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Abstract

We prove that the coefficients of the cd-index of a convex polytope are increasing when replacing
c? with d. That is, for P an n-dimensional convex polytope and u and v two cd-monomials such that
the sum of their degrees is n — 2, we have [uc?v]¥(P) < [udv]¥(P). This yields (5-n — v/5)/25 - "
linear inequalities on the flag f-vector of an n-dimensional polytope, where ¢ is the golden ratio.
We prove similar but stronger results for the cd-index of zonotopes.

1 Introduction

The flag f-vector of a convex polytope contains all the enumerative incidence information between
the faces. Thus to classify the set of all possible flag f-vectors is one of great open problems in
discrete geometry. To date only partial results to this problem have been obtained. The case when
the polytopes are simplicial (and dually, simple) the problem reduces to classifying the f-vectors of
simplicial polytopes. This major step was solved by the combined effort of Billera and Lee [11] and
Stanley [31]. Returning to the general case, the classification of flag f-vectors of three-dimensional
polytopes was done by Steinitz [36] about one hundred years ago. Going up one dimension to four-

dimensional polytopes, the case is still open. The article by Bayer [1] contains what is known for four
dimensions.

The first step toward classifying flag f-vectors was taken by Bayer and Billera [3]. They observed
that there are linear redundancies in the entries of the flag f-vector of a polytope. The relations holding
between the entries of the flag f-vector are known as the generalized Dehn-Somerville relations. These
relations imply that flag f-vectors of polytopes all lie in a subspace of dimension F,, where F, is the
nth Fibonacci number (Fy = F; =1, F,, = F,_; + F,,_»).

The next natural step is to look for linear inequalities that the flag vectors of polytopes satisfy.
One such example is the toric g-vector. The entries of the toric g-vector are linear combinations of
the entries of the flag f-vector. Stanley [33] proved that the toric g-vector of rational polytope is non-
negative. Lately, there has been a lot of work of extending this result to non-rational polytopes; see (16,
24, 38]. More inequalities were obtained by Kalai by convoluting these inequalities together [25].
However, this is far from being all of the linear inequalities that the flag f-vector satisfies; see the
work of Stenson [37].

A different direction of work has involved the cd-index. The cd-index ¥(P) of a polytope P is a
non-commutative polynomial in two variables ¢ and d whose coefficients are linear combinations of



the entries of the flag f-vector. Thus a linear inequality among the coefficients of the cd-index implies
a linear inequality among the entries of the flag f-vector. Moreover, the cd-index encodes the flag
f-vector without linear redundancies. Another way to express this fact is that the set of cd-monomials
offers a basis to the subspace of Fibonacci dimension. The existence of the cd-index was conjectured
by Fine and proved by Bayer and Klapper [6).

Stanley [34] proved that the cd-index of a polytope has non-negative coefficients. This was the first
important result which showed that the cd-index will play an important role in obtaining inequalities.
The next step was taken by Billera and Ehrenborg who proved that the cd-index over all n-dimensional
polytopes is minimized coefficientwise on the n-dimensional simplex A, [7]. This gives a sharpening
of the inequalities obtained by Stanley.

In this paper we will continue this vein of work. For an n-dimensional polytope P the cd-index is
homogeneous of degree n, where the variable ¢ has degree 1 and d has degree 2. We prove that the
cd-index of a polytope P satisfies the family of inequalities

[uc?v]¥(P) < [udv]¥(P), (1.1)
where v and v are two cd-monomials such that deg(u) + deg(v) = n — 2. That is, when replacing a c2
with d, the coefficient in ¥(P) increases. In total this yields ), tjen—2Fi Fj~(5-n- V5)/25 - ¢

linear inequalities, where ¢ is the golden ratio. Note however, that the n — 1 inequalities when the

left-hand side is the coefficient of ¢” are surpassed by the fact that the cd-index is minimized on the
simplex.

There are quadratic inequalities known on the entries of the flag f-vector. Two large classes
of quadratic inequalities are given by Braden and MacPherson [15] and Billera and Ehrenborg [7].
However, quadratic inequalities are not as fundamental as linear inequalities. That is, the set of flag
f-vectors of convex polytopes seems to have as a first good approximation the cone determined by
linear inequalities. Very little is known about this issue and it deserves a deeper study.

A second question of interest is to study flag f-vectors of zonotopes. Yet again, the first step is
to consider linear relations. Since zonotopes are a subclass of polytopes, they satisfy the generalized
Dehn-Somerville relations. Billera, Ehrenborg and Readdy proved that zonotopes satisfy no more
linear relations [9]. The next step is to consider linear inequalities. Billera, Ehrenborg and Readdy
proved that among all n-dimensional zonotopes (and more generally, the dual of the lattice of regions
of oriented matroids), the n-dimensional cube minimizes the cd-index coefficientwise [8].

We prove two improvements of the inequality (1.1) for zonotopes. For an n-dimensional zonotope
Z we have

[udv]¥(Z) — [uc?v]¥(Z) > [udv]¥(O,) — [uc?v]¥(O,), (1.2)

for any two cd-monomials u and v such that deg(u) + deg(v) = n — 2 and where O, denotes the
n-dimensional cube. That is, the increase in going from the coefficient of uc?v to udv is greater than
or equal to the corresponding increase in the cube. The second improvement is the following class of

inequalities:

[c*dv]¥(Z) — 2 [ 2] (Z) > [cFdv]¥(Tp) — 2- [eF+20]W(T,) > O,

where k is a non-negative integer and v a cd-monomials such that k 4+ deg(v) = n — 2. This improves



the inequality (1.2) when u is a power of c, that is, u = c¥, by inserting a factor of 2 in front of the
coefficient of c*+2y.

2 Preliminaries .

A partially ordered set (poset) P is ranked if there is a rank function p: P — Z such that when z is
covered by y then p(y) = p(z) + 1. Furthermore, we call P graded of rank = if it is ranked and has
a minimal element 0 and a maximal element 1 such that p(0) = 0 and p(1) = n. Define the interval
[z, y] to be the subposet {z € P : z < z < y}. Observe that the interval [z,y] is also a graded poset
of rank p(z,y) = p(y) — p(z).

Let P be a graded poset of rank n+1. For § = {57 < 85 < -++ < sk} a subset of {1,...,n}, define
fs to be the number chains 0 = 5 <z, < -+- < Tr41 = 1 where the rank of the element x; is s; for
1 <4 < k. These 2" values constitute the flag f-vector of the poset P. Define the flag h-vector of P
by the two equivalent relations hg = Y o(~1)I5~T fr and fg = Y rcshr. There has been a lot of
recent work in understanding the flag f-vectors of graded posets and Eulerian posets; see (2, 5, 10].

For S a subset of {1,...,n} define the monomial ug = ULU2 * - Uy, Where u; = a if i € S and
u; = b if i € S. Define the ab-indez of a graded poset P of rank n + 1 to be the sum

U(P)=> hs-us.
S

A poset P is Eulerian if every interval [z,y], where & # y, has the same number of elements of odd
rank as the number of elements of even rank. This condition states that every interval [z,y] satisfies
the Euler-Poincaré relation. The condition of being Eulerian is also equivalent to that the Mobius
function u(z,y) is given by (—1)?®¥). Two examples of Eulerian posets are the strong Bruhat order
and face lattices of convex polytopes.

The following result was conjectured by Fine and proved by Bayer and Klapper [6].

Theorem 2.1 Let P be an Eulerian poset. Then the ab-index of P, W(P), can be written in terms
ofc=a+bandd=a-b+b-a.

When ¥(P) is expressed in terms of ¢ and d it is called the cd-indez of poset P. There exist several
proofs of this result in the literature; see (6, 12, 18, 22, 34]. The cd-index has been extraordinarily
useful for flag vector computations; see (4, 8, 21]. Moreover, this basis is now emerging as a key tool
for obtaining linear inequalities for the entries of the flag f-vector; see [7, 19, 34].

3 Polytopes

Let P be an n-dimensional convex polytope. The face lattice of P is an Eulerian poset of rank n + 1.
We denote the cd-index of the face lattice of the polytope P by Y(P). A regular cellular ball/sphere
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[ is a finite regular CW complex such that its underlying space |T'| is a ball/sphere. More generally,
the face poset of a regular cellular sphere I is an Eulerian poset and we denote its cd-index by ¥(T').

One of the useful techniques for proving results about polytopes is shellings. In their seminal paper

Bruggesser and Mani [17] proved that all polytopes are shellable. They did this by providing a special
class of shellings called line shellings.

Recall that a shelling of an n-dimensional polytope P is an ordering of its facets Fy,..., F,, such
that for 2 < r < m, the complex A = (F; U---U F,_;) N F, is pure of dimension n — 2 and there
exists a shelling G, ..., G} of the facet F; such that A = Gy U---UG; for some s. For a line shelling
of the polytope the shelling of F; is also a line shelling. Another important observation is that for
a line shelling the set 9(F} U --- U F;) is combinatorially equivalent to an (n — 1)-polytope. The set
O(F1U---UF,) is not itself an (n — 1)-polytope. However, it can be projected onto a hyperplane such
that the image is the boundary of a polytope with the same combinatorial type. We refer the reader
to the article by Bruggesser and Mani for more details on line shellings.

When Stanley studied the cd-index in [34], he introduced a different notion of shelling, called
spherical shelling or S-shelling for short. However, the line shellings of Bruggesser and Mani are also
S-shellings. Hence it is enough for us to only consider line shellings.

To a regular cellular ball I" of dimension n there are two regular cellular spheres associated with it.
Namely, the boundary and the semi-suspension. The boundary 9T is an (n — 1)-dimensional sphere.

The semi-suspension I' is the n-dimensional regular cellular sphere obtained by attaching a new cell
o to I' such that do = 9T

"The following lemma is essential to our argument. It was proved by Billera and Ehrenborg (see [7,
Lemma, 4.2]) based on results of Stanley [34].

Lemma 3.1 Let P be a polytope with a line shelling Fy,...,F, and let 1 <r < m — 1. Let A be
gwen by (FL1U---U F._;) N F,.. Then we have

V(AU UR))-9(FU---UF_)) = (¥(F)-¥(A)) c+¥(34)-d.

On cd-polynomials there is a natural ordering by letting z < w if and only if w — 2z only has
non-negative coefficients. We now define two stronger order relations < and <'.

Definition 3.2 Let z and w be two cd-polynomials.

1. Define the relation z < w if for all cd-monomials u and v we have

[udv] z — [uc?v] z < [udv] w — [uc?v] w.

2. Define the relation z =’ w if for all cd-monomials u and v, where v is not a power of ¢, we have

[udv] 2 — [uc?v] z < [udv] w — [ucZv] w.



A few observations are in order. When z and w are homogeneous of degree n, we may restrict u and v
to be cd-monomials such that the sum of the degrees of u and v is n — 2. Both order relations are
transitive. Also, X is the stronger relation, that is, z < w implies z <’ w. Observe that both of these
order relations are preserved under addition, that is, z; < w; and 23 < wy implies z; + 2o < wy + wy
and the similar addition rule for <’ holds.

We call a ed-polynomial w rising if is satisfies 0 < w, that is, for all cd-monomials v and v we

have that

2

[uc*v]w < [udv] w.

The rising homogeneous cd-polynomials of degree n thus form a cone in the linear space of homoge-
neous cd-polynomials of degree n.

Lemma 3.3 If2>'0andw >0 then z-c+w-d >'0.

Proof: Observe that z >’ 0= z2-c*'0and w > 0= w-d = 0 => w-d >’ 0. The lemma follows
by adding these two conclusions. O

We are now able to present the main theorem.

Theorem 3.4 Let P be an n-dimensional polytope and let Fy,..., F,, be a line shelling of the poly-
tope P. Then

(a) The cd-index ¥(P) is rising.

(b) The following string of inequalities holds:

0= ¥(F) X' T(FUR)) < - <" U(F,U---UFy_y)) = ¥(P).

Proof: The proof is by induction on the dimension n. We will show the implications (a) = (b) =
(a). However, in the step (a) = (b) we will use the result in (a) for lower dimensional polytopes.
The induction basis is n = 0, and it is enough to observe that the cd-index of a point is rising.

We next prove (a) = (b) by induction. By Lemma 3.1 we have that
V(U UF))-¥(FiU---UF_1)) = (¥(F)-T¥(A)) c+T(0A)-d,

where A = (Fy U--- U F,_1) N F,. By induction we know that V(F,) — ¥(A’) =’ 0. Now consider the
set OA. We know that A is the union of facets of F, that form the beginning of a line shelling. Thus
OA is combinatorially equivalent to an (n — 2)-dimensional polytope and hence by induction W(OA) is
rising. Now by Lemma 3.3 the result follows.

We prove (b)) = (a) by three cases. The first case when v is not a power of ¢ follows directly
by transitivity of all the order relations in (b). For the second case when v is a power of ¢ and u is



Figure 1: The eight cd-monomials of degree 5 in the partial order.

not, the result follows by applying the first case to the dual polytope. Finally, the third case is when
both u and v are powers of c. However, the result is immediate from the fact that the simplex has the

smallest cd-index coeflicientwise among all polytopes and that the simplex has positive coefficients;
see [7, 21]. O

We remark that Stanley’s proof of the non-negativity of the ed-index of polytopes follows the same
outline as the proof of Theorem 3.4. Just replace every occurrence of the two orders < and <’ with
the order < and the proof of the non-negativity appears.

Corollary 3.5 Let P be a polytope. Then the cd-monomial with the largest coefficient in U(P) has
no consecutive c’s.

It is natural to consider the partial order on the set of cd-monomials of degree n, where the cover
relation is to replace an occurrence of c? with d. See Figure 1 for the poset in the case n = 5. This
poset is simplicial, that is, it is the face lattice of a simplicial complex. This simplicial complex has
been studied earlier; see [13, Corollary 2]. Every cd-monomial corresponds to a face having dimension
equal to the number of d’s in the monomial minus one. The cd-monomials with no consecutive ¢’s
correspond to facets. It is easy to observe that the dimensions of facets range between |(n+1)/3] — 1
and |n/2] — 1. Thus the simplicial complex is pure only when n < 3 or when n = 5. Compare this
with the slightly misleading remark before Corollary 2 in [13].

4 Zonotopes

In this section we will improve the main inequality for zonotopes. Let O, denote the n-dimensional
cube.

Theorem 4.1 Let Z be an n-dimensional zonotope, or more generally, let Z be the dual of the lattice
of regions of an oriented matroid. Then the cd-index ¥(Z) satisfies the inequality ¥(Z) = ¥(O,).



That 1s,
[udv]¥(Z) — [uc®v]¥(Z) > [udv]¥(0,) — [uc?o]¥(O,),

for any two cd-monomials u and v such that deg(u) + deg(v) = n — 2.

We will only prove this theorem for zonotopes. The proof for oriented matroids carries through
exactly the same with the geometric language replaced with oriented matroid language.

Let w be the linear map from Z({a,b) to Z(c,d) defined on an ab-monomial by replacing each
occurrence of ab with 2d and then replacing the remaining variables by ¢. Now we have fundamental
theorem of computing the cd-index of a zonotope [8].

Theorem 4.2 Let Z be a zonotope and M its associated central hyperplane arrangement. Let L be
the intersection lattice of the hyperplane arrangement H and (L) the ab-indez of the lattice L. Then

the cd-indez of the zonotope and the sum of the cd-indices of all the vertez figures of the zonotope are
gien by

U(Z) = w(a-¥(L)),
Y W(z/v) = 2-w(¥(L)),

where v ranges over all vertices of the zonotope Z.

The first identity is [8, Theorem 3.1]. The second identity follows from the first and using the linear
map h defined in Section 8 in [8].

It remains to compute the ab-index of the intersection lattice L. We do this using R-labelings.
For more details, see 8, Section 7] and [14, 30, 32]. Linearly order the hyperplanes in the arrangement
M, that is, H = {Hi,..., Hy}. Mark each edge = < y in the Hasse diagram of the lattice L with the
smallest (in the given linear order) hyperplane H such that intersecting = with H gives y. That is,

Mz,y) =min{i : zNH; =y}.
For a maximal chain ¢ = {f) =g <2y < < Ty = i} define its descent set D(c) by
D(c) ={i : Mzi-1,2:) > Mzi, ziy1)}

Then we have the following result; see Section 7 in [8].

Theorem 4.3 The ab-index of intersection lattice L is given by
(L) =) up,
c

where the sum ranges over all mazimal chains c in the lattice L.

Lemma 4.4 Let w and z be rising non-negative cd-polynomials. Then the cd-polynomial w-d - z is
also rising.



Proposition 4.5 Let Z be an n-dimensional zonotope and let Z' be the zonotope obtained by taking

the Minkowski sum of Z with a line segment in the affine span of Z. Then the difference W(Z')— ¥(Z)
18 TISINg.

Proof: Let H and H’' be the associated hyperplanes arrangements and let H be the new hyperplane.
Let #' inherit the linear order of # with the new hyperplane H attached at the end of the linear
order. Similarly, let L and L' be the corresponding intersection lattices. Observe that every maximal
chain in L is also a maximal chain in L'. Also observe that there is no maximal chain in L' whose last
label is H. Hence the difference in the ab-indices between the two intersection lattices is

(L) -¥(L) = ) upgy

= Y u(0,z)-ab-¥(ly, D+ 3 b-¥(ly, 1)),

O<z~y O=z<y

where the first sum is over all maximal chains ¢ containing the label H and the next two sums is over

edges ¢ < y in the Hasse diagram of L' having the label H. Applying the map w — w(a - w) we
obtain

V(Z) - ¥(2Z)= Yy wla-¥([0,a]) - 2d - w(¥(y, i) + Y 2d - w(¥([y, 1})). (4.1)

6<:c<y 0<y

Observe that the term w(a- ¥ ([0, 2])) is the cd-index of a zonotope and hence is rising by Theorem 3.4.
Similarly, the term w(¥([y, 1])) is one half of the sum of cd-indices of the vertex figures of a zonotope
and hence is also rising. Now by Lemma 4.4 and the property that being rising is preserved under
addition, the result follows. O

Proof of Theorem 4.1: Observe that any n-dimensional zonotope is obtained from the n-dimensional
cube O, by Minkowski adding line segments. Thus the result follows from Proposition 4.5. I

The second improvement of the inequalities is when comparing the coefficients of cFdv and cF+2v,
that is, when u is a power of ¢. For ease in notation, we introduce a third order relation.

Definition 4.6 Define the order relation z <" w on the cd-polynomials z and w by

[c*dv]z — 2 [c** ]z < [cFdvjw — 2 [cF+2v]w.

We call w weakly 2-rising if 0 <" w.

Theorem 4.7 Let Z be an n-dimensional zonotope, or more generally, let Z be the dual of the lattice
of regions of an oriented matroid. Then the cd-index V(Z) satisfies the inequalities

¥(Z) =" w(O,) =" 0.
That is, for all non-negative integers k and cd-monomials v such that k + deg(v) = n — 2, we have

[c*dv]¥(Z) — 2 - [F+20]W(Z) > [c*dv]¥(D,) - 2- [*+2]¥(D,) > 0.



Observe that Theorem 4.7 gives Z?;g F; = F, — 1 inequalities.

The proof of Theorem 4.7 consists of the following lemma and two propositions.

Lemma 4.8 Let w be a weakly 2-rising cd-polynomial and z a cd-polynomial with non-negative co-
efficients. Then the cd-polynomial w - d - z is also weakly 2-rising.

Proposition 4.9 The cd-indez of the n-dimensional cube O, is weakly 2-rising.

Proof: Proof by induction on n. The induction basis is n = 0 which is directly true. The induction

step is based on the Purtill recursion for the cd-index of the n-dimensional cube; see [20, 28] or [21,
Proposition 4.2]:

n—1
U(Opp1) = ¥(On) e+ Y 270 (n> U(0;) - d - U(Apoio)-
=0

Observe that the sum is weakly 2-rising by Lemma 4.8. However, the term ¥(O,) - c is not weakly
2-rising. It does satisfy the inequality 2 - [c*+2y] ¥(0,) - ¢ < [cFdv] ¥(D,) - ¢ for 0 < k < n — 2 but
not for k = n — 1. Hence ¥(O,,) satisfies the weakly 2-rising inequalities for k < n — 2. To complete
the proof it is enough to verify the k = n — 1 case for ¥(O,). This is straightforward since this

amounts to stating that the cube O, has at least four facets, which is true for cubes in dimension
two and higher. O

Proposition 4.10 Let Z be an n-dimensional zonotope and let Z' be the zonotope obtained by taking
the Minkowski sum of Z with a line segment in the affine span of Z. Assume that all zonotopes

of dimension n — 1 and less have their cd-indices to be weakly 2-rising. Then the order relation
V(Z) =" ¥(Z') holds.

Proof: The proof follows the same outline as the proof of Proposition 4.5. Observe that each term
in equation (4.1) is weakly 2-rising by Lemma 4.8. Since the property of being weakly 2-rising is
preserved under addition, the result follows. O

We now prove Theorem 4.7.

Proof of Theorem 4.7: The proof is by induction. The induction basis is n = 0 which is straight-
forward. For the induction step assume that every zonotope of dimension k less than n satisfies the
inequality ¥(Oy) <" ¥(Z). Especially, we know that the cd-index of a lower dimensional zonotope
is weakly 2-rising. Thus by Proposition 4.10 we know that ¥(Z) <" ¥(Z') holds for n-dimensional
zonotopes. Now the theorem follows from Propositions 4.9. O



5 Concluding remarks

Stanley conjectured that the cd-index over all Gorenstein® lattices of rank n + 1 is coefficientwise
minimized on the n-dimensional simplex [35]. In the light of our results for zonotopes in Section 4, it
is natural to conjecture the following strengthening of Stanley’s conjecture.

Conjecture 5.1 Let L be a Gorenstein® lattice of rank n + 1. Then the cd-indez W(L) satisfies the
inequality W (L) > ¥(A,). That is, for all ed-monomials u and v we have

[udv]¥(L) - [uc®o]¥(L) > [udv]¥(A,) — [uc’v]T(A,).

One possible method to prove this conjecture for polytopes is to use the following proposition and
conjecture.

Proposition 5.2 If the inequality ¥(A,) <’ ¥(P) holds for all n-dimensional polytopes P then for
all n-dimensional polytopes P we have ¥(A,) < ¥(P).

Proof: This proof follows the exact same lines as the argument given for the implication (b) = (a)
in the proof of Theorem 3.4. O

Conjecture 5.3 Let P be an n-dimensional polytope and F a face of dimension k of P. Let G be a
k-dimensional face of the simplex A,. Let Fi,...,F, be the facets of P that contain the face F and
let Gy,...,Gp_1_k be the facets of A, containing the face G. Then

VU(G1U---UGp_1-¢)") 2 ¥((RU---UFE)").

When k£ = 0 this conjecture states that ¥(A,) <X’ ¥((F, U--- U F,.)"). Thus Conjecture 5.1 follows
from Theorem 3.4, Proposition 5.2 and Conjecture 5.3.

An even more daring conjecture is the following:

Conjecture 5.4 Let L be a Gorenstein® lattice of rank n + 1. Then the cd-index V(L) satisfies the
inequality

[udv]¥(L) > [udv]T(A,)

[uc2v]¥(L) = [ucv]¥(A,)’

If this conjecture fails, it would be desirable to obtain a lower bound for [udv]¥(L)/[uc?v]¥(L). That
is, find an estimate for the value

eny = inf LWAIY(EL)
YL [ucv]U(L)’
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where u and v are two cd-monomials such that the sum of their degrees is n — 2 and L ranges over
all Gorenstein® lattices of rank n + 1.

Another question is to determine for which cd-monomials 1 and v is it possible to find two polytopes
P and @ such that

[u¥(P) < [v]¥(P),
PIY(Q) < [M¥Q)?

For instance, consider v = d? and v = ede. We have that [d?]¥(A) = 4 < 5 = [cdc]¥(A4) and
[ede]¥(04) = 16 < 20 = [d?]¥(04). However, by considering the known inequalities among the entries
of the flag f-vector for four dimensional polytopes [1], one has that [dc?|¥(P) < [cdc]¥(P) and by
duality [c2d]¥(P) < [edc]¥(P). Observe that these two inequalities do not follow from Theorem 3.4.

Meisinger, Kleinschmidt and Kalai proved that every 9-dimensional rational polytope has a three-
dimensional face with less than 78 vertices or 78 facets [27, Theorem 5]. Their proof used the non-
negativity of the toric g-vector of rational polytopes and convolutions of these inequalities. They also
prove that every 9-dimensional polytope has the three-dimensional simplex as a quotient. It would

be very interesting if one could improve their result using convolutions of the linear inequalities in
Theorem 3.4.

Let H be a homogeneous cd-polynomial H of degree k, that is, we write H = 2w Qw w, where the
sum is over cd-monomials w of degree k. We call H inequality generating if the following inequality
holds true:

Z ay, - [uwv]¥(P) > 0,

for all polytopes P and c¢d-monomials u and v such that the sum of k& and the degrees of u and v is
the dimension of P. Using this language Theorem 3.4 states that the polynomial d ~ ¢? is inequality
generating. Stanley’s result that the cd-index of polytopes are non-negative amounts to saying that
each cd-monomial is inequality generating. Can we find other examples of inequality generating
polynomials? More generally, can we classify the set of inequality generating polynomials?

Now returning to zonotopes, the natural conjecture is the following.

Conjecture 5.5 Let L be the dual of the lattice of regions of an oriented matroid. Then the cd-index
U(L) satisfies the inequality

[udv]¥ (L) N [udv]¥(3,)

[uc2v]¥(L) = [ucv]¥(O,)’

where O, is the n-dimensional cube.

Other linear inequalities for the flag f-vector of zonotopes have been obtained by Varchenko and Liu;
see [23, 26, 39].

It would interesting to continue the work of Readdy [29], who studied the question of determining

the largest coeflicient of the ab-index of certain polytopes. Thus to continue Corollary 3.5 it would be
interesting to determine which coefficient of the cd-index is the largest for the simplex and the cube.
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It can be shown that the rising property is preserved under the two linear operators Pyr, Prism
corresponding to the geometric pyramid and prism operations; see [21]. Is the rising property preserved
under the two bilinear operators M(-,-), N(,-) that occur in the work of [19, 21]7 Moreover, in [19]
it is proved that three polytopes P, Q and R satisfy

¥ (PO (Q x R)) < ¥((P®Q) x R),

where Y denotes the free join of polytopes and x the Cartesian product. Can this inequality be
sharpened by replacing < with <?
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