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Apolarity and Canonical Forms for Homogeneous Polynomials

RicHArRD EHRENBORG AND GianN-Carto Rora

Dedicated to Bernt Lindstrém on his 60th birthday

Kire Bernt Lindstrom,
Gratulerar pd Din sextioars dag. Vi hoppas att denna artikel kommer falla Dig i smaken.

Vi borjar med en kort studie i algebraiska matroider, och fortsitter med att bevisa relationen
mellan Jacobianen av en miingd algebraiska funktioner och deras algebraiska oberoende. Med
detta resulat bevisar vi de tvd huvudsatserna, som behandlar kanoniska former. Dessa satser
reducerar frigan om en form 4r kanonisk f6r homogena polynom i ¢ variabler och av grad p till
att undersdka om ett homogent linjirt ekvations system har bara den triviala losningen.
Genom att anviinda apolaritet kan detta linjira system enkelt beskrivas. Till sist ger vi en
méngfald av exempel av kanoniska former fér homogena polynom.

1. INTRODUCTION

Whereas the combinatorial aspects of linear dependence are in our day well
understood, largely through the development of the theory of matroids, the same
cannot be said of algebraic dependence of sets of polynomials with coefficients in a
field. What once appeared to be a simple way out has actually turned out to be a
problem; indeed, on a superficial level, the theory of algebraic dependence is
combinatorially identical to the theory of linear dependence [5]; in fact, the
MacLane-Steinitz exchange axiom that is now the defining property of a matroid was
historically first derived in order to deal with algebraic dependence.

It seems, however, that the full meaning of algebraic dependence is not carried by
the exchange property, and that a better understanding of algebraic dependence may
be the payoff of a deeper study of the finer properties of algebraic dependence in
concrete algebraic and combinatorial contexts. Such was the objective of some work
carried out at the beginning of this century by British and German algebraists, on the
possible canonical forms of homogeneous polynomials under linear changes of
variables. We find it regrettable that this line of work was broken off (perhaps as a
consequence of the excess of abstraction that swept commutative algebra at the time),
and it is our purpose to give in this paper a complete, self-contained, updated
introduction to the theory of canonical forms of polynomials, as it has been known to
this day, to the best of our knowledge. It turns out that this theory is intimately related
to the understanding of algebraic dependence. We begin by giving a bird’s eye view of
the contents of the paper. ‘

We shall deal mainly with homogeneous polynomials of degree p in g variables over
a field of characteristic zero, which will be taken to be the complex number field
without warning (the generalization of the following results to fields of arbitrary
characteristic is, in our opinion, a completely open problem of the utmost interest).
Such polynomials have received, in the last two-hundred-odd years, a wealth of
nomenclature that perhaps surpasses that of any other mathematical notion: they have
been called forms, quantics, primals, varieties of dimension ¢ — 2 in a projective space
of dimension g —1, symmetric tensors, homogeneous elements of the symmetric
algebra of a vector space, etc. We shall usually refer to them as ‘forms’ or, following an
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old British custom, as ‘g-ary p-ics’; in particular, we shall speak of g-ary quadratic,
binary p-ics, ternary quartics, etc. We shall try to refer as little as possible to the
underlying g-dimensional vector space over which g-ary p-ics are defined as ‘tensors’.
The problem of canonical forms, stated rather loosely, is the following: How much can
one such ‘generic’ form be ‘simplified’ by linear changes of variables (that is, under the
action of the general lincar group in g variables)?

Attractive as such a statcment may be, it needs to be made more precise. It is easy to
see that the lack of uniqueness of any proposed canonical form renders a precise
statement rather difficult. Take the example of a g-ary quadratic form. A classic result
states that, generically, such a form can be written as the sum of squares of linear
forms; of all canonical forms, surely this one seems to be the soundest. But suppose
that g is cven; say, ¢ = 2j. Then onc can show, using our second main theorem, that a
quadratic form can be (gencrically) written in the form xx; +xax + - - - + X, 1%, after
a suitable linear change of variables: this latter canonical form does away with any
prejudices that we may have about canonical forms of polynomials in relation to the
cigenvalues of symmetric matrices. A ncw start nceds to be made: in the wake of the
work of our predecessors, Grace and Young [3], Lasker [6], Richmond [11] and
Wakeford [14], on whose shoulders we lean heavily, we have recognized that the
fundamental notion that must play a role in a theory of canonical forms is the notion of
apolarity.

Again, because of an over-emphasis on definitions that relied on the symbolic
method of classical invariant theory, the notion of apolarity has remained sealed in the
well of oblivion. It took us far longer than we are willing to admit to recognize that this
notion coincided with another notion, one that is alive and well remembered. It turns
out that there is a unique scalar-valued bilinear form (g | £} defined for all g-ary p-ics f
and all dual g-ary p-ics g, that is, all forms in ¢ variables and of degree p defined over
the dual vector space V*, that is invariant under the joint action of the general linear
group on g-ary p-ics and the contragredient action on dual g-ary p-ics. This bilinear
form is called the apolar bilinear form, and two forms f and g are said to be apolar
when (g |f) =0.

The classical invariant theorists derived a number of identities satisfied by the apolar
bilinear form. Although these identities could be motivated by the symbolic method,
and although they could be painfully checked one by one, their authentic source
remained mysterious. This mystery is probably the reason why, to this day, the
constructive finiteness proofs for the invariants of binary forms given by Gordan and
Jordan, which made powerful use of these identities, have not attracted many readers,
and even fewer followers.

What took us a longer time to realize than we are willing to admit is that the apolar
bilinear form is much more than a bilinear form: it is a pairing of Hopf algebras. More
precisely, if S(V) is the symmetric (Hopf) algebra of the vector space V, the graded
dual Hopf algebra is, as is well known, the algebra of divided powers D(V'*). There is
a natural pairing between these two Hopf algebras with the well known properties
(‘measuring’ in the sense of Sweedler or ‘Laplace pairing’ in the sense of Grosshans—
Rota-Stein):

(gh |f> =; (g |f(|)><h lf(2)>v (g |fh> =E (8(1)‘f>(8(2)|h>-

What struck us one day is the fact that these identities are precisely two of the
identities to be prominently found in Grace and Young’s ‘algebra of invariants’ [3] in
the language of the symbolic method. On closer cxamination, it turned out that the
apolar bilinear form is nothing but the pairing of the Hopf algebras S(V) and D(V?*),
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restricted to characteristic zero, and that all identities pertaining to apolarity could be
proved using the language of Hopf algebras; in fact, the symbolic method itself could
be interpreted, generalized and made entirely rigorous in terms of Hopf algebras.
Important as it is, a purely Hopf algebraic treatment of apolarity is deferred to a
parallel publication which is currently being written. The present paper has
deliberately been written in the language of elementary linear algebra, with the
objection of maximizing the readership.

One such identity, one that will play an important role below, is the fact that
polarization operators are adjoint of multiplication by linear forms (and similarly for
higher order forms). This duality allows an invariant definition of the notion of
apolarity of forms of different degrees.

What is more remarkable, however, is the connection between apolarity and
canonical forms, which we proceed to explain.

It may be significant to begin with a specific problem: For which integers n can a
‘generic’ g-ary p-ic be expressed as the sum of n pth powers of linear forms? The
history of this problem is interesting. For ¢ =3 and p =4, that is, for the ternary
quartic, we have to deal with 15 coefficients. If n =35, that is, if we are allowed five
linear forms each containing 3 coefficients, we have altogether 15 coefficients; thus, if
we rely merely on a count of constants, we are led to the erroneous conclusion that a
ternary quartic can be written as the sum of five fourth powers of linear forms. Clebsch
was the first to prove that this assertion is false. But the natural explanation lies in the
connection between apolarity and algebraic dependence, to wit:

(1) If the desired expression is valid, then every coefficient of a ternary quartic equals
a polynomial in the coefficients of the linear forms.

(2) Again, the rank of the Jacobian of this set of polynomial must equal at least 15.
(3) Thus, the verification that desired expression is ‘canonical’, that is, valid for a
dense set of ternary quartics, is reduced to the verification that a certain matrix has
rank 15, not a bright prospect in general.

The notion of apolarity allows us to bypass such a verification. Specifically, let the
linear forms be X, ..., Xs. Then the first main theorem below states that every
ternary quartic cannot be written in the form X%+ - -+ X1iff for some choice of the
coefficients of each of these forms, that is, for some specialization of the coefficients,
there does exist a dual ternary quartic which is apolar to each of the forms
X3, ..., X3 A few minutes’ computation gives Clebsch’s theorem.

The preceding example generalizes to give the first main theorem on apolarity
below. We believe this theorem to yield the complete solution of the analog of
Waring’s problem for forms (that is, given a generic g-ary p-ic, which is the smallest
integer n such that it can be expressed as the sum of n pth powers of linear forms?)
and we hope to present the complete solution elsewhere. In the present work, we have
limited our exposition to all cases thus far considered in the literature, supplemented
by a few new cases that caught our fancy.

All these cases are applications of one single general result, stating that a g-ary p-ic
f(x) can be written as a sum (a|x)’ +(b[x) +---+(c | x)” of pth powers of linear
forms iff the following strange sequence of quantified statements holds: there exist
vectors a’,b’,...,¢ such that the g-ary (p-1)—ics (@ | x)7~",
o |xy ... (¢ | x)’~" have no non-zero dual g-ary p-ic which is apolar to all of
:them. Thus, the verification that a generic g-ary p-ic can be written as the sum of n
powers of linear forms boils down to checking whether a simple system of linear
equations only has a trivial solution. Several examples of this verification can be found
in the corollaries in Section 4.2 below.

Our second main theorem generalizes the notion of canonical form in a direction
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which we believe to be as general as can be. The problem is whether a generic g-ary
p-ic can be ‘expressed’ as a polynomial of ‘prescribed’ form in terms of forms of lower
‘prescribed’ degrees. The typical classical case of this situation is the quaternary cubic,
or ‘cubical surface’, which can be ‘reduced’ to the canonical form hihyhy + hahshg,
where the h,’s are lincar forms. This classical result has proved useful in establishing
the existence of at least 27 straight lines on any cubic surface.

Our second main theorem (Theorem 4.4 below) gives what we believe to be the most
general result in this direction, a result which is elementary to apply to many important
cases. Our result subsumes all previous work of Rosanes, Meyer, Sylvester, Lasker and
Wakeford, and gives as special cases all canonical forms described by Richmond. We
have striven for a self-contained presentation that dispenses with all techniques of
algebraic geometry. In particular, we have deemed necessary to prefix our treatment
with a detailed cxplanation of the combinatorics that underlies the algebraic proof of
the Jacobian condition for the algebraic dependence of a set of polynomials. We are
grateful to M. Artin and A. Mattuck for their help in providing a proof of Theorem
2.4, without which our presentation would not be self-contained.

We hope that the present work will stimulate further work along these lines, and we
hazard the guess that the method of apolairty will prove to be a powerful tool in
invariant theory and computer algebra.

2. DEPENDENCE

2.1. Matroids and algebraic dependence. We recall some of the basic definition of the
theory of matroids. Our objective is to proceed as quickly as possible to the treatment
of algebraic dependence of polynomials and more generally of algebraic functions.

DEerinimioN 2.1, A closure relation on a set S is a map from power set of § to itself,
denoted A for A c S, such that:
(1) AcA,
(2) AcB > AcBand
(3) A=A
for all subsets A, B < §.

A set A c S is called closed if A=A.

DeriNiTioN 2.2, A closure relation is of finite type if whenever s € A there exists a
finite subset F < A such that s € F.

DerinmioN 2.3, A closure relation satisfies the MacLane-Steinitz exchange pro-
perty if whenever p,s€ S, and pe AU {s} but p ¢ A, then s eAU{p}.

DeriNiTioN 2.4. A matroid is a set S together with a closure relation of finite type
that satisfies the MacLane—-Steinitz exchange property.

DEerINITION 2.5. A subset A of S is called dependent if there exists p € A such that
peA—{p}. A set that is not dependent is called independent. A maximal independ-
ent set is called a basis. A subset A of § is called spanning if A=S. The rank of a
subset A of S, r(A), is defined to be the cardinality of the largest independent subset
of A.
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The basic result on matroids is the following:

Tueorem 2.1, In a matroid all bases are spanning sets. Moreover, all bases have the
same finite cardinality. This cardinality is called the rank of the matroid.

In this paper we shall be concerned with the particular instances of matroids arising
in the theory of algebraic dependence. These matroids were considered by Bernt

Lindstrom.
Let C(x,,...,x,) bea transcendental extension of the complex numbers C, and let
S be the algebraic closure of the field C(x,, . .. , X,). Define a closure relation on the

set S as follows. For A g_S, let A’ the smallest field that contains the set A and the
complex numbers C, let A be the algebraic closure of the field A".

ProrosiTioN 2.1, The following facts about the algebraic closure hold:
(1) The algebraic closure A— A is a closure relation on the set S.

(2) p € A iff there exists a polynomial G@, ty, ..., t)eClt 1y, ..., t,] such that
aG/at+#0
and
G(p,a,,...,a,)=0
forsomea,, ..., a,€A.

(3) Algebraic closure is of finite type and satisfies the MacLane—Steinitz exchange
property.

A matroid defined by algebraic closure will be called an algebraic matroid.
As a consequence of the above proposition we have the following:

ProposITION 2.2. In an algebraic matroid a set A is dependent if there exists a
non-zero polynomial G(t,, ..., t,)€Clty, ..., t,] such that

Ga,,...,a,)=0

. for some distinct elements a,, . . ., a, € A.

s We say that such a set A is algebraically dependent. If a set A is not algebraically
. dependent we say that A is algebraically independent.

i The set B={x,,...,x,} spans all of S; that is, B=S. Moreover, B is an
. algebraically independent set. Hence B is a basis in the matroid defined on S by
b algebraic closure. Thus we have the following:

' ProrosiTION 2.3.  The algebraic matroid defined by the field C(x,, ...,x,) has
rank q.

¢ We now give a simple combinatorial proof on the classical property of the Jacobian
. of algebraic functions.

Tueorem 2.2. Let py(xi, .-, %) - Pg(xX1, - - yx)eClxy, ..., x,). The al-
‘gebraic functions p,, . . ., p, are algebraically dependent iff their Jacobian of py, -+ -, Pq
anishes; that is, iff

4

det(3pi/ 3xj)1<ij=q =0.
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Proor. Assumc that p,, ..., p, are algebraically dependent. Choose a non-trivial
polynomial G(t;,...,1,) in the variables ¢,...,t, of lowest degree among all

polynomials such that G(p,, ..., p,)=0. Let G, = dG/3t,. By the chain rule we have
&

0=03G/3x;= 2, (3p:/3x))Gi(p, - - ., Py)- )]
i=1

We claim that G(p,, ..., p,) is non-zero for some i. Indeed, there is at least one ¢
such that 8G/or; #0. Furthermore, G; is of strictly lower degree than G. If
Gpi, ..., p,) were identically 0, then the assumption that G is lowest degree among
all polynomials such that G(p,,...,p,)=0 would be violated. Hence G;#0 for
some |.

We may write equation (1) as the product of a matrix and a vector, as follows:

0= (api/axj)lsm'sa ) (Gi(plv R pq))lsisq'

Since at least onc of the G; is non-zero, the matrix (9p;/3x;) is singular, and therefore
its determinant is zero. This completes half the proof.

Now assume that p,, ..., p, are the algebraically independent. By Theorem 2.1, all
bases of a matroid have the same number of elements. Hence the g elements
Pis ..., Py, form a basis of the algebraic matroid defined on §, and hence the algebraic
closure of the set of these g elements is S. In other words, {p,,...,p,}=
{xi,...,x,}. Therefore, x;e{p,,...,p,}, and hence we can find a non-zero
polynomial H(t, t,,...,t,)eClt, t;, ..., t,] of smallest degree such that

Hixiopi(xy,oo,x,), o0 paley, oo ,X,))=0 (2)
and
3H;/ 3t # 0.
Let

Hi,() = aHi/aty H,;j = aH,-/Stj.

Since the polynomials H; have been chosen to have the smallest degree with respect to
the condition H,(x;, p, ..., p,) =0, we have

Hio(xi, pr(xis -0 %), ooy paXn, oo, X)) #0.

Differentiating equation (2) above with respect to x, we obtain
q
Oi ki + E (apj/axk)H,.'j =),
i1

Since H, y(x;, py, ..., py) #0, we can rewrite the above equation in the form

¢
2 (apj/axk) ’ (_Hi.j/Hi.n) = O -

j=1

But this identity shows that the Jacobian matrix has as its inverse the matrix

(—H,j/H;o)=ij-q We conclude that the Jacobian det(3p,/dx,) is non-zero. (]
THEOREM 2.3. Let py(xy, ..., Xg), -y Py, oo, X ) €C(xy, ..., x,), where r<
q. Then the algebraic functions p,, ..., p, are algebraically independent iff the matrix

(Opil %) 1=inr.1~j=q has full rank.

Proor.  Assume that py, ..., p, are algebraically independent. To the algebraically
independent set {p,, ..., p,} of elements of C(x,, ..., x,) add elements p,,,, . . . y Dq
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so that {p,...,p,} is a basis of the matroid C(x,, ..., x,). By Theorem 2.2, the
matrix (8p;/dx;)1<i = has full rank. Hence the submatrix (3p;/8x,)1<i=r1<j=q has full
rank. This proves half the theorem.

Now assume that the matrix (3p;/0X;)i=i<,1=j=, has rank r. Without loss of
generality we may assume that the submatrix

(api/axj)lsi,;ér 3)
has rank r; that is, that the r X r submatrix (3) is nonsingular. Let now p, =x,; for
i=r+1,...,q. We have 9p,/dx; =6, fori=r+ 1, so that

det(3p;/8x,)1<i j=q = det(3p;/ OX;)1<ij=r-

Hence the ¢ X g matrix on the left-hand side is non-singular. By Theorem 2.2, the

algebraic functions p,, ..., p, are algebraically independent. In particular, p,, ..., p,
are algebraically independent. This completes the proof. a
PROPOSITION 2.4 Let pi(xy, ..., Xy)s oo Ps(Xrs oo ,x,)eClxy, ... , xy)- Then the

algebraic rank of the set {p,, ..., p,} is given by
r({pl Yo Ps}) = rank(api/axj)ISst.l—s:j:—:q- (4)

Thus the algebraic matroid on the set C(xy, .- ., x,) is a linear matroid over the field
C(xy, . .., x,) by the representation

) )
p—>(—p~,... ,*——p>.
ox ox,

ProOF. Assume that the algebraic rank of the set {p,, ... , ps} is equal to r. Recall
[ that g is the rank of the algebraic matroid, so r<g. Since the rank of the set
. {p1,...,ps} is equal to r we can find an independent subset of size r. Without loss of
i generality we may assume that the set {py....,p,) is algebraically independent. By

k' Theorem 2.3 we conclude that the matrix

(api/axj)lsis:r,lsjsq (5)

L has full rank; thus the rank is r. But matrix (5) is a submatrix of the matrix
b (9pi/9x;)1wixs.1<j~q> and thus this matrix has rank at least r. Hence it follows that the
b left-hand side is less than or equal to the right-hand side in equation (4).

i Assume that the matrix (3Pl 8%} iy 1~j=q has rank r. Observe that r < q. Then we
£ can find r independent rows in the above matrix. Without loss of generality we can
- assume that the rows indexed by i=1,...,r are independent. Hence the matrix
b (3pi/3x:)1<ixr.1<j<q has full rank. By Theorem 2.3 we have that the set {p,, ..., p,} is
algebraically independent. Thus the set {pi,...,ps} has rank greater or equal than r.
. Thus the left-hand side is greater than or equal to the right side in equation 4).

i By joining these two inequalities the identity (4) follows. 0

. THEOREM 2.4, Let py(xi, ... %) - Pi(X1, oo Xy) eC(x,,...,x,), where r<
f q. Let P: C'— ' be defined by
' P(x,, ..., x,)=(pi(xq, ... X)), s pxy, , Xy))-

Then the algebraic functions p,, .. ., p, are algebraically independent iff the range of the
k- map P is dense in C'.
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Proor. Assume  that the range of the map P(x,,...,x,)=
(pixy, ooy xg)y oo pixy, ..., x,)) is dense. Any non-trivial polynomial
G(ty, ..., t,)eClty, ..., t] such that

G(pixi, oo xg) oo, prxr, .o, x,))=0.
vanishes on a dense set in C", and hence such a G is the zero polynomial. We conclude
that p,, . .., p, are algebraically independent.

Now assume that the algebraic functions p,, ..., p, are algebraically independent.
To the algebraically independent set {p,, ..., p,} of elements of C(x,, ..., x,) add

elements p,.,, ..., p, so that {p,, ..., p,} is a basis of the matroid C(x, ..., x,).
Thus we have that C(x,,...,x,)=C(q:, ..., p,); in other words, the two fields
C(xy, ..., x,) and C(p,, ..., p,) have the same algebraic closure.

By a well known result in field theory we can find a € C(p,, . . ., p,) so that

C(x,,'...,xq)gC(a,pl, ce s Pg)

Since a« € C(p,, . .., p,) it follows that « is the root of an equation with coefficients in
C(py, - . - » Pq)- Such an equation will then be of the form

an+ffwl(pl’-"’pq) ﬁ)(th--»Pq)_

R =0 6
Fpr. .- ) F(pr, -1 pa) ©

where fo(ty, ..., ), o fuca(t, oo tg), F(ty, oo ) eClty, ..., 8]
Since x, € C(xy, ..., x,)cC:a, py, . .., py), the element x; is as a rational function

in @ and py, ..., p,. But since « is algebraic over the field C(p,, ..., p,), we can
write x; in the form

gi(a/’ P rpq)

Xi = ’ 7

G(pl!""pq) ()

where gt t,,...,t,)eClt, ¢, ..., 4] and G(ty,...,t,)eClt,...,t,]. We may

assume that the degree of the variable ¢ in the polynomial g; is at most n ~ 1. Note that
the denominators in identity (7) are independent of i.

Let

D=A(y1,. -, ¥)€CUF(y, ..., ¥)#0,G(y1, ..., y,)#0}.
Clearly, D is a dense subset of C?. We claim that D is a subset of the range of the map

f’(x,, e X)) = (P, X)) e Py, L, X))

Since, for (y;, ..., y,) € D, we have F(y,, ..., y4) #0, we can solve in equation (6)
for a. For all such roots « of equation (6) and for all values y,,...,y,, such that
G(y1, .-, y,)#0, we can find a value of x; by equation (7). This proves that such a
q-tuple (yi, ..., y,) lies in the range of the map P.

Let

D={(y,....,y)eC:(y,... ,yq)eﬁ for some y,.,, ..., y, €C}.
Since D is desne in C', and D is contained in the range of the map

P(xy,...,x)=(pilx, ..., x0), -, p(xy, oo X)),

the result of the theorem follows. O

3. Basic THEORM OF g-ARY p-iCS

3.1. The space of polynomials and its dual space. Let V =Clx,,...,x,]. Let V, be
the subspace of V consisting of all homogeneous polynomials of of degree p.
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Following British nineteenth-century custom, an element of V, will be called a g-ary
p-ic. A basis for V, is given by the monomials

x’ll e xi‘l

q?
where iy +---+i,=pandi, ..., i, are non-negative integers. The dimension of V,, is
dim(v)zq-(q+1)--'(q+p—1)=(c1+p—l)
3 p-(p—1---1 p

This quantity equals the number of ways in which to choose a multiset with p elements
from a g-set, and (following Comtet) we will denote it by (4). Thus, dim(V,) = (}).
For non-negative integers i, . .

., 1, define the multinomial coefficient as

()
R A

iy!
ifi, +- - +1i,=p and 0 otherwise.
A typical element of V,, may written in the form

p . .
f(xlt v ey xq) = 2 ( l )ail """" ,'qxlll ct x:;',

iyt tig=p by q

q

where we shall tacitly assume that a; _;, =0if i, +- - i, #p.

In order to avoid an excess of indices, we use some standard abbreviations, as
follows:

x=(x,, ..., %), fxX)=f(xi, ..., %) i=(, ..., 0,)

.x{;l’ ai:ai| AAAAA i i!:il!--.lq!’ ‘i|=i|+'..+iq’
VARV

©. A g-tuple i € N¥ is called a multi-index.
In this notation, we may write a g-ary p-ic f(x) in the form

~ f0=2 <[:>”i X

lil=p

Notice that

nd V is a graded algebra, as is well known.

Similarly, let V*=Clu,,...,u,] and let V» be the space of all homogeneous
polynomials of degree p. An element of V will be called a dual g-ary p-ic. As before,
e have dim(V}) = (%), so that

ve=@ V;.

p=0
A typical element of V; is written as
14 R
g =3 (7)o
i N
[ From now on, the number of variables will be tacitly assumed to be q.
£« We define a bilinear form (-]): V*x V—>C, by setting
- (| x) =il Oy

E and extending by linearity. This bilinear form is called the apolar form.

i
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Given a linear functional L: V,— C there exists an unique element g(u) € V; such
that L(f(x)) = {g(u) |f(x)) for all f(x)eV,. Thus, the vector space V is natural
isomorphic to the dual space of the vector space V..

For vectors ¢=(cy,...,c,) and d=(d,, ..., d,), denote their scalar product by
(c|d)=c,d,+---+c,d,. We note that the form (¢|x)" =(c,x,+ - +c,x,) is a
g-ary p-ic. We shall call such a g-ary p-ic the pth power of a linear form. Similarly,
(c | u)’ is called the pth power of a dual linear form.

The following result is fundamental.

Proposition 3.1 For cevery vector ¢ and for every q-ary p-ic f(x) € V,, we have

((e]uy [f(x)) =p!-f(0).

Similarly, for every vector ¢ and for every dual q-ary p-ic g(w) € V,, we have
(g | (e[ %)) =p!-g(e).

Proor. The proof is by direct verification:

(Celwy [£0) = (3 (7)ot

3 (o)

=p!-f(c). O

3.2. Invariance of the apolar form. A q X q matrix A defines a linear endomorphism
on V, by substitution. In other words, given f € V,, define Af € V, by setting

. q q
A(f(xy, ... vxq)) :f< Z Ay i Xy o v s 2 ‘h,k,,xk,,>,
k=1 k=1
or, in vector notation,
Af(x) = f(Ax).

Much like a matrix, A operates on V), by linear substitution: we can let the matrix A
operate on V. To this end, define A by:

Ag(u) = g(Au).
The adjoint map (A)*: V*— V* of the linear map A: V, <V, is defined by
((A)g|f) =g |Af).
ProprosITION 3.2, For a g X q matrix A we have
(A)* = (A7),

where the first asterisk is the adjoint, and the second asterisk is the transpose of the
matrix.
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Proor. It is sufficient to verify this fact for basis elements w and x'. Now,
((A)*u' | x'y = (uf | Ax')
= (v [ (Ax)")

k=1
i 4
) 1 i
e My 4 k=t
o e ak
SR |

M 1<t k=q M-

j where M ranges over all ¢ X g non-negative integer matrices such that

q . 4q

> M=, 2 My = i
k=1 1=1
» Interchanging the roles of x' and W, and taking the transpose of A, we obtain
: ((A)*w | x') = ((A™u) | x')

= (A" [x),

,5 as desired. |
¢ CoroLLary 3.1 (invariance of the apolar form). For a non-singular q X q matrix
A, for every f(x) € V, and for every g(u) € V; we have
" (A" Tg(u) | AF(0) = (g(w) | F(0)).
ProoF.

(g 00} = (g | A~ Af(0))
= (s | AT A7 ()
= (A Tgw) | Af (). =

:"3.3. Apolarity and polarization. Our long-awaited definition is the following:
&1 Derinimion 3.1, Let f(x) be a form of degree r, and let g(u) be a dual form of
(g [A(x) - f(x)) =0

all forms A(x) of degree p — r. If r = p then f(x) is apolar to g(u) whenever

4 (h(u) - g(w) | F(x)) =0

DerintTioN 3.2, Fore=(c,, .. ., ¢,) € C?, define the polarization operator D, , as

2,
Dey=ci—+...+c,—.
’ ax, ox,
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ProrosiTion 3.3, The polarization operator D is a derivation: that is,
(1) D, is linear,
(2) D..(1)=0, and
(3) Dealf(x) - 8(x)) = Dex(f (%)) - g(x) + f(x) - Dexlg(x))-

Moreover, D, takes a p-form into a (p — 1)-form.

Notice that ford=(d,, ..., d,) € C?, we have

4 3
D, ,(d | x) = z lof ™ (dyxy+...+dx,)
i=1 i

q

=> cidip(dix,+... +dx,)y ™"
i=1

=p(d]|c)d|x)".

ProrosITION 3.4.  Let f(x) be a form of degree p — 1, and let g(u) be a dual form of
degree p. Then

(g | (| x)f (X)) = (Deug(@) | f(x))-

Proor. Notice that the above identity is linear in f(x), g(u) and ¢. Hence we need
only to prove it for f(x)=x', g(u)=w and c=e,, the rth unit vector (that is,
e,=(5,,,...,96,,)). Hence

(W] (e, [ x)x') = (! | x,x")
— <“j I xi+e'>
=J! Ojive,
=],.i! 6j~e,,i
= (e %)
= <De,,u“j l xi>’
and the proof is complete. O
CoroLLARY 3.2. Let f(x) be a form of degree r, and let g(u) be a dual form of
degree p, where r < p. Then f(x) and g(u) are apolar iff

(De, " Deug(W) [ f(x)) =0
foralle,, ..., ¢, eC"
Proor. Notice that V,_, is linearly spanned by polynomials on the form
(e, |x)- - - (¢c,—, | x). By Proposition 3.4 we have
(gw) | (e [ %)+ (6, [ X)f (X)) = (D¢, u" " De,ug(w) | f(x))

and the result follows. O

4. Canonicar Forms
4.1. First main theorem on apolarity
DernNimion 4.1, We shall say that a statement holds for a generic g-ary p-ic f(x)

whenever there exists a dense subset in the space of all g-ary p-ics (in the Euclidean
topology) such the statement holds for all g-ary p-ics in such a dense set.
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Our objective is the study of canonical forms for homogeneous polynomials in g
variables. We begin with Waring’s problem; that is, the problem of expressing a g-ary
p-ic as a sum of powers of linear forms.

THEOREM 4.1. A generic q-ary p-ic f(X) can be written in the form
f)=@|x)’ +®|xy +...+(c|x)"

iff there exist vectors a',b’, ..., ¢ such that there is no non-zero dual q-ary p-ic g(u)
apolar to all the forms (a’ | x)"~', (b" | x)’~", ..., (¢ |x)"".

Proor. Assume that a generic g-ary p-ic f(x) = ¥; e;xX’' can be written in the above
form: that is, assume that, for a generic f(x),

=G| %+ [xy +.. +(c|xr. ®)

Say that the set {a, b, ..., c} is of size n. On the right-hand side we have nq arbitrary
coefficients a,,...,a,, b,,...,c,. On the left-hand side we have (#) arbitrary
coefficients e;, where i=(i,, ..., i,) is a multi-index and i, + - - - + i, =p. Comparing
the number of coefficients on both sides we obtain the inequality

<q> = ngq.
P

i Comparing the coefficients on both sides of equation (8) we obtain () identities to be
- satisfied:

e;=¢;(a,b, ..., ¢).

Note that ¢;(a, b, . .., c) is a polynomial in ng variables.
E- We can write identity (8) as

fx)= 2 ¢iab,.. ., ox.
i: lij=p
The (¢) polynomials ¢(a, b, . .., c) define a map @ from C" to C* by
®(a,b, ..., c)=(¢ia,b,. .., ))iy-p

f where the co-ordinates of C‘#) are indexed by the multi-index i=(iy, . . ., i,), with
ki, +- - +i,=p. Since we assume that we can write a generic f(x) in the form
f:described by equation (8), the range of the map @ is dense. By Theorem 2.4 we
éonclude that the ;) polynomials ¢;(a, b, . . ., ¢) are algebraically independent.

¥+ Since (7) <ng, Theorem 2.3 tells us that the statement that ¢; are algebraically
'i‘ndependem is equivalent to the statement that the matrix

<‘9¢i s O _‘?‘l’_i)
aa,y e ey aaq) abl, se ey aC{, i:m:p,

2]
‘%’f (9)
l;as full rank, where the rows are indexed by the non-negative integer vector i.

We can then find values for a=(a,,...,a,), b=(b,,...,b,),...,¢=
,icl, ..., ¢,) such that the matrix (9) has full rank. Denote these actual values by
ko', b, ..., ¢

f. Hence the columns of the matrix

<a¢i i 9¢i a"’i)
3a) " Ba, by 8¢y wien

q

(10)
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span the the space C‘*. Recall that the co-ordinates of the space C» are indexed by
the multi-index i such that |i} = p. But the space C* is isomorphic to linear space V,,,
by the natural isomorphism

(ci)i:m:p——) z Eixi.
ilil=p
Under this isomorphism, the vector (3¢;/3a,); is mapped into a g-ary p-ic:
3 i ) i a
( ¢) Ly 9 I
i:lil=p

i} ' - '
da, ili=p 04, da

and similarly for a;, . . ., c,,.

Because of this isomorphism, the matrix (10) has fuil rank iff the nq g-ary p-ics

9f (x) 9f (x) of (x) 9f (x)
a7 B8al’ 3by’ T ac!

q q

span the entire spacc V.
However, note that

3f (x)/3a; =p(a’ | x)""'x,

and similarly for aj, ..., c,. Hence the g-ary p-ics (a'|x)" 'xy, ..., (@ |x)""'x,,
(' |xy"xy, ..., (¢'|x)""'x, span the space V,.

Recall from linear algebra that a set of elements in a linear space spans iff the zero
functional is the only linear functional that sends such a set to 0. Hence the only linear
functional L: V,,— C such that

L(@ | x)’ ') =---=L((c" | x)’"'x,)=0

is the zero functional. But the space V, is a representation of the dual space of V,, as
observed in Section 3.1.
Thus, if any dual g-ary p-ic g(u) satisfies

(guy| @' |xy~'xy)=---=(g(w) | (' | %) "'x;) =0

then g(u) =0.
The conditions that

(gw | @ %) x)) = (gu) | (@ [x)~'x2) == (g(w) | (@' [x)""'x,) =0

are precisely the conditions that g(u) be apolar to (a’ | x)"~'. Hence if there exists a
dual g-ary p-ic g(u) so that g(u) is apolar to each (a'[x)"7",
(' |x)~", ..., (/| x)""", then g(u) is zero. This proves half the theorem.

To prove the other half, notice that we did prove a sequence of equivalent
statements in the above argument. Assume that there exist vectors a’,b’, ..., ¢’ such
that there is no non-zero dual g-ary p-ic g(u) apolar to all the forms (a' | x)~ ",
(' |x)’~', ..., (¢'|x)’"". As proved above, the assumption is equivalent to the
assumption that the matrix

(3¢i o¢; 9¢; %)

da; da;, db; dc (1D

q’ Elil=p
has full rank, where the rows are indexed by a multi-index i, such that [i| = p.

The assumption that the matrix (11) has full rank in turn implies that there is a
non-zero minor of size (7). This minor has to remain non-zero when, instead of
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specific values a’,b’, ..., ¢’, we use variables a, b, . . . , ¢. Thus the matrix
a i 8 i 3 i a i
(¢,.._,_9L,_¢,,_.,_£> (12)
da, da, b, 3¢,/ s ji=p

has a non-zero minor of size (¢), and the matrix (12) has full rank.
Since the matrix (12) has full rank, by Theorem 2.3 the (¢) polynomials ¢; are
algebraically independent. By Theorem 2.4 we conclude that the range of the map

®@,b,... )= (b @b, .., ),

is dense in the space C‘»’, where the co-ordinates of the space C¢#’ are indexed by a
non-negative integer vector i, such that i = p.
Recall that

flx)= % ¢i(a,b, ..., o)X

This identity can be viewed as a map from C" to V,. By the naturally isomorphism
between the linear spaces V, and C*’, we know that the range of this map is dense in
V,. Thus we have proven that a generic f(x) € V,, can be written in the form

fx)=(a|xy+®d|xy +...+(c]|xy O

4.2. Applications of the first main theorem. We begin by giving an exeedingly simple
proof of a classical result.

} CoroLLARY 4.1. A generic q-ary quadratic form can be wrilten as the sum of q
t  Squares.

3 Proor. Choose the vectors a’,b’, ..., ¢’ in the statement of Theorem 4.1 to be the
Eunit vectors ey, e,, .. ., e,. Suppose that there exists a dual g-ary quadratic form g(u)
L apolar to each of the linear forms (e; |x)=x;fori=1,...,q. Let

i

gu)= Z Cr, 1UrlUy.

1=k=l=g
If g(u) is to be apolar to x;, then g(u) is also apolar to x;x, for all j. If i <j, then
' 0= (g(w) | xux,)
< E Cr, iUy xixj>
2 Crertrihy |Xixj>

1sksl=sg
Isk=si=g

=c; {uu | xix;).

kBut this implies ¢,; =0 for all i<j. Hence g(u)=0, and the conclusion follows
L immediately from Theorem 4.1. =

> CoroLLARY 4.2. A generic quaternary cubic can be written as the sum of 5 cubes.
o
E_.“PROOF. Here, ¢ =4, p=3 and n=35. Choose the vectors a’,b’,...,¢" to be
:;, e, ¢, ¢,, ¢ +e,+e;+ e, Assume that a dual quaternary cubic g(u) exists which is
Bapolar to all (e, [x)%, (e;]x)?, (es|x)% (eq]|x)* and (e, +e, + e;+ e, | x)%. Note that
[(e; | ) =x7. If g(u) is to be apolar to x?, then g(u) is also apolar to xx? for all j. Any
fterm of g(u) containing a square term, say w;u; must have coefficient equal to 0,
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because g(u) is apolar x;x{. Hence we can write g(u) in the form
g(u) = ¢ u Uy + CoU Uty + Cylly ULy + CallyUn U5,

But g(u) is also apolar to x;(x, + x, + x; + x,)°. This gives the equations ¢, + ¢, +¢; +
cs—¢; =0, the only solution of which is ¢;=0. Thus, g(u)=0, and the conclusion
follows immediately from Theorem 4.1. a

CoroLLARY 4.3. A generic ternary quintic can be written as the sum of 7 fifth
powers.

Proor. Here ¢=3, p=5 and n=7. Choose the vectors a’,b’,...,c’ to be
e, e, €;,¢e +e,e +e; e +e,, e + e +e;. Assume that a dual ternary quintic g(m)
exists which is apolar to (e, | x)*, (e, |x)*, (e;]x)*, (e, + e, | x)*, (e, +e;|x)*, (e;+
e;|x)* and (e, + e, + ;] x)*. Since g(u) is apolar to (e; | x)*=x, the coefficients of
wu? in g(u) are zero. Now g(u) is apolar to x;(x; +x,)* and to x;(x; +x;)*, hence the
coefficients of uu; and uu} are zero. We can therefore write g(u) in the form

g(W) = c3, uiugus + €y 5 U UGy + €y 31 URUS + Co g UTUGUS
+ Cz,l.zu%uzu.% + Cl,2.2“xu%u§-

Apolarity with x3(x, +x,)* gives the equation:

6-4c3,,+4-6c5,,+6-4¢c,5,=0.
Apolarity with xs(x; +x, + x3)* gives the equation:

6-12c, ,3+4-12¢,,,+4-12¢1 5, +6-4c3,,,+4-6c,51+6-4¢;3,=0.
Thus we have
Canat i +te =0, 6cy,1,3+4cs 2+ 4¢,22=0.

By symmetry we obtain 4 more linear equations. Let us solve this linear system of 6
equations and 6 unknowns. From

()= 6C|'|'3 +4C2_|_2 +4C1'2'2
=6c, 13+ 4(—cr 13— ¢c3) HA4(—ci 3= Ciaa)

=—2¢y, 3~ 4c3 1 —4C1 3,

it is easy to see that ¢, ;3 =c,3,=c¢3,,1 =0, which implies that the other coefficients
are also 0. Hence g(u) =0, and the conclusion follows immediately from Theorem
4.1. 0

CoroLLARY 4.4 (Clebsch). The generic ternary quartic cannot in general be written
as the sum of 5 fourth powers.

Proor. Here g =3, p =4 and n =5. By Theorem 4.1, all we need to show is that,
given a’,b’,¢’,d’, e’ € C’, there is a non-trivial dual ternary quartic g(u), which is
apolar to (a’ | x)*, (" | x)*, (¢/ |x)*, (d' | x)’ and (e’ | x).

Case 1. Among the vectors a’,b’,¢’,d’ and e’, no three are linearly independent.
Change variables, so that all five vectors will have their last co-ordinate equal to 0. If
so, then the dual ternary quartic g(u)=uj is apolar to each of the five cubes

(@' |x)% ..., (e"|x)"

Case 2. The three vectors ¢, d’ and e’ are linearly independent. Change variables,
so that each of these three vectors is one of the unit vectors. Having made this change
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of variables, we need to show that for all a’, b’ eC’ there is a non-trivial ternary
quartic g(u) which is apolar to (a’ | x)%, (| x)*, x1, x3 and x3. The condition that g(u)
be apolar to x;x; forces the coefficient of w;u} in g(u) to vanish. Thus we can write g(u)

in the form:
_ . 2.2 2 22 2 i 2 2 2
g(u) = ¢y ol U3 + Co U+ €2 0 U U + €y U UGyt €y 2l Ualts T Co2,2U2U5.

The conditions that g(u) be apolar to x,(a’ |x)’; xx(a’'|x)%, xs(@’ | x)?, X (b |x)°,
x(b’ | x)* and x5(b’ | x) lead to the following system of linear equation:

3a,a’ 6a,a,a; 3a,a3 3aa, 3a,a3 0 4¢y 0.0
3a%a, 3ala; 0 6a,a,a; 3a,a5 3a,a; 2211

0 3a%a, 3da, 3a,a3 6a,a,a; 3azas | [4e02]| _ 0
3,62 6bbsby  3b,b3  3bdbs 3b,b2 0 2,1 '
3%,  3bbs 0 6b.bbs 363 3bb3|  |2e00s

0 3,  3b%,  3bb2  6bibby  363ba|  \dco2n

The determinant of the above matrix equals zero. Hence the matrix is singular and the
system has a non-trivial solution. Thus there exists a non-trivial dual ternary quartic

g(w).

In both cases we have shown that there exists a non-trivial dual ternary quartic g(u);
hence the conclusion by Theorem 4.1. O

COROLLARY 4.5.  The generic quinary cubic cannot in general be written as the sum of
b 7 cubes.

. Proor. Here g=5, p= 3 and n =7. We proceed as in the previous corollary. We
_ show that for all a’, b’ e C® there is a non-zero dual quinary cubic g(u) apolar to
e (' [x)% (b7 [ %)% , x2. But again we see that these apolar conditions force g(u)
£ to be of the form:

g(u) = ¢y 100l Uy T €y 100,08 1 U2l + Cy,1,0,010 UzlUs T Cro,i1,0M Ually

+ €y o008 Ualls + Cp o0, 1l Ualls + Co 1y ol2lsts + Con0,1U2UsUs

+ €101 1 U2 laUs F Co 0,11, 1 U3 UUs.
The conditions that g(u) be apolar to (a’ | x)* and (b’ | x)* lead to a linear system of 10
* equations and 10 unknowns. The matrix of the system is written below. To see that

 such a system has a non-trivial solution, one verifies that the determinant of the matrix
k. vanishes, as indeed it does:

a,ay G4, dyds dzdy G3ds (405 0 0 0 0
a,a, a4, d,ds 0 0 0 aa, azds Q4ds 0
a,a, 0 O aay a\ds 0 a,d4 a,as 0 A,as

0 a,a, 0 a,a, 0 a,as a,as 0 a,as ads
‘det 0 0 a,a, 0 a,ds  4a,d, 0 dras (44 . d3d4 —o. 0
b,by byb, bybs bibs bibs bibs 0 0 0 0
bby bb, bibs 0 0 0 bisb, bibs bubs 0
bb, 0 0 bbb, bibs 0 b,b, b,ybs 0 bybs
0 b,b, 0 bbby 0 bbs bybs 0 b,bs  bsbs
0 0 bb, O bby bbb, 0O . b,by byb, biby
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DerinTion 4.2, A k-fold point, a, of g-ary p-ic f(x), is a non-zero q-tuple
(ay, ..., a,) such that, foralli=0,1,...,k—1,

[Deyx+ + Deaf ®))e=a =0

forallc,, ..., eC"

If k = 1 then such a point is called a simple point. When k =2 the point is said to be
a double point. Notice that a k-fold point of a binary form is a factor of the form,
where the factor is the k-power of a linear form.

ProposiTion 4.1, Let g(u) be a dual q-ary p-ic, and let 1<k =<p. Then g(u) is
apolar to (a|x)y"*' % iff a is k-fold point of g(u).

ProoF. Assume that g(u) e V is apolar to (a|x)y’*'7*. Let 0<i<k—1. Then
g(u) is apolar to (a|x)~'~" - (a|xy"*'"*=(a|x)" " and, by Propositions 3.4 and 3.1,

0= (g | (e | %) (e [x)@|x)"™")
= (Deu - De,ug(u) | (a|xy ™)
= (P —l)' ' [Dci.u et Dc.,ug(“)]u-——n-

Hence we conclude that a is a k-fold point on g(u).
By tracing the above string of equalities in the reverse direction, we prove the other
direction of the proposition. 0

By combining Theorem 4.1 and Proposition 4.1 we can state the first main theorem
on apolarity, as follows:

TuEOREM 4.2. A generic q-ary p-ic f(X) can be written in the form
fx)=(|x)f+®b|xy+... +(][x)y

iff there exist a',b', ..., ¢ so that there does not exist a non-zero dual g-ary p-ic g(u)
which has a',b', . .., ¢ as double points.

CoroLLARY 4.6 (Clebsch). The generic ternary quartic cannot in general be written
as the sum of 5 fourth powers.

Proor. Here g=3, p=4 and n=5. We must check that for all vectors |
a'.b', ¢, d’, e eC that there exists a non-trivial dual ternary quartic g(u), which has
a’,b’, ¢, d’ and e’ as double points.

The vectors a', . . . , € are the homogeneous co-ordinates of points in the projective
plane. Through 5 points in the projective plane there is at least one conic section; in
other words, there exists a non-zero ternary quadratic h(u), such that h(a")=---=
h(e')=0. Let g(u) = h(w)?. It is easy that a’, .. . , e’ are double points of g(u), and the
desired result is obtained. O

TreoREM 4.3 (Sylvester). A generic binary (2j — 1)-ic form can be written as a sum
of the (2j — 1)st powers of j linear forms.

Proor. Choose j distinct linear forms. These j linear forms correspond to j points in
the plane. Assume that there is a non-zero dual binary form of degree 2j — 1, which has
all these points as double points. Each double point is to a square factor of the binary
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form. Hence we have j square factors of the binary form g(w). But the product of §
square factors has degree 2j, which is larger than the degree 2j — 1 of g(u). Now use
the statement of Theorem 4.2 to obtain the desired conclusion. 0

4.3. Second main theorem on apolarity. Letd,, ..., d, be non-negative integers and
let J be a set of multi-indices; that is, J < N*. For each j €/ let 1;(x) be a homogeneous
polynomial in the variables x,, . . ., x,. Assume that for all jeJ

judy+ ...+ jd +deg(4(x)) =p.

The problem we solve is the following: When can one write a generic g-ary p-ic f(x)
in the form

FX) = 2 ()R (XY - - hy(xY = 2 (x)R(x),

jes jed

where 4, is a homogeneous polynomial of degree d, fori=1,...,s?

Tueorem 4.4. A generic g-ary p-ic f(x) can be written in the form f(x)=
Ljes tj(x)hj(x) for some hy, ..., h, iff there exist h(x), ..., h,(x) so that there is no
non-zero dual g-ary p-ic which is apolar to all the forms 3f [Oh;, 1 <i=<s.

Proor. Call the coefficients of the polynomials h; parameters. We denote a
parameter by par and we let Par be the set of parameters. Notice that

|Par| = <C;1|> +...+ <3‘>

L Assume that a generic g-ary p-ic f(x) = ¥, ax' can be written in the above form. By
F counting coefficients on the left-hand side and parameters on the right-hand side, we

f obtain the inequality
<p | ar‘ dl C. . d»\, .

Expand ¥;,, tj(x)hj(x) into a polynomial in x; that is, write

fx)= > ax'=2 (k)= 2 ¢pars)X.
irfij=p jeJ irjil=p

‘ We obtain () identities

a;= ¢i(par’s);

‘ that is, we view the coefficients of f(x) as polynomials in par’s.
£ Consider the map

@: Cr P

®(par's) = (¢ par's))ii=p.

Pwhere the co-ordinates of C'® are indexed by i, with Ji| = p, and the co-ordinates of
LC™ are indexed by the set Par.

f* The assumption is that the range of the map ¢ are dense in C¢*’. By Theorem 2.4
kwe infer that the (4) polynomials ¢; are algebraically independent. By Theorem 2.3

Bwe further infer that the matrix

;}k (a¢i/apar)i:li|:/1,[mrel’ar (13)

has full rank, where the rows are indexed by i and the columns by the set Par of
Eparameters.
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Since the matrix (13) has full rank, we can choose values for the parameters such
that the matrix (13) still has full rank. Choosing values of the paramecters is the same as
choosing homogencous polynomials h,(x) of degree d, fori=1, ..., s.

Becausce the matrix (13) has full rank, the columns of the matrix span the linear
space C’. But such a spacc is naturally isomorphic to V,. In particular,

9¢; 9 ;_ of
(38, -3 2
opar/.i=p i fiep Opar par

Thus, the g-ary p-ics of /Spar span the linear space V.
Hence there is no non-zero dual g-ary p-ic g(u) such that

(] )

for all paramneters par € Par.

Now cach of the parameters will only occur in one of the homogeneous polynomials
hi(x), ..., h(x). Say that par occurs in h,(x). Because Sh;/3par = x* for some k such
that |k| = d,. Hence by the chain rule we conclude that

of  of oh, of
== =—x
dpar  3h, dpar Ik,

As par ranges over all parameters in h;, the multi-index k will range over all
multi-indices such that |k| = d;. Thus the condition that

af k>
v :O
on~

<g(u)

is equivalent to saying that g(u) is apolar to 3f/8h,. Hence we have proven that there
is no non-zero g € V¥ which is apolar to all the forms af/oh,, fori=1,...,s. This
argument proves half the theorem.

To prove the sccond part, all we need to do is trace the cquivalences above in the
opposite direction, much as we did in the first main theorem. d

4.4. Applications of the second main theorem

CoroLLARY 4.7. A generic ternary quartic can be written in the form hy-hy+ h3,
where hy, h, and hy are ternary quadratics.

ProoF.  Wec arc to prove that the ternary quartic canonical form J(x)=hh, + h3.
To this end we check that there is no non-zero dual ternary quartic g(u) apolar to the
three quadratic forms h,, h, and 2k, for an appropriate choice of Ay, h, and h,. Choose
hy=x{, h,=x3 and h,=x3. By the pigeonhole principle, every term ' of such a g(u)
must contain onc of the factors uf, u3 or u3. Hence, (g(u)|x') =0 for all i by the
apolarity condition. Hence g(u) =0, and so we can write f(x) in the above form. [

CoroLLary 4.8. A generic ternary cubic can be written in the form hi+ h3+ h3+
¢ - hyhyhs, where hy, h, and hy are ternary linear forms, and c is suitable constant.
Proor. The canonical form we propose is
f(X)=h{+ h3+ h3+ hoh hsoh,,

where A is a form of degree 0. Hence we must check that there is no non-zero dual
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ternary cubic g(u) apolar to each of the forms
hhshs, 3h3 + hyhshs, 3h5 + hoh\hy, 33+ hyh by

t for at least one appropriate choice of hy, h,, h, and h,. Choose h,=0 and h; = x; for
i=1,2,3. Since g(u) is apolar to x? any term in g(u) containing u; vanishes. The only
. non-zero term in g(u) is therefore u u u;. But this term will also disappear, because
¢ g(w) is apolar to x,x,x;. Hence g(u) =0, as desired. O

CoroLLARY 4.9. Let q =2j. Then a generic q-ary quadratic can be written in the
¥ form h\h, + hsh+ - - -+ h,_,h,, where the h;’s are linear forms.

3

g

PROOF. We check that there is no non-zero dual g-ary quadratic, g(u), apolar to
h,,hz, RN Choose h; =x;. Then h; will make all terms of g(u) containing u;
L vanish. Hence all terms of g(u) vanish. O

~ CoroLrARY 4.10. A generic quaternary cubic can be written in the form h hyh; +
& hihshe, where the h’s are linear forms.

. Proor. We check that there is no non-zero dual quaternary cubic, g(u) apolar to all
“the forms h,h,, h,hy, hohs, hahs, hahe and hshg for a suitable choice of h,y, ..., hg.
® First let h, = x,, h.=x, and h; = x;. This forces all terms containing two different u;’s,
“”'—1 2,3, to vanish. The terms left are of the form w/u}™~/, where i=1,2,3 and
] 0,1,2, 3. Now let hy=x4, hs=x,+x,+x; and h,= xl + x5 + x3 + x4. The condi-
4 tion that g(u) is apolar to x;h4hs forces the coefhcxent of u?u, to vanish. Since g(u) is
4 L apolar to hah,— hyhs= x2, the coefficient of uj and u;uj also vanish. Finally, g(u) is
b apolar to hsh,— hsh, = (x, + x>+ x3)*> makes x;} vanish. By the main theorem, the
g above form is canonical. 0O

CoRroLLARY 4.11.  Let f(x) be a generic binary form of even degree p =4. Then f(x)
b can be written in the form W + h + ...+ h?” +c-hih3- - - h;, where h,, h,, ..., h; are
L binary linear forms, c is a suitable constant and p = 2j.

£ Proor. The proposed canonical form is A% + ...+ h? + hyh7 - - - h}. Expression in
g the form of /3h, are the following:
b nionL phtT A 2hohi RS- hL .., phlT 4 2hekY Ry

Set hy=0, and let h,, ..., h, be distinct linear forms. Let us see if we can find dual
binary form g(u) of degree p under these conditions. Such a g(u) is apolar to
{" , k™" hence by Proposmon 4.1 g(u) must thC] double pomts But because

-+ hj, so g =0. By the use of the second main theorem, we are done. O

3  PROPOSITION 4.2 (Grace). Let r>2 and let A; be an integer so that 0<A;<p for
¥e1,...,r. Assume that L, L, =(r—1)(p +1). Letl,, ..., I, be pairwise independ-
Wit bmary linear forms. Then for every binary p-ic f(X) there exist unique binary forms
("(x), i=1,...,r, so that

f(x) = 2 OO ().
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Proor. By the main theorem, we need only prove ‘that there is no non-zero dual
g-ary p-ic g(u) apolar to 8f/dh; = l(x)% fori=1, ..., r. But the linear form /;(x) can .
be written as (a” | x) for some point a”. The condition that g(u) be apolar to (a® | x)*
implies by Proposition 4.1 that a” is a (p + 1 — 4,)-fold point of g(u). But since g(u) is |
a binary form, we have the factor (a” | u)”*'~* of g(u), where the factor has degree |
p +1— 24, Summing the degrees of the different factors of g(u) we find that

é:l([?+1—/1,~)=r(p+1)—(r_1)(p+1)=p+1>p’

and this contradicts the assumption that degree of g(u) is p. Hence the result follows
for generic f(x). ;

The maps ¢; (in the notation of the proof of the main theorem) are linear and their
range is dense. Thus the map @ is surjective, and the dimensions of the domain and .
the range are equal. Hence the linear map is bijective, and the result follows without :
exceptions. g

CororLary 4.12 (Jordan’s Lemma). Let A, u and v be positive integers so that
Atpu+v=2p+2 If x+y+2z=0, then every homogeneous polynomial S(x, y, z) of '
degree p can be uniquely written as

S(x, y, z) =x*P(x, y, ) + y*Q(x, y, ) + 2*R(x, y, 2),
where P, Q and R are homogeneous of degrees p — A, p — pand p — v.

4.5. Binary forms. We are now going to focus on binary forms; that is, on the case
q =2. This will lead us to a generalization of Sylvester’s theorem, which will deal with
the non-generic cases.
Notice that for the space of binary forms of degree p one has dim(V,) = (2) =p + 1.
In this section let f(x) be a binary p-ic, and g(u) be a binary r-ic, where r=<p. |
Define :

ft={geV/}:gisapolar to f},
gt ={feV,: fisapolar to g}.

We see that f* and g* are linear spaces.
ProposiTioN 4.3, We have dim(f*) =2r — p and dim(g*) =r.

Proor. The condition that f(x) is apolar to g(u) can be written as the set of linear
equations

(gt ™[ f(x)) = (guf ™ "uy | f(x)) = . .. = (g(w)us ™| f(x)) = 0.

So altogether therc are p —r 4+ 1 linear conditions.

Given f(x), dim(f)=dim(V})—(p—r+ D)= +1)—(p—r+1)=2r —p.

Given g(u), we claim that the above p —r + 1 linear conditions are independent.
Assume that there is a linear dependency among them. Thus there is linear
dependency among g(wyul™", gl uy, ..., g(w)us that is,
ul ™", ul™" " 'uy, ..., uf”" are linear dependent, a contradiction. Hence the p—r+1
linear conditions are independent. Thus dim(g"')=dim(V,)—(p —r+ 1)=(p +1)~

(p—r+)=r O
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For a vector a = (a,, a,) define a* = (a,, —a,). Notice that (a* | a)=0.

Prorosition 4.4. Assume that (a|w) is a linear factor of multiplicity k of g(u); that
is, g(w) = (a| w)*hy(u). Then the form (a* | Xy ~**'h(x) is apolar to g(u), where h is an
arbitrary form of degree k — 1.

Proor. We would like to show that
((a]why(u) | @* | x)*+'h(x)) =0.
Factorize h,(u); that is, write h,(u) = (¢, |u) - - - (¢,_, | u). Now
(e w) - (e [u)a | 0¥ | @* | xy ()
‘ = <(a l “)k | Dc,,x tt Dc,,,k.x(a* | x)l?—k+lh(x)>
=((a|w) | (a*|x)- H(x))
=k!-(a*|a)- H(a) =0,

where (a* | x)- H(x) = Dy - D, , x(a* [ x)”~**'h(x). Here we have used Proposi-
| tions 3.4 and 3.1. 0

Recall from linear algebra that if W is a subspace of V., the orthogonal space W+

’ which is a subspace of V', is defined as

W = {h(u) e V;: Vk(x) e W{h(u) | k(x)) = 0}.
. We have
dim(W) +dim(W') =dim(V,)=p+1, (W, ®W,)' = Wi N W2, (14)
PROPOSITION 4.5. Let p=r, let g eV}, and let g(u) =TI, (a® | u)*, where a% and
ba® are pairwise linearly independent. Then the space g* is spanned by the forms:
B)((@O)* [ xy 5 for i=1,..., m, where hi(x) is an arbitrary form of degree
’k’ -

‘:‘,._: Proor (due to Giudici). Let

: W, = {h(x)((a®”)* l Xy 4tlhe Vii1}

fori=1,...,m. Clearly, dim(W,) = dim(V; _,) = k,.

i Now, dim(W/)=p+1—-dim(W))=p +1—k, Every element in the form
h(u) - (a |u), where heV} ., belongs to W} by Proposition 4.4. Comparing
dimensions we infer that

! Wi = {(h(u)- @ [wh:h e V] ).
’1 ow, by the identity (14) we see that

4 (@ W") =wr
b = (h(u) - g(u): h(w) e V}_,).

dim<‘_é:3| W.-) =p+l- dim((éé, W‘>L>

=p+1~dim({h(u)-g(u):heV:_})
=p+l1—(p—r+1)=r
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This proves that (", W, has dimension r. But g* 2 P, W, and we know that
dim(g*)=r. Hence g* = @, W.

We have thus shown that the subspace g' is spanned by the polynomials
hi(x)((a?)* | x)P~%*!, where h;(x) have degree k, — Land i=1,..., m. 0

Tueorem 4.5.  Every binary form f(x) of degree (2r — 1) can be written in the form

2 h(x) - L(x)¥

i=1

where I; are pairwise independent linear forms, h; are suitable binary forms of degree
(ki = 1), and L7k, =r.

Proor. Let p=2r—1. By Proposition 4.3, dim(f*)=2r —p =1. Hence there
exists a dual binary r-form g(u) in f*. Factorize g(u); that is, write g(u) in the form
g(w) =1IIZ, (a” | ). Let [(x) = ((a”)* | x). However, by the previous proposition we
know that a spanning sct for g* is 4, - I""%*! fori=1,...,m and h,e V, _,. Hence
we can write f(x) in the above form. O

Tueorem 4.6 (Sylvester). A generic binary form f(x) of degree (2r — 1) can be
written as a sum of r (2r — t)-powers.

Proor.  Apply the previous theorem. Notice that in the generic case we can assume
that g e f* does not have any double roots. Hence each A, is a constant, and the
left-hand side is a sum of r (2r — 1)-powers. a
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