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Abstract.  We study complex hyperplane arrangements whose intersection lattices, known
as the Dowling lattices, are a natural generalization of the partition lattice. We give a
combinatorial description of the Dowling lattice via enriched partitions to obtain an explicit
EL-labeling and then find a recursion for the flag 4-vector in terms of weighted derivations.
When the hyperplane arrangements are real they correspond to the braid arrangements A,,
and B,. By applying a result due to Billera and the authors, we obtain a recursive formula
for the ed-index of the lattice of regions of the braid arrangements A, and B,.

1. Introduction

The cd-index is a noncommutative polynomial which gives an efficient encoding of
the flag f-vector, equivalently the flag A-vector, of an Eulerian poset. The generalized
Dehn—Sommerville equations [2] describe all of the linear relations that hold among the
entries of the flag f-vector, while the cd-index removes the linear redundancies. The
cd-index has been a very successful tool to answer questions about convex polytopes,
including showing the flag f-vectors of zonotopes satisfy precisely the same affine re-
lations as the flag f-vectors of all polytopes and settling the zonotopal analogue of
a conjecture of Stanley, that among all zonotopes the cubical lattice has the smallest
cd-index coefficientwise; see [6]. It is believed that the ed-index will be a useful in-
variant in determining linear inequalities in the flag f-vector of convex polytopes, and,
more generally, Gorenstein® lattices. For the known inequalities in dimension 4, see [1,
Theorem 3.10], [4], and [19].

Given its usefulness, one would naturally like to be able to compute the cd-index.
The first recursion formulas for the ed-index were given by Purtill [21] for the Boolean
algebra and the cubical lattice, that is, the face lattice of the n-simplex and the n-cube.
In [ 16] the authors gave shorter recursions using derivations, as well as determined how
the cd-index changes under the pyramid and prism operations. The ed-index is also
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understood for simplicial polytopes, and, more generally, Eulerian simplicial posets.
Stanley [25] expressed the cd-index of a simplicial polytope in terms of its h-vector
and certain ed-polynomials <i>;.’ and conjectured a combinatorial interpretation for the
Cb:.’. This conjecture was proved by Hetyei [17], whereas a short recursion for these
polynomials in terms of a derivation was found in [ 16]. Cubical polytopes, more generally
Eulerian cubical posets, have been studied in [14].

In this paper we study the cd-index of the braid arrangements A, and B,,. In order to
do this we consider a more general hyperplane arrangement in complex space. Let k be
a positive integer and let ¢ be a primitive kth root of unity. Let H,, x be the following
hyperplane arrangement in n-dimensional complex space:

z,-:C"-:‘,- for Il<i<j<n and O0<h<k-—1I,
=0 for 1 <i <n.

This hyperplane arrangement has been studied earlier in [18] and [20, Section 6.4].
The braid arrangements A, and B, correspond to the cases k = | and k = 2. The
intersection lattice L, ; of the arrangement H,, , is called the Dowling lattice and is a
natural generalization of the partition lattice [11], [12].

We give a combinatorial description of the Dowling lattice via enriched partitions.
Since the Dowling lattice is a geometric lattice, it has many EL-labelings. Using enriched
partitions, we obtain an explicit EL-labeling and determine the set of lists of labels
of maximal chains. By understanding the structure of these lists of labels, we find a
recursion for the flag h-vector of the Dowling lattice in terms of weighted derivations.
As a corollary, the characteristic polynomial and Mébius function are determined. This,
together with the EL-labeling, yields topological information about the order complex
of this family of lattices.

When the parameter & is equal to one or two, the complex hyperplane arrangement
H,, 1 is a hyperplane arrangement in real space. A real hyperplane arrangement has two
lattices associated with it, namely the intersection lattice and the lattice of regions. In [7]
the authors. together with Billera, completely determine how to compute the ed-index
of the lattice of regions in terms of the intersection lattice. By applying this result to the
Dowling lattice recursion, we obtain a recursive formula for the ed-index of the lattice
of regions of the braid arrangements A, and B,.

2. Definitions

All the posets we consider will be graded of rank greater than or equal to one, that
is, posets P having a minimal element 0 and a maximal element 1 so that 0 # 1.
The associated rank function will be denoted by p and satisty p(0) =0.Forx <y
detine p(x, v) to be equal to p(y) — p(x) and define the interval from x to y to be set
{z : x <z < vy}, denoted [x, v]. Observe that [x, y] is a graded poset of rank p(x, y).

A poset L is alattice if every twoelements x and y has a unique greatest lower bound or
meet, denoted by x Ay, and a unique least upper bound or join, denoted by x vy. Aranked
lattice L is semimodular if it satisfies the inequality p(x) +p(y) = p(x AY) + pxVvy),
for all x. v € L. and atomic if all of its elements can be written as a join of atoms. A
Jattice which is both semimodular and atomic is a geometric lattice.
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Let P be a graded poset of rank n + 1. For S a subset of {1, ..., n}, let Pg be the
subposet of P definedas Ps={x e P : p(x)e S, x = 0, orx = T}. Let o(S) be
the number of maximal chains in Ps, that is, a(S) is the number of chains in P whose
ranks correspond to the set S. Define 8(S) by the equation

B(S) = (=T a(T). Q.1

TCS

The 2" entries of the flag f-vector and flag h-vector correspond to the values of «(S)
and B(S).

Let a and b be two noncommuting variables. For a subset S of {1, ..., n}, define ug
to be the ab-monomial i, - - - u, whereu; = aifi € Sandu; = bifi € S. The ab-index
of a poset P of rank n + 1, W(P), is defined by

W(P) =) B(S) us,
S

where the sum ranges over all subsets S of {1, ..., n}. Observe the ab-index encodes
exactly the same information as the flag h-vector. Moreover, ¥ (P) is a homogeneous
polynomial of degree n.

The Mébius function p(x, v) is defined forx, y € P by u(x,x) = landforx < yin
PbyY ... p(x,z) = 0.Wedenote u(0, 1) by (P). Then we have B(S) = (—1)ISH+".
1 (Ps). A poset P is called Eulerian if the Mobius function satisfies g (x, y) = (—1)?*Y),
Fine |3] observed that when P is Eulerian the ab-index of P can be written in terms of
the noncommuting variablesc =a+bandd = a-b 4 b - a. The resulting polynomial
is called the ed-index. An elementary proof of this fact appears in [25]. In the case
when P is the lattice of regions of a hyperplane arrangement (or more generally, of an
oriented matroid M), the ab-index of P can be written as a polynomial with integer
coefficients in the noncommuting variables ¢ and 2 - d. The resulting polynomial is called
the ¢-2d-index; see [6].

Let Z(a, b) be the ring of polynomials in the variables a and b, and let the degree of a
andbbe I. Let Z(c, 2d) denote the subring of Z(a, b) spanned by the elements ¢ = a+b
and 2d = 2ab+-2ba. Thus chas degree | and 2d has degree 2. For a poset P, let P* denote
the dual poset. The poset P* has the same underlying set as P but with the order relation
x <p. vifx >p y. Similarly, for an ab-monomial v = v v, - - - v,,, let v* = v, - - - vV
By linearity we extend this operation to be an involution on Z(a, b). Since ¢* = ¢ and
2d* = 2d, the involution restricts to Z{c, 2d) by reading the ¢-2d-monomials backwards.
Observe for a graded poset P we have W (P*) = W(P)*.

3. Techniques for Computing the ab- and cd-Indexes

When a poset P has an R-labeling, there is a known method to compute the ab-index of
P . This method will be extended so that one can compute the ed-index of the lattice of
regions of hyperplane arrangements.

Recall an edge-labeling X of a locally finite poset P is a map which assigns to each
edge in the Hasse diagram of P an element from some poset A. For us A will always
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be a linearly ordered set. If y covers .x in P, then we denote the label on the edge (x, y}
by A(x. v). A maximal chain x = xg < x; < -+ < x; = y in an interval [x, y] in P
is called rising if the labels are weakly increasing with respect to the order of the poset
A, that is, A(xp, x1) <p A(x.x2) <o --- <a Alxg—1, Xx). An edge-labeling is called
an R-labeling if for every interval [x, v] in P there is a unique rising maximal chain in
[x. v].

et P be a poset of rank n + | with R-labeling A. For a maximal chain ¢ = {0 =
Xg < X| < o0 < Xy = i}, the descent set D(c¢) istheset D(c¢) = {i : A(xj_1,X;) >a
Alx;, xi41)). Observe that D(c) is a subset of the set {I....,r}. Our interest in R-
labelings stems from the following result of Bjorner and Stanley (see Theorem 2.7 of
[91:

Proposition 3.1. Let P be a graded poset that admits an R-labeling. Then B(S) is
equal to the number of maximal chains ¢ with descent set S.

From this result we obtain the following corollary, which was observed in [15].

Corollary 3.2. Let P be a graded poset of rank n + 1. Let A be an R-labeling of P.
Then the ab-index of P is given by

W(P) =) upe

where the sum is over all maximal chains ¢ of the poset P.

An EL-labeling of a graded poset P is an R-labeling such that in each interval [x, y]
the unique rising chain is lexicographically least among all chains in the interval [x, y].
If a poset possesses an EL-labeling, then it is known that the chain complex of the poset
P is shellable [9]. Moreover, the chain complex is homotopy equivalent to a wedge of
spheres.

An EL-labeling of a geometric lattice L can be obtained as follows; see Example 3.13.5
of |24]. Let A denote the set of atoms of L and let there be a total ordering on the atoms.
The label on the edge x < vy may be described by

AMx,y)=minfa e A : xVa=yl}

Observe that with this EL-labeling two different chains will have two different lists of
labels.

We now turn our attention to hyperplane arrangements. Let H be a hyperplane ar-
rangementin R". We assume that H = {H, : e € E}isessential, thatis, (), H. = {O}.
Associated with a hyperplane arrangement are two lattices. The intersection lattice of H
is the lattice on the set of subspaces {(),.¢ H. : § € E} ordered by reverse inclusion.
Thus R" is the minimal element, {0} is the maximal element, and the hyperplanes in the
arrangement are the atoms. Each hyperplane H in H cuts R” into three pieces, namely,
the hyperplane itself and two open half-spaces. Together all the hyperplanes in H cut R”
into relative open cones, which we call regions. Let R be the set of regions. The set R
forms a poset by the order relation C < C if the closure of the region C is contained in
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the topological closure of the region C’. We adjoin a maximal element to R to obtain a
lattice, called the lattice of regions of the hyperplane arrangement H.

Bayer and Sturmfels |5, Theorem 3.4] showed that the flag f-vector of the lattice of
regions R depends only on the intersection lattice L. This dependency was showed in
an explicit manner in [7].

The lattice of regions is an Eulerian poset, hence it has a cd-index. In fact it has a
c-2d-index, that is, the ed-index may be written as a polynomial in ¢ and 2d with integer
coefficients. Theorem 3.4 shows how to compute the c-2d-index of the lattice of regions.

Definition 3.3. Define a linear function w: Z(a, b) — Z{c, 2d) as follows: For an ab-
monomial v compute w(v) by replacing each occurrence of ab in the monomial v with
2d. then replacing the remaining letters with ¢’s. Extend this definition by linearity to
ab-polynomials.

Theorem 3.4 |7]. Let H be a hyperplane arrangement, let R be the lattice of regions
of H. and let L be the intersection lattice of H. Then the c-2d-index of R is given by

W(R) =w(a- V(L))"
For instance, the intersection lattice of the braid arrangement A3 has the ab-index

aa+ 5 -ba + 6 - ab 4+ 6 - bb. Hence the c-2d-index of the lattice of regions of the
arrangement As is given by

(c+11-2d-c+6-c-2d)*
= +1il.c-2d+6-2d-c.

w{aaa+ 5 -aba + 6 - aab + 6 - abb)”

By combining Stanley's EL-labeling of geometric lattices with Corollary 3.2 and
Theorem 3.4, we have the following corollary.

Corollary 3.5. The ¢-2d-index of the lattice of regions R is given by

W(R) =Y i@ upe)".

where the sum ranges over all maximal chains c¢ in the intersection lattice L.

4. The Dowling Lattice

The Dowling lattice L, ; is the intersection lattice of the complex hyperplane arrangement
H, .. Since it is an intersection lattice, it follows that the Dowling lattice is a geometric
lattice of rank n. Observe L, ; is isomorphic to I1,.;, the partition lattice of rank n.
Each of the hyperplanes in H,, 4 is an atom in the Dowling lattice L, x, hence L, x has
k- ('2') + n atoms. ,

The Dowling~lutticc L, « has the following combinatorial description. Define an
enriched block B = (B. f) to be a nonempty subset B of {I,...,n} and a function
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f: B — Zj. We say two enriched blocks B = (B, f)and C = (C, g) are equivalent if
B = C and the functions f and g differ only by a constant. Hence there are only k!2I-T
possible ways to enrich the nonempty set B, up to equivalence. When k = 1 there is
exactly one way to enrich a block, that is, there is no enrichment. Let B and C be two
disjoint enriched blocks and let i be an element in Z;. We can define a function 4 on the
block B U C by

f(b) if beB,

h(b) = Ig(b)+i it bec.

Since i can be chosen in k possible ways, there are k possible ways to merge two enriched
blocks. -

For E asubset of {1, ..., n}, an enriched partition @ = {By, ..., Em} on the set E is
a partition 7 = {By, ..., B,,} of E, where each block B; is enriched with a function f;.
Observe that on the empty set there is exactly one enriched partition, namely the empty
partition.

Define the lattice L) , to be the set

L,,={#&.2):ZC{l,...,n)and 7 is an enriched partition of Z={l,...,n}-2Z).

We call the set Z the zero set. Define the order relation on L , by the followmg two re-

lations: ({B1. By, ..., Bub. Z) < (Bs..... Bu). ZUB) and (1B, By, ... Bn). 2) <

({BiUB,, ..., By}, Z). The first relation says that a block is allowed to merge with the

zero set. The second relation says that two blocks are allowed to be merged together.
Given (i, Z) € L, ;. construct the corresponding subspace by

é-f(')

oM
]

Il

ol for i,j€B and B= (B, f)eT,
0 for i€ Z.

It is straightforward (o see that this is an isomorphism between L, ; and L, ,.
Proposition 4.1.  The two lattices L, x and L;.k are isomorphic.

By the compositional exponential formula, see for instance, Chapter 5 of [27], we
obtain the next lemma.

Lemma 4.2. Let a, be the number of elements in the Dowling lattice L, x. Then the
exponential generating function for the sequence a, is given by

Zan i _exp(x) exp( - (explk - x) — 1))

n=0

Since L, is a geometric lattice, an R-labeling of L, ; is found by giving a linear
order A to the atoms of L, ;. First, denote the atom corresponding the hyperplane z; = 0
by i. Similarly, describe the atom corresponding to the hyperplane z; = ¢ z; by the
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triple (i, j.h), where | <i < j <nandh € Z. On the set of atoms of L, ; consider
the following linear order A:

JeaJifl <) =,

Jea iyt <j<j <n,

(i, j.h)y <p jif2=<j<j <n,

(i, j.h) <4 (i', j', h') if one of the following three conditions holds:
o 2< j<j <n,

o j=jandi <i',or

o j=ji=i,andh <h'

Let M,  be the set of lists of labels of maximal chains in L, , that is,

M, o= {(Axg, X))o A1 X)) o (X, X x,) is a maximal chain in L, ;}.

To characterize the set M, ;, we need the following two notions. For an atom a of L, &
we define its support o by

L[ty i a =Gk,
7@ =11 if a=i.

For an element x in L, ; define M(x) to be set
M(x) = {min(B) : | <i<m),

where x as an elementin L, is the element (7, Z) with 7 = {EI, s E,,,} and min(E,-)
denotes the smallest element contained in the block B;. Observe that if x < y, then
M(y) € M(x). Moreover, n — |[M(x)] is the rank of the element x.

Lemma 4.3. Let x < v be a cover relation in the Dowling lattice L, x. If the element
v is formed by merging two blocks B 1 and Eg of x, then the label i(x, y) is of the form
(i. j.h)where {i, j} = {min(B,), min(By)}. If the element y is formed by joining a block
B\ 10 the zero set. then the label h(x. v) is of the form i where i = min(B)).

Proof. We prove the lemma in the first case. The second case follows by a similar
argument. Henceforth assume the element v is obtained by merging the two blocks B,
and 13: of x. Let / be~the smallest element in the block El and let j be the smallest
element in the block B,. We may assume that i < j. Let i be the unique element in Z;
such that joining the atom (i, j, h) with the element x gives the element y. We claim that
the label A(x. y) is given by (i. j, h).

Assume that a is an atom such thata v x = y. Then the atom a has the form ', j', h,
where i" < j'. Moreover, either i’ € B and j' € B,ori’ € B> and j' € By. Using the
fact that i and j are the smallest elements in their respective blocks, we obtain in the first
case that (i. j. h) <x a or (i, j.h) = a. In the second case we have i < j <i' < j',s0
we get (. j, )y <p a. O

Corollary 4.4. Let x < v be a cover relation in the Dowling lattice L, . Then
aglr(x.v)) T M(x).
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Proof. The label A(x, y) is either equal to (i, j, h) or i. Consider the first case. Then
o(A(x,v)) = {i. j}. By Lemma 4.3, the elements i and j are the smallest elements from
their respective blocks. Hence {i, j} € M (x). Similarly, in the second case we obtain
ox(x. ) =1{i} € Mx). O

Lemma 4.5. Let x < y be a cover relation in the Dowling lattice L, , and assume that
v < z. Then the element max(c (A(x, v))) does not belong to M (z).

Proof. 1If the atom « is the label A(x, y) for the cover relation x < y, then the element
max (o (a)) is not a smallest element in any block of the element y. That is, max(o (a)) &
M (v). Since M(z) € M(y), the result follows. O

Proposition 4.6. The list (ay, ..., a,) belongs to M,, ; if and only if for all indices p,
I < p < n, the value max(o (a,)) does not appear among the support of the elements
Apglevens a,. That is, max(o(ap)) € o{ap1) U---Uol(ay,).

Proof. Letc = {6 =X <X < - <X, = i} be a maximal chain in the lattice
L, sothat, for p < ¢, a, = A(xp_1,xp) and a; = A(x,_1, x4). Since x, < x4-1,
by LLemma 4.5 we have max(o (a,)) ¢ M(x,—). However, by Corollary 4.4 we know
ala,) € M(x,_;). Hence we have max(c (a,)) & o(a,), so the labels of the chain ¢
satisfy the condition of the lemma.

Let (a;. ..., a,) be a list of atoms which satisfies the condition in the lemma. For
0<p<nletx,=a V- --Va, Weknow that 0 =xp < x| <--- < x,isaweakly
increasing chain in L, ,. We would like to prove that it is a maximal chain.

Since the entries max(o (@), . .., max(o (a,)) are all distinct, we have that M (x,_)
is the disjoint union of M (x,) and {max(o(a,))}. Since M (xo) = {1, ..., n}, we obtain
M (x,)} = n— p,sothe element x, has rank p. Hence the chain § = Xg <X < < Xy
is a maximal chain in L, . The elements in o (ap,) lie in M(x,_;), so they are smallest
elements in their respective blocks. Hence the edge (x,,_i, x,,) is labeled by the atom a,,.
So we have that the list (a;. ..., a,) belongs to the set M, ;. O

In order to state our main result, we need the notion of a weighted derivation. Here P°
denotes the positive integers.

Definition 4.7. Let R be a graded algebra. A right weighted derivation D is a function
from R x P to R such that

D-u+p-v,p) = a-Du, p)+ B D, p), 4.1
D(1,p) = 0, 4.2)
Du-v,p) = Du,jv|+p)-v+u-D(v, p), 4.3)

where o and 8 are scalars and |u| denotes the degree of the element u.

Let K (v, p) be the right weighted derivation on Z{a,b) such that K(a, p) =
K, py = (1 + k - p) - ab. By induction on the degree of v, we may show the
following result.
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Lemmad4.8. Letv=uv---v,_| beanab-monomial. Then K (v, 1) is given by the sum
n-—1
K. )= Z(l +k-(n—m)-vi- Uy -AD - Uy U

m=I

Using the weighted derivation K we now obtain an expression for the ab-index of
the Dowling lattice.

Theorem 4.9. The ab-index of the Dowling lattice L, satisfies the following
recursion:

W(Lyp10) =W (Lyx)-a+ KWLy ), D+ +k-n)-b-W(L, ).

Proof.  Consider a list A in the set M, . There will be exactly one entry A, in

the list A = (Ay..... Anty) so that max(o(A;)) = n + 1. Now observe that the list
(T A 1s Ak ls v v e s An+1) belongs to M, 4.

Let 2 = (Aq..... Ay) be a list in M, ;. Assume the ab-monomial u(}) is equal
to iy ---u,—y. Let m be an integer so that 0 < m < n. We determine how many

elements ¢ can be inserted in the mth position of A so that we obtain a list in M, 4, .
By Proposition 4.6 we have max(o (a)) must be n + 1. Moreover, by Proposition 4.6
we have that max(o (%)) does not belong to o (a) for I < j < m. These are the only
conditions on a. Hence either g is the atom labeled n + 1 or it is of the form (i, n + 1, ),
where /1t can be chosen in k possible ways and i can be chosen in n — m possible ways.
Thus a can be chosen in 1 + k - (n — m) possible ways.

The ab-monomial for the new list (A1, ..., Ap—1, @y Appgds oo s Ap) 1S Uy - - Uy
ab - uy. - uy_ 1f0 <m < i lf m = 0the ab-monomialisb-u;---u,_, =b - u,
while it m = n the ab-monomial is u, ---u,,_, - a = u - a. Summing over all positions

m we obtain

n—1

u(/\)-a+2(|+k-(n—m))-u.~-~u,,,,.-ab

m=1

Uyt g+ (L +k-n)-b-u(r).

By Lemma 4.8 the summation can be expressed in terms of the weighted derivation K.
Hence we obtain the expression

u(d) - a+ K@), D+ +k-n)-b-u).

Summing over all A in M, ; we obtain the desired recursion for W(L, ). O

Recall the characteristic polynomial of a graded poset P is defined as x(P) =

D (0, x) - q"’”'i). The characteristic polynomial of the Dowling lattice was first
obtained in Proposition 7 of [11].
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Corollary 4.10 [11].  The characteristic polynomial of the Dowling lattice Ly i is

n—1|

X(Ln.k)zl_[(([_ 1 —k-i).

i=0
Proof. Let E be the linear map from Z(a, b) to Z|¢| defined by

— (=)™ . g* if v=>b"a" forsome m, k>0,
E(v) = .
0 otherwise.
Then the characteristic polynomial is given by x(P)=(¢g — D) ~E(\IJ(P)); see Propo-
sttton 5.3 of [7]. - .
Apply the linear map E to Theorem 4.9. Observe that E(K (v, 1)) = 0 since all the
terms in K (v, 1) contain the monomial ab. Hence we obtain

EW(Ly10) = EW(Ly)-a) + (1 +k-n) - E(b-W(L,x)

Multiplying this identity with ¢ — 1, we have the recursion x (L, 14) = (g —1 —k -
n) - x(L, ). Observing x(L|«) = g — 1, we obtain the result. O

By setting ¢ equal to zero in Corollary 4.10 we get Corollary 1 in [11].

Corollary 4.11 [11].  The Mébius function of the Dowling lattice L, i is given by

n—|

L) = (1" -TJ +k - ).

i=0

Since the Dowling lattice is E L-shellable, its chain complex is shellable. Hence we
obtain:

Corollary 4.12.  The chain complex of the Dowling lattice L, ; is homotopy equivalent
to a wedge of spheres and only the highest homology is nontrivial. The dimension of the
highest homology is given by ]—I:I:_(: (I +k-i).

S. The Braid Arrangements A, and B,

We now restrict our attention to the braid arrangements A, and B,,. These arrangements
correspond to the cases k = 1 and k = 2 in 'H,, x, that is, when the arrangement H,, ;
can be considered as a real arrangement.

The arrangement A, is most often described by the hyperplanes x; = x; for 1 <i <
J < n+1in(n+1)-dimensional Euclidean space. This arrangement is not essential since
each hyperplane contains the line x; = --- = x,,+|. We obtain an essential hyperplane
arrangement by setting the last variable x,, equal to zero, yielding the arrangement
corresponding to H,, ;.
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For k equal to | and 2 let R, ; be the lattice of regions of the arrangement H,, .
Moreover, let R, ¢ denote the lattice of regions of the coordinate hyperplanes, that is,
R, ¢ 1s the face lattice of the n-dimensional crosspolytope. By Theorem 3.4 the lattices
R, 0. R, 1. and R, > have a ¢-2d-index. Using Theorem 4.9 we give an explicit recursion
for the c-2d-index of these three lattices.

Recall the definition of a right weighted derivation given in Definition 4.7. We have
a similar notion of a left weighted derivation.

Definition 5.1. Let R be a graded algebra. A left weighted derivation D is a function
from R x P to R such that D satisfies (4.1) and (4.2), and

D(u-v, p) =D, p)-v+u-D,lu|+ p). 5.D
We consider the weighted derivation W on Z{c, 2d) that is defined by

W(e. p) = (1 +4p)-2d,
WRd. p) = (14+kp)-2d-c+ (1 +k(p+1)-c-2d.

In our notation we suppress the fact that W depends on the integer k. Observe that when
k = 0 the weighted derivation W reduces to a derivation.

Theorem 5.2. The c-2d-index of R, «, k = 0, 1, 2, satisfies the following recursion:

\U(Rt1+l.k) =cC- qj(Rnk) + W(l‘IJ(Rn.k)a 1).

The case when & = 0 was obtained in [ 16]. Hence it is enough to prove this theorem for
k= 1and k = 2.
The two weighted derivations W and K are related by the following identity.

Lemma 5.3. For any element v in Z.{a, b) and any positive integer p
W(w(@)", p) = w(K (v, p))".

Proof.  Since both sides are linear in v, it is enough to prove the statement for ab-
monomials. The proof is by induction on the degree of v. There are four base cases
which are easy to verify, namely v = I, v = a, v = b, and v = ab.

Consider now an ab-monomial v different from the four base cases. We can write
v =u-u such that u, u’ # 1 and u does not end with a or ' does not begin with b,
That is, u and u’ have degrees smaller than |v| and we have w(v) = w(u) - w(@’). Also
note that if « ends with a, then all monomials in K («’, p) will begin with a. Hence we
know that w(u - K (u', p)) = w(u) - (K (', p)). Similarly, if u’ begins with b, then all
monomials in K (u, p) will end with b. That is, w(K (u, p) - u') = w(K(u, p)) - o).
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Now we have
W(ww -u')*, p) = Wow)*  w@)*, p)
= Ww@)". p) o) + o) - Www)", [u'|+ p)
= (KW', p))*" o) + o) oK, u'|+ p))*
= [w(u) - oK@', p)) + o(K(u, |u'|+ p)) - w@)]*
= w(u- - K@, p)+ K, |u|+p) -u)*
= w(Kw u'.p)-.

This completes the induction. a

We are now ready to give the proof of Theorem 5.2.

Proof of Theorem 5.2. By applying the map v — w(a- v)* to Theorem 4.9 we obtain
V(R 114) = @ - W(Lypix)"

w(@ V(L) a) +o@ KWL, D+ (1 +k-n)-ab-W(L, )"
c-owla YL,») +o(K@ YL, D)

c-wa W(L,o) +W(w@ YL

= ¢ W(R)+ W (¥(R). 1),

I

"+
"+
*

il

where the fourth step is by Lemma 5.3. a

It is now straightforward to compute the following table:

n V(R, ) V(R,2)

01 ]

l|{¢c c

2(c¢?+2.2d Z+3.2d

3|t +1l-c-2d+6-2d-¢ A+23.c-2d+12-2d-¢

41¢t+59.¢2-2d+60-c-2d-c|e*+191-¢2-2d+186-¢-2d - ¢
+14-2d-c* + 46 - (2d)? +36-2d - ¢ + 146 - (2d)?

For instance, to compute W (R3 ) we have

V(R ) = ¢- V(R )+ WM (R, 1)

c (42 2d)+ W +2-2d, 1)

¢ +2-c-2d4+Wie, ) -c+c-W(e,2)+2-W2d, 1)
A +2-¢c-2d+2-2d-c+3-¢c-2d+4-2d-c+6-c-2d
=c'+1l-c-2d+6-2d-c.

i

6. Concluding Remarks

The permutahedron P, is the n-dimensional polytope whose vertices are the (n + 1)!
permutations in the symmetric group on n + 1 elements. In other words, P, lies in the
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hyperplane x|+ - -+x,41 = ("‘;2) and has vertices (m (1), ..., m(n+1)), where & ranges
over all permutations on n + 1 elements. Similarly, let the signed permutahedron PE be
the convex hull of the points (£x (1), ..., £7(n)), where 7 ranges over all permutations
on n elements. Examples of these polytopes include the line segments P; and P]i, the
hexagon P,, the octagon P the truncated octahedron P3, and the rhombitruncated
cuboctahedron Pf.

It is well known that the face lattice of the permutahedron L(P,) is given by the
dual poset of R, . Moreover, the lattice R, | has a combinatorial interpretation as the
ordered partition lattice; see for instance [8]. Similarly, the face lattice of the signed
permutahedron £L(PF) is the dual poset of R, ». We present the following combinatorial
description of the lzittice R, 2.

A signed block B is a nonempty set B with a function f: B — {—1, 1}. This notion
differs from that of an enriched block which was defined in Section 4 since we now
consider the two signed blocks (B, f) and (B, — f) to be different. An ordered signed
partition T is an grdered partition 7 = (By, ..., B,), where each block B; is signed by
a function f;. If B and C are two signed blocks, then we may consider their union as a
signed block. Define the lattice R, , to be the set

R, =1{F2) : Z<{l....n)

and 7 is an ordered signed partition of Z = {1,...,n} — Z}.

The order relation on R, , is given by

(Z.(B\.Bs.....By)) < (ZUB,(Ba..... Bn),
(Z.(By.....B:.Bis1.....Bw) < (Z,(By,....BiUBiy1,..., B)).

The first relation says that the first block is allowed to merge with the zero set. The
second relation says that two adjacent blocks are allowed to be merged together.

Given (Z.7) € R,’,_z, where the zero set contains the elements jo (, ..., jo.m, and
the ith block contains the elements j; |, ..., jim,. the corresponding region of B, is
constructed by

0= Kjog = " = Koy
< fl(jl‘l)'x_j... = "':fl(jl,nu)'xju.m,
< - .
< fmGm) - Kjyg = 77 = S Gy ) X *

For k = 0, 1, or 2, the lattice of regions R, ; corresponds to a root system. The set
of exponents of the root system is 1, 1 +k,..., 1 + & - (n — 1). These numbers appear
as weights in the weighted derivations W and K. This suggests that a similar recursion
should hold for other root systems in general. Hence a good question to consider is what
is the e-2d-index of the lattice of regions for the simple sporadic root systems.

An interesting challenge is to find a recursion for the root system D,,. Recall that the
corresponding hyperplane arrangement is

X; = tx; for 1 <i<j<n,
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for n > 4. What can be said about the ab-index of the complex D, arrangement
z,~:("~zj for I<i<j<n and 0<h<k-—1,

where ¢ is a kth primitive root of unity?

The homology of the partition lattice 1, = L, | has been extensively studied in
order to find representations of the symmetric group; see {23] and [28]. In the same
spirit, Wachs has studied the signed partition lattice L, »; see [29]. What can be said
about the representations of the symmetric group arising from the Dowling lattice L, ?
A related question is to find an explicit basis for the highest homology group of the
Dowling lattice, the dimension of which is given in Corollary 4.12.
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