deletes at least one
6.—simplex or adds at least one. As mentioned in section
8, a simplex is added and deleted at most once, so the
number of flips cannot exceed the total number of é-
simplices defined by n points. A §-simplex is spanned
by é + 1 points, so n points span (6 +1) é-simplices. It
follows that the maximum number of flips needed for
a regular triangulation of n points in R? is at most
2(;%,) = O(nl(#+1)/2]) This should be compared with
the result of Lemma 9.2 below.

The analysis of the running time under the assump-
- tion of a random input sequence requires some addi-
tional definitions.
Terminology and k-set bounds. Consider an arbi-
trary subset 7" of d 4+ 1 points of S and let A = Ay
be the d-simpléx defined by T. Let z = z(A) be the
orthogonal center of A, and define

E(A)={pe S| m(p) <wp}
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Sy
Yo =

Note that X(A)NT =0, and that Z(A) =0 iff Ais a
d-simplex of R(S). Call ¢(A) = |Z(A)| the width of A,

The analysis is based en bounds for the number of
d-simplices with a fixed width k. It will be necessary to
also consider d-simplices incident to points of Sy. ‘For
each subset Q2 C So and for each 0 < k < n, write Y}
for the collection of subsets T' C Sy, |T| = d + 1, for
which T'N Sy = Q and o(Ag) = k. Furthermore, define
Lﬁc:ﬂ Ykn'

For non-empty €, the sets YS! are somewhat more
natural if we consider the lifted set S} = {pt € Rd+1-
p € Sp}. As explained in section 3, the orthogonal cen-
ter of A = Ap, T C S, corresponds to the hyperplane
that contains the points of T+. The constraint that a
hyperplane contain a point with some arbitrarily large
or arbitrarily small coordinates (symbolized: by +oc0 or
—oo) really means the hyperplane must contain a cer-
tain direction. Recall that TN Sy = Q and that T
contains w = | points with arbitrarily large or small
coordinates. So the hyperplane spanned by 7% must
contain w directions, or equivalently, it must be normal
to an f-flat, where £ = d+ 1 —w. This ¢-flat can-be
viewed as an embedding of ®¢ in R4+,

The maximum cardinalities of the sets Y;* relate to
the maximum number of k-sets of a collection of points *
in ®¢. A k-set of a finite point set A C R¢ is a subset
B C A of size k for which. there is a half-space H in $¢
with B = ANH. Write: g,(c )(A) for the number of k-sets

of A and define g(t)(A) 1 Ok )(A) The result on .
k-sets that is most relevant to our analysis is :

g)(4) = o(nl8l T8,
where n = |A|. The proof of this bound in [4] assumes -
that £ is a constant and j is asymptotically less than
n. If j is proportional to n then the bound is trivial.
Alternatively, this bound can be obtained by a straight
forward extension of the relevant calculations in [11].
The connection between the sets YkQ and the concept
of a k-set is based on the lifting map explained in section -
3. Consider aset T € Y. So |T|=d+1, TNSy =2,
and for A = Ar we have 6(A) = |[EZ(A)| = k. Let ha -
be the hyperplane in #¢+! spanned by the points in T
The property of the lifting map discussed right before
Lemma 3.1 implies that £(A)t = St H for one of the
two open half-spaces H bounded by ha. Thus, B(A)t
is a k-set of S*. Furthermore, if Q # 0,5y, then ha
is normal to an f-flat Fq, where £ = d+ 1 — [Q]. :For
a point p € S let pg be the orthogonal projection of
pt into Fq. Extend this definition to sets, so that for
example Sq = {pa | p € S}. With these definitions,
(A)q is a k-set of Sp. So we can use-the above bound
on the number of k-sets and obtain the following resulf.




and the construction of so-called alpha shapes [8, 10].
Indeed, the main motivation for studying the prob-
lems solved in this paper is our intention to implement
weighted and unweighted alpha shapes in dimensions
beyond ®3. It would be interesting to conduct an ex-
perimental study comparing the algorithm of this paper
and its main contenders for constructing d-dimensional
regular triangulations. These are probably the random-
ized algorithm of Clarkson and Shor [4] and the output-
sensitive algorithm of Seidel [22].

Acknowledgement. We thank Raimund Seidel for
sharing an observation that significantly simplified an
earlier version of the correctness proof in section 8. In-
dependent from us, Barry Joe found a proof that incre-
mental topological flipping works for computing Delau-
nay triangulations in d-dimensional space. His proof is
similar to ours, although it covers only the case of equal
weights for all points.
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