Counting faces in the extended Shi arrangement
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Abstract

We define the level of a subset X of Euclidean space to be the dimension of the smallest subspace
such that the distance between each element of X and the subspace is bounded. We prove that
the number of faces in the n-dimensional extended Shi arrangement A’ having codimension & and
level m is given by m - (}) - AFA™~1zn=1| _ . _;, where A is the dlfference operator and A, is
the difference operator of step r, that is, A;p(z) = p(z) ~ p(z — ). This generalizes a result of
Athanasiadis which counts the number of faces of different dimensions from the Shi arrangement A,
The proof relies on extending Athanasiadis’ result to A’ and applying a multi-variated Abel identity.

1 Introduction

The n-dimensional extended Shi arrangement ./I,Tl is defined as
zi—zj=-r+1,...,r for 1<i<j<n,

where r is a given positive integer [17]. When r = 1 we have an important special case, namely, the
Shi arrangement A,:

z;—z; =0,1 for 1<i<j<nm.
J

Ever since Shi proved that this arrangement has (n + 1)"~! number of regions.(chambers) [14], there
has been a large interest in studying it. Headley [10] computed the characteristic polynomial of the Shi
arrangement, namely x(t) = ¢-(¢—n)""!. This proof was improved upon by Stanley [16]. Athanasiadis
gave a combinatorial proof of this characteristic polynomial [1]. Moreover, he enumerated the faces
of the Shi arrangement A, according to their dimension. In order to state his result more compactly,
let A denote the difference operator Ap(z) = p(z) — p(z — 1).

Theorem 1.1 (Athanasiadis) The number of faces of codimension k in the n-dimensional Shi ar-
rangement A, is given by (3) - ARz ey

We will extend this result to the extended Shi arrangement ﬁ;; see Theorem 2.2. Furthermore, we

obtain a more refined enumeration of the faces of the extended Shi arrangement, and hence, of the
Shi arrangement.

Consider the 2-dimensional line arrangement in Figure 1. It has 4 bounded regions and 12 un-
bounded regions. These 12 unbounded regions fall into two classes, namely, six of them are unbounded
in two directions and the other six are unbounded in only one direction. To make this distinction
clear, we define the level of a subset of n-dimensional Euclidean space as follows.
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Figure 1: The 2-dimensional representation of the 3-dimensional Shi arrangement Aj.

Definition 1.2 The level of a subset X of n-dimensional Euclidean space is the smallest non-negative
integer m such that there exist a subspace V of dimension m and a positive real number r such that

XC{x : dxV)<r}

That s, every element of X is at most distance r from the subspace V.

Informally speaking, the set X has level m if the set viewed from far away looks m-dimensional. Hence
in Figure 1 there are 4 regions of level 0, 6 regions of level 1 and 6 regions of level 2.

It is natural to ask how many faces there are in the extended Shi arrangement ﬁ; having codimen-
sion k and level m. The surprising answer follows, where we denote the difference operator of step r
by A,, that is, Ap(z) = p(z) — p(z — 7).

Theorem 1.3 The number of faces of the n-dimensional extended Shi arrangement ﬁ; of codimen-
sion k and level m is given by m - (7) - AFA™1gn=1| _ ..

The first ingredient of the proof of Theorem 1.3 is to generalize Athanasiadis’ enumeration of the
number of faces of the Shi arrangement A, to the extended Shi arrangement ﬁfl. In the same spirit
as Zaslavsky [18] we not only obtain the number of faces of codimension k, but also the number of
bounded faces of codimension k. Here, in the extended Shi arrangement a bounded face denotes a face
of level one. The second ingredient is a multi-variated Abel identity essentially due to Frangon [8]. We
sketch a quick proof of this identity in Section 4 using tree enumeration. In the last section we state

two corollaries to our main result, describe the connection with parking functions and pose questions
for further research.



2 Counting the faces of the extended Shi arrangement

Let H = {H,,...,Hn} be a hyperplane arrangement in R™ where n; is the normal vector to the
hyperplane H;. Let W be the largest subspace of R” perpendicular to the normal vectors n,. . ., np,.
Observe that the arrangement H is invariant under translation in the direction w, where w belongs
to W. Hence we call the dimension of W the linear degree of freedom of the arrangement 2. Observe
that the arrangement H is naturally a hyperplane arrangement in the quotient space R"/W.

Let £(H) denote the intersection lattice of the hyperplane arrangement H, that is, the lattice of
all possible intersections of the hyperplanes H,,..., Hp,. The intersection lattice is ordered by reverse

inclusion, hence the minimal element 0 is the whole space R*. The characteristic polynomial of the
hyperplane arrangement # is defined by

x® = > w®X) 4™,
XeL(H)
X#0

where ;1 denotes the Mobius function of the intersection lattice.

Call a face of the arrangement H bounded if the corresponding face in the arrangement in the
quotient space R"/W is bounded. That is, a face is bounded if it is bounded in all the directions in
the span of normal vectors n;. By Zaslavsky’s seminal result [18] the number of regions of H is given
by (=1)™ - x(—1) and the number of bounded regions is (—1)"~! - x(1), where [ is the linear degree of
freedom of H and x(t) is the characteristic polynomial of the arrangement .

Let fr be the number of k-dimensional faces of the hyperplane arrangement H. Similarly, let by
denote the number of bounded faces of dimension k.

We call the arrangement H rational if the defining equation of each hyperplane H; has rational
coeflicients. From now on the discussion applies to rational arrangements. Hence for a field k with
characteristic 0 or with large enough characteristic, we can view H as an arrangement in k™. Let
Vi(H.k) denote the set of points x in k™ such that x belongs to some k-dimensional face of H. That
is, Vi(H,k) is the union of the k-dimensional faces. An extension of the discussion in [1, Section 6]
implies the following result. ‘

Theorem 2.1 Let H be rational hyperplane arrangement with | as the linear degree of freedom. For
large enough prime numbers q the function g — |Vi(H, Zg)| is a polynomial in q. Moreover, evaluating
this polynomial at ¢ = —1 and ¢ = 1 one obtains (—1)F - fy, respectively, (—1)*~ . by.

For a quick proof of the ¢ = —1 part of this theorem, apply the valuation v from [6] to the set Vi (H, R).
By setting ¢ = —1 the valuation v reduces to the Euler characteristic and the Euler characteristic of
Vi(H,R) is (=1)* - fx. Similarly, a quick proof of the ¢ = 1 part is obtained by using the bounded
Euler characteristic; see [4, 7].

We now turn our attention to the extended Shi arrangement .A7. The linear freedom is 1, since

the subspace W is spanned by the vector (1,...,1). Our main theorem of this section is the following
result.



Theorem 2.2 The number of faces of codimension k in the n-dimensional extended Shi arrange-
ment A7 is given by (%) - Afgn=11 _ .. Similarly, the number of bounded faces of codimension k
m A7 s given by (3) - Akl

Let P(q) denote the cardinality of Vn_k(ﬁ;,ZQ). The argument for determining the polynomial
P(q) follows the method of the proof of Theorem 1.1; see [1, Theorem 6.5]. For a point (ZT1,...,2y)
define a partition 7 on the set {1,...,n} by letting i and j belong to the same block of 7 if i < J
and —r +1 < z; — z; < r. The number of blocks of the partition 7 is equal to the dimension of the

face containing the vector (zi,...,z,). Hence Vn_k(ﬁ;, Zq) consists of those points that correspond
to partitions with n — k blocks.

For each congruence class modulo q we have a box and these ¢ boxes are placed in a cyclic order.
View a point (zi,...,z,) in the vector space Z; as placement of the integers 1 through n into the
q boxes, where the element i is placed into box z;. When several integers land in the same box, order
them increasingly. Thus when removing the boxes completely leaving behind their contents, we obtain
a cyclic permutation ¢ of the elements 1 through n.

Observe that the elements of a block of the partition 7 appears as a string of consecutive elements
of the cyclic permutation 0. Hence o is partitioned into n —k partial permutations 7y, . . . y Tn—k, Where
7; is a partial permutation on the block Bj, that is, 7; is a linear order on the block B;.

We will now determine how many points there are in Vn_k(ﬁ;, Z,) that correspond to a certain
cyclic permutation 0. Crucial to the proof is the following observation. Let i and j be adjacent entries
in the cyclic permutation o.

¢ Assume that ¢ > j forms a descent. If there are at most  — 1 boxes between 7 and j then i and j
are in the same block, otherwise not.

e Assume that ¢ < j is an ascent and that i and J do not belong to the same box. If there are at
most 7 — 2 boxes between 7 and j then the elements i and J are in the same block, otherwise not.

Lemma 2.3 Let w be a partial permutation on h elements such that the elements of © form a block.
Then the generating polynomial for the number of possible bozes between the elements of 7 is given by

(l - Zr>h_l . gltdes(r)

1—-2

Proof: Begin to insert each entry of = into a distinct box. This is counted by the term 2*. If
m(t) > m(i+1) is a descent in 7 then the number of boxes between the elements 7 (i) and (i + 1) can
vary between 0 and r — 1. Thus we have the factor 1 + 2 + - + 2"—1. If 7(1) < w(i + 1) is an ascent,
the number of boxes varies between 0 and r — 2, hence giving the factor 1 + 2 + -+ + 2™2, However,
there is the extra case of letting 7 (i) and 7 (i + 1) belong to the same box. This means removing one
box, counted by z~!. Hence we have the factor z=! + 1 + 2z + - -+ +27 2 =(1+z24--+ 2Ty L
Thus the generating polynomial is

M (1+24--+ zr—l)h~1 . z~(h—1——des(1r)),



which is equivalent to the lemma. O

Lemma 2.4 Let o be a cyclic permutation on n elements divided into n — k partial permutations

odes(a)

1 - k r-(n—k).__.
( Z) z (1___2)71

Proof: Let a be the number of cuts occurring at an ascent of o and b the number of cuts at a
descent. Hence a +b = n — k. At an ascent cut the generating function for the number of boxes is
N4 =27 (27 42" 4. .. Similarly, at a descent cut we have 2" + 2™+! + - - .. Hence the
generating function for inserting boxes in the n — k cuts is

1

- +1 -k _ - (n—k
za-(zr+zr +)n —Za'Zr(n )m

(2.1)

Assume that 7; is a partial permutation on h; elements. By Lemma 2.3 the generating function for

inserting boxes in the partial permutations 7y,. .., 7T,_k is
—~k hi— d
n[[ (1 — zT) & Cgitdes(m) — (1 pryk . w (2.2)
o Nl—z (1.—2)k’

since ?:_f(l + des(7;)) = a + des(o). By multiplying equations (2.1) and (2.2), the lemma follows.
O

Proof of Theorem 2.2: Recall the identity 3, zdes(")/(l —2z)" = 22530 "1 . 27 where the sum

ranges over all cyclic permutations o. Summing the expression over all cyclic permutations ¢ in
Lemma 2.4 we obtain

(1 _ zr)k . zr~(n—k) . Zjn—l R - (1 . z—r)k . (-—l)k LT Zjn—l - (2'3)
320 320

Let V. denote the upper difference operator in the variable g, that is, V.(p(q)) = p(q +r) — p(q).
Since the coefficient of 29 in (—1)k . 27" 2530 g* 120 is (=1)F - (¢ — 7 - n)™" !, the coefficient of 29
in equation (2.3) is (—=1)¥ - V&(g — r - n)»~1. Observe that

(-1)F-VEg-r- )" = (—1)" kL. TE(r .- g)!

(_1)n—k—1 . Afmn—l |x=rn—q )

Recall that there are (Z) ways to choose the n — k cuts. Moreover, there are ¢ ways to decide where
the box labeled 0 will be. Hence the polynomial P(q) is given by

P(q) = (_l)n—k_l : <:> q- Afxn_l lz=rn—q - (2.4)
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B L7 {11y {123 {49 {2} {6} {5} {8,13,14} {10}
Figure 2: The diagram corresponding to a face in ﬁﬂ of dimension 6 and level 3.

Now by considering the values of (—=1)"~% . P(~1) and (—1)"*~1. P(1), the result follows. O

By setting k = 0 and ¢ = ¢ in equation (2.4) we obtain the following corollary.

Corollary 2.5 The characteristic polynomial of the eztended Shi arrangement .21\; is given by x(t) =
t-(t—r-n)"h

3 Faces and their diagrams

Let F,?’ T:L denote the number of faces of codimension k and level m from the extended Shi arrange-

ment ﬁ; Since the arrangement ./T; has linear degree of freedom 1, the level and dimension of a face
of A, are at least 1. In Figure 1 the 2-dimensional representation of the arrangement Al = Az is
displayed. Since there are 12 rays in the figure, there are 12 half-planes in .43 and thus Fls’ 21 = 12.

Determining all the values of F,?rln we have the following table.

By Zaslavsky’s seminal result [18], Foi = |x(1)] = (r-n—1)""1. It is straightforward to observe that
Fy, = n!. Moreover, an equivalent statement of Theorem 2.2 is

T n,r n n—
Fkl?"l +--+ Fk,;l—k = (k‘) ) Af.’L’ 1 |z=rn+1 3 (31)
FWT - (n) . Ak:l,‘n—l | (3 2)
k,1 k r r=rn—1 - 3.

We now describe a representation of the faces of the extended Shi arrangement.
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Definition 3.1 Let F' be a face in the Shi arrangement -’1:1 Let Wy, ..., W, be the ordered partition
of the set [n] = {1,...,n} such that (1) i and j belong to the same block if z; = zj for all points x
in the face F' and (2) i lies in a block previous to that containing j if z; > z;. The diagram D of the

face F' consists of this ordered partition together with two types of labeled edges between the blocks of
the partition.

* Draw a solid edge labeled h from the block Wy to the block Wy if z; = Tj + h where 1 belongs
to Wy, j belongs to Wg, i > j,a<f and 1 <h<r.

* Draw a solid edge labeled h from the block Wy to the block Wg if z; = z; + h where i belongs
to Wg, 7 belongs to Wy, i > j,a<fBand 1 <h<r-1.

* Draw a dotted edge labeled (h,h + 1) from the block W, to the block W if z; — x; is contained

in the open interval (h,h + 1) where i belongs to W, j belongs to Wg, i > j, @ < B and
0<h<r-1.

® Draw a dotted edge labeled (h,h + 1) from the block W, to the block Wy if T; — T; 18 contained
in the open interval (h,h + 1) where j belongs to Wy, i belongs to Wg, i > j, a < B and
0<h<r-2.

A solid edge corresponds to an equality where the label is the difference between the two values of
the blocks, whereas a dotted edge allows the difference between the two values to vary. However, for
a dotted edge this difference is restricted to belong to the open interval given by the label.

'This notion of the diagram of a face extends the notion of the dual diagram of a region in the Shi
arrangement A, introduced in [3].

As an example, consider the diagram in Figure 2 which corresponds to a face in ﬁﬂ. The underlying
ordered partition encodes the following string of equalities and inequalities: z3 > z; = 27 > 11 >
Tiz > Ty = T9g > Ty > Tg > Ts > Tg = T13 = Ti4 > T19. Lhe solid edges describe the equalities
z3 =211+2, 1 = T12+1, Tg = r5+1 and xg = z19+2, while the dotted edges describe the inequalities
z3—x7 € (1,2), 21 — 211 € (0,1), 11 — 212 € (0,1), 4 — 22 € (0,1) and z5 — 75 € (1,2). Observe that
the diagram of a face is decomposed into blocks. In Figure 2 there are 3 blocks: C; = {1,3,7,11,12},
Cy = {2,4,9} and Cs3 = {5,6,8,10,13,14}. |

Proposition 3.2 The number of blocks of a diagram D is equal to the level of the associated face F.

Proof: Assume that there are m blocks Cf,...,Cp. Observe that {C,...,Cp} is an ordered par-
tition of [n]. Consider the subspace V of the Euclidean space described by the equalities z; = z;
if v and j belong to the same block C,. The dimension of the subspace V is m. Let d(k) de-
note the distance r - /12 + - + (k — 1)2. Then every point on the face F is at most the distance
VA(IC11)? + -+ + d(|Cr])? away from the subspace V. Hence the level of the face F is at most m.
Let B be the subset of the subspace V defined by B={x €V : z; > z;ifi € Cy,j € Cp,a < B}.
The set B has level m. Moreover, since any point in the set B can be approximated within a bounded
distance by a point from the face F, we obtain that the level of the face F is m. O




Theorem 3.3 The face numbers F" satisfy the identity

m
T e n ] T
Fk,m - Z Z (] j ) ) Fﬁj»l'
BitetBm=k ji+-+jm=n \Dr+Jm/
V1<s<m Bs<js

Proof: To form the diagram of a face with & equalities and m blocks, proceed in the following manner.
First choose how many equalities there will be in each block. Let S5 denote the number of equalities
in the sth block. Then choose how many vertices there will be in each block. Let j, be the cardinality

of the sth block. Observe that we necessarily have 8, < Js- The multinomial coefficient ( i)

distributes the vertices among the blocks. The diagram on the sth block can now be chosen in Fé: 7
number of ways. O

4 The Abel identity and the proof of main theorem

Theorems 2.2 and 3.3 offer a method to compute the numbers Fl?, - Hence to prove the main theorem,

Theorem 1.3, all we need to show is that the values m - (}) - AFam—1gn-1 lz=rn—1 also satisfy the
relation in Theorem 3.3. This is the content of the next theorem.

Theorem 4.1 Let Q(n,k,m) denote AkAm—1zn-1 In—1. Then we have

A™) - @k m) = N (%) o6 s 1),
m (k) Qnkm)= 3 > (jl,__.’jm) H(m) Qs 85, 1)

Bit-+Bm=k jit+-+jm=n s=1
V1<s<m Bs5<Js

Before we proceed let us introduce some notation. For a set I of indices let t;r denote the sum of
the variables 2crti- Forsets I, Jand Klet I+J = K denote that the disjoint union of I and J
is the set K. Hence when we sum over the condition I + J = K for a given K, the sum ranges over
all compositions of the set K. Similarly let Jg denote the disjoint union > ses Js. Combining the
last two conventions, for a given K a sum over the condition Js = K means that the sum is over all
compositions of the set K into parts which are indexed by the set S. We will also use vector notation
and concatenation in the multinomial coefficient. That is, (a,%s) denotes (a,/iz,l.c..,/gm) where fs is the

vector (fo,. .., Bm).

The classical Abel identity is the following:

(z+y+n-t)" = Z (?) e +it) -y (y+4-8)0L
i+j=n

To proceed we need a generalization of the Abel identity which introduces several y variables and

several ¢ variables. This generalization and its proof is essentially due to Francon [8]. See also
Section 3.1 in [5]. For completeness, we give a brief sketch of the proof,



Proposition 4.2 (The multi-variated Abel identity) Let S denote the set {2, ..., m}. Then

(T+ys+tp)" = Y @+t ] ys- (gs + tg,)1 00
I+J5:[n] SES

Proof: Let E be the set [n + m]. To each element in E associate a variable z; by the rule z; = ¢,

oy Zn = tny Zngl = T, Zng2 = Y2y -+ Zmin = Ym. For a function f from the set E to itself, let the
weight be the product [;cg 2f(;). Now consider the set of all functions such that n + 1 through n+m
are fixed points. The sum of the weight of all such functions is z-y3 - -+ ym - (z + ys + tn))" The sum
can also be evaluated by decomposing the set [n] into m parts I, Jy, ..., J,, where for s € S there
is an acyclic function on the set J; U {n + s} with the fixed point n + s. The sum of the weights of
all such functions is y2 - (ys + ty,)/’s/~!. Finally on the set T U {n + 1} there could be any function
having fixed point n + 1. These are enumera.ted by z - (z + )l Multiplying these weights together,

summing over all compositions I + Js = [n] and then cancelling the factor z-y; - - - y, from both sides
we obtain the result. O

We now have the machinery in place to prove our main result.

Proof of Theorem 4.1: For ease of notation, let R ., (z) denote the polynomial AkA™z". Replacing
n with n — 1 in the multi-variated Abel identity, we rewrite it as

Ry (@ +ys +tpoy) = > RE b(z + 1) IIws- Rlel Nys +12,)
I+Js=[n—1] s€S
— 1] lel 1
- Z Z R0,0($+t1 Hys R ys+tjs).
TCS I+Jr=[n—1] s€T
VsET Jo#0

By inclusion-exclusion we have

_ - Js 1
Y (DT R @t yr o) =D Rm o@+tr)- ] vs- R' "y + 14,)-
TCS I+Jg=[n—1] SES
VsES Jo#0
Setting the variables y = -+ = y,, = —1 and z = 0, and observing that the left-hand side is an

(m — 1)st order difference operator gives

Ry (t) = S RYMD) - [T RE; (s, — 1).

I+J5=[n-—1] seS
VseS Jo£0
Now apply in each of the k variables ¢, ..., ¢ the difference operator A,. The result is
n I Js|—1
Binalton) = 3 3 Rl - T Ag g - 1), (1)

A+Bg=[k] I+Js=[n—-1]
Vs€S ByCJ,#0
ACI



Observe that any term with By = Js for some index s vanishes. Hence the condition B, C J, can
be replaced with the strict containment Bs C J,. Setting the variables b= =t =1, we
rewrite (4.1) as

Q(Tl, k’m) = Z <a’%’s> ’ Z < nok- 1_' ) ’ RZ,O(i) ' IISQ(jSaﬁs’ 1)’
s

a+Bs=k i+js=n-1 \¢ T &JS Bs
VSES}38<.73
a<i

where 85 denotes the vector (B2y--.,Bm) and s the vector (J2y-+-1Jm). Let = B; and i = j1 — L.
Observe now that the conditions 7 + Js =n —1 and a < i become Jim) =n and a < jo. Hence we
have

k n—k-1 LA
Q(n’kam) = B[g];:k (131»55) ’ j[g——n (]1 - B - 175’5 _ B‘S) : SI;IIQ(JSMBS, 1) | (42)

Vi<s<m Bs<js

By symmetry one can obtain m — 1 identities similar to (4.2), with the only difference being in the
multinomial coefficient appearing in the inner summation. Adding these m identities using the classical
Pascal recursion for the multinomial coefficient, we have

k -k & .
m-Q(n,k,m) = Z <5> . Z (;_L._ B—*) : H Q(4s, Bs, 1),
m1=k jtm] =T s=1
i VlSs][S;l Bs<js

where § = (Bi,... sBm) and 7= (j1,...,5m). Multiplying this identity with (%) we obtain the desired
identity. O
5 Corollaries and concluding remarks

We now state three immediate corollaries of Theorem 1.3.

Corollary 5.1 The number of faces in the n-dimensional Shi arrangement A, of codimension k and
level m is given by m - (3) - Aktm—lgn-1) .

Corollary 5.2 The number of regions in the n-dimensional extended Shi arrangement .Z; of level m
is gwen by m - A™~lgn-ly L

From the fact that AR~™A™=1gn=1 = pn=m . (n _ 1)1 the next corollary follows.

Corollary 5.3 The number of faces in the n-dimensional extended Shi arrangement ﬁ; of dimension

and level m is given by r™~™. (31:11) -nl.
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An r-parking function f of order n is an n-tuple of non-negative integers a = (a,...,a,) such
that when the tuple a is rearranged into increasing order by < by < -+ < by then b; < r-(j — 1); see
Stanley [17]. The case r = 1 corresponds to the classical notion of parking functions, however, the
notation differs slightly. For the original context of parking functions, see (9, 11]. Define the level of
an r-parking function a to be the cardinality of the set {7 :1<j<n, bj =r-(j —1)}. For example,
parking functions of level 1 are called prime parking functions and were studied by Gessel [3]. Since
the number of - . parking functions are (r-n +1)"~! and the number of r-parking functions of level m
satisfy Theorem 3.3 and equation (3.1) (with & = 0), we have the following result.

Corollary 5.4 The number of r-parking functions of order n _having level m is the same as the number

of regions of the n-dimensional extended Shi arrangement A7, of level m, that is, m-A™ g1 _ ..

This result can be proven directly using the fact that the Abel polynomials z - (z — r - n)"~! form a
binomial sequence of polynomials [13].

The value of A¥+m=1gzn=1| _ | has the natural combinatorial meaning as the number of functions
from [n — 1] to [n — 1] having the set [k +m — 1] in the image. That is,

ARtm=lypn=l) = #{filn-1]—[n-1] : [k+m—-1]CIm(f)}.

Hence it is natural to ask if a bijective proof of Corollary 5.1 can be given. This question extends
Athanasiadis’ question of finding a bijective proof of Theorem 1.1 [3].

One can also ask if Theorem 1.3 can be extended to other root systems. This is in spirit of the

work of [1, 10, 15]. There are other generalizations of the Shi arrangement presented in (2, 12]. Are
there similar results for these arrangements?
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