SUR QUELQUES POLYEDRES EN GEOMETRIE
DES NOMBRES

par E. EHruART,

— Dans un article paru dans L’Enseignement mathématique,

- "tome X (1964), pp. 138-146, nous avons formulé une conjecture

" ‘relative & un corps convexe fermé: Ses hauteurs a, b, ¢ dans les

< directions des axes orthonormsés, son volume V, sa surface S et
4% le nombre / de ses points entiers vérifient la relation

. S
(1 j§V+2—+a+b+C+l;

%“ . Tégalité n’est atteinte que pour les parallélépipédes entiers, dont

i les arétes sont paralléles aux axes.

Nous allons démontrer cette relation pour trois classes de

“polyédres convexes. ‘

~ Rappelons qu'un polygone ou un polyédre sont dits entiers,
st les coordonnées de leurs sommets sont, des nombres entiers.

C Le périmétre réticulaire d’un polygone entier s’obtient en prenant

. comme unité de longueur sur chaque ¢6té la maille dy réseau
rectiligne de ses points entiers. De méme Vaire réticulaire d’un
polyédre s’obtient en prenant comme unité d’aire dans chaque

face la maille du réseau plan de ses points entiers.

L. Prisme entier

Soit (P) un prisme convexe entier fermé, j le nombre de ses
Points entiers, P le nombre de points entiers de sa surface, V son
volume, S son aire et S, U, B’ respectivement les mesures réticu-
laires de sa surface, d’une aréte latérale et du périmétre de sa base.

On sait que

P L B
]—§—~ V+1 +5, )

—_—
1) Comptes rendus de I'Acad. des sc., 243, 1956, p. 349 (formule 3).
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ou, comme p = §'+21),
S’ ﬁl

2 j=V+—+1+—+41.
(2) J 3 +1' + 5 +

Si a, b, ¢ sont les dimensions du parallélépipéde (£) circons-
crit & (P) parallélement aux plans de coordonnées, I’ < ¢ et
B < B =2(a+d), ou B est le périmétre réticulaire de la pro-
jection d’une base de (P) sur le plan XOY. D’autre part, 8’ = 8.
Donc (2) entraine (1), ou ’égalité n’est atteinte que si (P) et (2)
coincident.

II. Tronc de prisme entier, dont une base a un centre
de syméltrie

Soit w le centre de symétrie d’une base convexe fermée (B’),
i’ le nombre de ses points entiers, p’ le nombre de points entiers
de son contour, s’ son aire, s’ son aire réticulaire et a',b’, ¢’ ses
hauteurs dans les directions des axes de coordonnées. Le symé-
trique (P,) du tronc de prisme (P,) par rapport & @ compléte (P,)
a un prisme, qui vérifie (1). Comme les caractéristiques de (P,)
sont les mémes que celles de P, (dotées de I'indice 1),

j=2%-i, S=28-2, V=2V,

a=2a —a, b=2b,-b", =2¢, —c’.

Par ces substitutions, (1) devient

S : 1
(3) jl =< V1+ ’2—1 +a, +b1 +cl+1+ E(jI—S'—a,’—b’—C'—l) .

1

Or j' = s"+ 5’2- 41 (corollaire du théoréme 1 de Particle cité

au début). Mais s’" < s" et p’ £ p” =< 2(a’+b'), ou p”’ désigne
le nombre de points entiers de la projection du contour de (B’)
sur le plan XOY. (Ceci suppose que le plan de (B’) ne soit pas
perpendiculaire 2 XOY, en quel cas on projetterait sur XOZ ou
sur YOZ.) Dans (3) Pexpression entre parenthéses est donc

négative ou nulle.

1) Comptes rendus, 242, 1956, p. 2217 (formule 1).
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HI. Une famille de pyramides

Soit (P) une pyramide dont le pied de la hauteur entiére ¢ se
trouve dans la base fermée convexe, qui est située dans le plan
des axes OX, OY et a pour hauteurs dans la direction de ces
axes a et b. On suppose 12¢ = b = 4.

Coupons (P) par le plan Z = ¢ — n. Soient J» le nombre de
points entiers de la section fermée et Sm Iy sa surface et son péri-
meétre. On sait (voir I'article mentionné au début) que

l
o < Syt — +1 .
/ 2

Par suite

n=c¢ C 1 <
(4) J=1+ Zj,,<}:sn+521"+c+1.
. 1 1 1

Comme s, = n? =

5 ‘ cle+1)2e+1) s, S, s S,
| W= e S = (434 = p g Je g e
;S 6 ¢* 6c( ¢ Herl) 2 6c

n
D’autre part, I, = —1. donne
c

e, |

e
25

c

+ <8+
2

v ¢l
)
1 “
ou §” désigne la surface latérale de la pyramide. De (4) on déduit
alors

Se /

J< Vs +a+b+c+1+(~+»i—a——b).
6¢ 4

SE S

- w5
ot

Il reste a4 montrer que lexpression entre parenthéses est
negative ou nulle. Comme

D I,

A
o , §__

el I <2(a+h),

[




il suffit que
ab a+b

qui est vérifiée car 12¢ = b et at+b = 2a.

Remarque. — L’inégalité (1) est donc en particulier vérifiée
par tout tétraédre entier O (o, 0, 0) A (a, 0, 0) B (o, b, 0) C (o, o, ¢).

(regu le 30 janvier 1964)

E. Ehrhart
11, rue de Bruges
Strashourg




POLYNOMIALS ASSOCIATED WITH
FINITE CELL-COMPLEXES

I. G. MACDONALD

Introduction

: Let X be a finite simplicial complex whose underlying topological space [X| is a
W 1rmensional manifold, possibly with boundary, and let X be the boundary sub-
Smplex of X. Let P(X, 1) denote the polynomial

l—0g oy t2=...+ (= 1)1+ o 441,

: v’here @, is the number of r-simplexes in X, forr =0, 1, ..., d. Define the polynomial
EP(0X, 1) in the same way, and put

u, [ = B(X,)-4P(0X, ).

héen one of our results (Theorem (2.1)) is that the polynomial f(r) satisfies a
unctional equation of the form

:.1) F(=0)+(=1)*f(t) = constant.

n particular, if | X| is a sphere, the constant on the right hand side of (0.1) is zero,
Fand the equation (0.1) is a concise way of writing the Dehn—-Sommerville equations
([3), chapter 9) relating the numbers of faces of a simplicial polytope.

For a finite cubical complex X (i.e. a finite cell-complex whose cells are com-
Ebinatorial cubes) such that |X| is a manifold of dimension d, there is an analogous
iesult. This time let P(X, t) denote the polynomial

do—ay t+...+(=1Dla,td,

where @, is the number of r-cubes in X, and put

‘ () = P(X,1)—3P(@X, 1).

= Then (Theorem (3.1)) the polynomial f(¢) satisfies the functional equation
£ 0.2) - = (=D

; Next, let L be the lattice of points with integer coordinates in R¥, and let X be a

3 lattice polyhedron in RY, that is to say a finite rectilinear simplicial complex all of

whose vertices belong to L. As before, we suppose that | X| is a manifold of dimension

R d. For each integer n > 0, let n~! L be the lattice of points x € R¥ such that nxe L
% and put

L(X,n) =card (X nn~! L).

Then L(X, ) is known to be a polynomial function of n (Ehrhart [1]). Denote the
k corresponding polynomial by L(X, £), and put

f() = L(X,H—-3L(X, ).

Received 21 October, 1967; revised 29 December, 1970.
[J. LoNnpoN MATH. Soc. (2), 4 (1971), 181-192)
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182 1. G. MACDONALD
We shall show (Theorem (4.7)) that the polynomial /() satisfies the functlonal
equation #

(0.3) f(=0= (=11

This result, or an equivalent form of it, was conjectured by Ehrhart in 1959 (see [1],
where it is called the reciprocity law). '

We also introduce polynomials connected with angle-sums for the three types of
cell-complex (simplicial, cubical and lattice) and we show that they satisfy functional
equations of the same type as (0.1)—(0.3). These functional equations include as
special cases all the linear relations between angle-sums in convex polytopes in |
Euclidean or spherical space which have been found at various times by various
authors.

§1 of this paper is devoted to establishing some general results for finite cell-
complexes. In the succeeding sections these results are applied to simplicial complexes
(§2), cubical complexes (§3) and lattice polyhedra (§4).

4

1. Finite cell-complexes

Let X be a finite cell-complex. We think of X as the set of its open cells (including
the empty cell, denoted by ). If g, 7 are cells of X, the notation t<goro 217
means that 7 is a face of ¢. The topological space underlying X is [X] = (J,cx 0.
Throughout, we shall suppose that |X| is a manifold, with or without boundary, not
necessarily connected, but everywhere of the same dimension d. Let X denote the
boundary subcomplex of X.

Let V be a real vector space (in the applications, ¥ will always be the space
R]1] of real polynomials in one variable) and let ¢ be any function on X with values
in V. For any subset Y of X we define

S(¢) = T (=1)'*4m7 §(o)

(here and throughout, the dimension of the empty cell J is —1).
If o is a cell of X, its closure & in X is the subcomplex consisting of all 7 e X such
that 1 < 0. We define ¢p*: X - V by

9*(0) = 5G,9) = T (-D'* 4" 4(0)
The augmented Euler characteristic of X is

FX) = F (—Dttaime

ceX

where y(X) is the ordinary Euler characteristic. Finally, let e denote ¢()- Th
we have

ProrosiTiON (1.1). S(X,¢*)+(—1)?S(X-0X,¢) = j(X)e.




POT YNOMIALS ASSOCIATED WITH FINITE CELL-COMPLEXES 183

k¥ proor.  From the definitions,
' S(X,¢%) = Zx(—l)”‘“"“’ti)*(a)

— E (_1)1+dima tg (_1)1+dimr¢(.c)

ceX

Z (_ l)dim o—dim T

=T

= 00

3 (onsider the last sum. It is the augmented Euler characteristic of the linked complex
é—*f [3; p. 86] of 7 in X, if t # . Hence, since [X|is a manifold, we have
1 (—1)yi"dimrif 1¢0X,

T (= 1)time-dimt = [ 0 if tedX and © # &,
¥(X) ift=¢.
S(X,¢*) = t;alx (— 1~ 4im T g (0) + U(X) 9(D)s

= (=) S(X -0X, ) +i(X)e,

b *" and the proposition is proved.

COROLLARY (1.3). ¢** =¢.
Proof. Take X to be the closure & of a cell 6. Then from (1.1) we have

$**(0) = S(@,¢*) = (=1)' 4" S(0,4) = ¢(0),

since 5—06 = ¢ and 7(6) = 0.
¢ It follows from (1.3) that (1.1) remains true with ¢ and ¢* interchanged, since
P* (D) = e

COROLLARY (1.4). S(X—0X,¢*)+(—1)!S(X,¢) = (- D 5(X)e.

ol BB e i e e e

Now write
_— S(X —33X, ) = S(X,$)—31S(0X, ¢)
and likewise

7(X —30X) = F(X)~37@X).

k4 COROLLARY (1.5).

S(X —40X,¢*)+(— 1) S(X—40X,¢) = F(X —30X)+3(— Ye.

g If d is odd, the right hand side is 0. If d is even, it is equal to j(X)e.

" Proof. By applying (1.1) to the boundary complex 0X, we obtain
S(0X, ¥+ (=11 (S@X, p)—e) = {(0X) e

since 8(0X) = @ and S(J,$) = ¢() = e. From this equation and (1.1) we get
(1.5). On the other hand, from (1.1) and (1.4) we obtain directly
' 0 if d is odd,

S(X —30X, %)+ (= 1) S(X ~40X, ) =

#(X)e if d is even.

s,

-
-~ -
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184 1. G. MACDONALD

COROLLARY (1.6). Ifd is odd, then y(X —30X) = 0; if d is even, y(6X) = 0.
Proof. From (1.95), choosing ¢ so that e # 0, we have

3 (d odd),
7(X—30X) =
7(X)~4 (d even),

from which (1.6) follows directly, since y = 1 —}.
Now let w be a real-valued function on X such that

(1.7) T (=D¥"?w(o) = (- 1) u(r)

a2t

for every cell te X. For any function ¢: X —» V let w¢ denote the function
o+ w(o) ¢(o) from X to V. Then

PROPOSITION (1.8). S(X, wg*) = (—1)** S(X, wg).
Proof. This is a direct consequence of our definitions:

S(X,09%) = F (=D 0(0)$*(0)

U§X (_ 1)1 +dim atga (_ 1)1 +dim 60(0') ¢(T)

S (= 1)fime ( s (- l)d‘m”w(a)) b()
teX a2t

= (=) B (-D 0@ (by (1.7)

= (=D S(X, 0é).

We shall be interested in one particular choice of the function w. To give it a

name, we shall call it the angle-function. From now until the end of this section, we :.';

suppose that X is a finite cell-complex in a Euclidean or spherical space E? of dimension

d = dim X, and that the cells of X are convex polytopes. For each non-empty cell 4
o€ X, let w(s) be the angle “subtended by X at ¢ . Precisely, w(o) is defined as &

follows. Take a point x€o and draw a small (d—1)-sphere T with centre x. Let
be Lebesgue measure on I, normalised so that u(Z) = 1. Then

w(o) = u(X| N ).

It is clear that w(s) does not depend on the radius of X, provided that this radius

is small enough, nor on the choice of xeg. If o ¢0X, obviously w(c) = 1. For the
empty cell, we define w() to be 0 in the Euclidean case, and to be equal to the ratio
of the Lebesgue measure of | X| to that of E? in the spherical case. By Gram’s theorem
[5] we have ;

(1.9) T (=" 0(0) = (= 1) (@)
in both cases.

PROPOSITION (1.10).  The angle-function w defined above satisfies (1.7).

~
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s proof. When © = @, the assertion is just (1.9). Next, let 1¢0X. Then for
¢ > 1 we have c¢0X and therefore w(o) = 1, as remarked above. Hence

| T (D"t = Z (-0 = (1

(1.2), and therefore (1.7) is satisfied when T¢0X.

suppose T€dX and 7 #@. Choose a point x€7 and draw a small
EF (1 1)-sphere T with centre x, as above. If dim7 = r, the plane in which  lies is a
Jdiametral r-plane of I (in the spherical case, plane ”’ means great sphere in E%).
[t T’ be the section of I by the diametral (d—r)-plane orthogonal to 7, so that X'
isa(d-r— 1)-sphere. The cells 0 of X which contain 7 cut out a cell-complex X' on
¢ If¢’ = 0 n X, andif '(c") is the angle subtended by X’ at o', then w(0) = w'(c")
() = '(F) = u(X'1)). Hence, applying (1.9) to the complex

 (and in particular @
X'in T’, we have ‘
T (=) /(@) = (=1 (D)

o eX’

or, since dim ¢’ = dimo~r— 1,

¥ (- D" w(o) = (— 1) (D),

o=t

as required. This completes the proof of (1. 10).
It follows that (1.8) is valid for the angle-function @ and any function ¢ on X

with values in a real vector space V. In fact (1.8) now takes the following form:

ProposITION (1.11).
S@X, wp*)+(— 1) SOX, wg) = S(@X,¢*)—-x(X)e.
Proof. We have already observed that w(c) = 1 whenever o ¢ X, from which
observation it follows that
S(X, wp) = S(0X, w)+S(X—0X,¢).
Hence, from (1.8),
S(OX, wp*)+(— 1) S@X, wg)+S(X —3X, ™)+ (-~ 1! S(X-0X,9) =0,

and now (1.11) follows from this equation and (1.1).

2. Simplicial complexes
¢ simplicial

For a first application of the formulas of §1, we take X to be a finit
For

complex and V to be the vector space R[] of real polynomials in one variable.

each simplex o of X take
d)(a_) — t1+dim0

(so that e = ¢(¥) = 1). Then
S(X,¢) = Zx(-t)”“'” = P(X, 1), say,

=l—ogt+o, 2o (=1t
where , is the number of r-simplexes inX,forr=0,1,...,d. Also we have

¢*(O‘) — tga (__t)1+dimt = (1 _t)1+dim a’

so that S(X, ¢*) = P(X, 1—1). Hence from (1.5) we have
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THEOREM (2.1). The polynomial B(X—10xX,1) = B(X,-1P@X, 1) satisfies
the functional equation
0ifdis odd,
P(X ~30X, 1 — 1)+ (= 1)* P(X —10X, 1) = _
#(X) if d is even.
In particular, if | X| is homeomorphic to a sphere—for example if | X] is a convex
polytope in Euclidean space—then dX =¥ and #(X) = (=1, so that in this
case (2. 1) reduces to

2.2 P(X,1—1) = (= 1)1 B(x, 1).

This polynomial functional equation is one way of writing the Dehn-Sommerville
equations relating the numbers of faces of various dimensions of a convex simplicial
polytope [2; chapter 9].

We shall now find all polynomial solutions of the functional equation of Theorem
(2.1.) First consider the case where d is odd, sayd = 2m—1. Let

2.3 fO=3 ar

be such that (1) = f(1—1). By equating coefficients of 2™~ ! on either side, we
obtain
(2.4) Ay +may, = 0.
Now consider the polynomial :
&) =) —ay, "(t—1)".

By (2.4) its degree is at most 2m—2, and clearly it satifies the same functional
equation g(r) = g(1 —1). We therefore conclude, by induction on m, that

PROPOSITION (2.5). If d = dim X is odd, the polynomial f(t) = P(X 40X, )

is of the form
F(u) = bo+byu+...+b,u™,
where u = t(1—t) and m = 4(d+1).

Comparison of (2.3) and (2.5) shows that

-1 —2
2.6) a,=b,_(rl )b,_1+(r2 )b,_z—... ‘

for 0 < r < 2m, with the convention that b, = 0 if r > m. These equations show that . l

by, by, ..., b, are uniquely determined by 4o, ---» @y, ;and consequently that @, 4, --- 2w

are uniquely determined by 4y, ..., a,,. The explicit formulas can of course be beaten _

out by hand, but the following device saves hard work. We have

b, = residue at u = 0 of F(u)/u*! o
1 J‘ F(u)
© 2nmi wrt 4

b4

i

R R L i SRR s aler
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where 7 is a small circle with centre at the origin in the u-plane. Changing the variable

' in the integral by means of u = t(1—1), we have du = (1—2f)dt, and hence
)
b, 1' f f(z)(1—2t)d
2ni J ((1-py*!
Y
(1 -2t
! = residue at t = 0 of &(—H)
{ ((1=0)y
| _ =2
) (="t e
hd where in general the notation A(f)],- means the coefficient of 1" in the power series
' expansion of A(7).
«i Since 1 -2t = (1 —1)—t, we have proved
. " PROPOSITION (2.7).  The solution of the equations (2.6) is

P

- (if Eti)'] B (1—fz()?“]

r -1
b, = z': {(I‘-{-.l—l) _ (r?H._l)>a,—.~
i=0 i i—1

rorei el
=q+ ¥ — (’JT’ )a
i=1 i i—1

or explicitly

T Ry TR oy, i e

As an example, suppose that X is a “neighbourly polytope ”” [2; Chapter 8] in R®"

i with v vertices. For our purposes, X may be defined to be a simplicial polytope
f (that is, a triangulation of the (2m— 1)-sphere) in which the number of r-simplexes
) is equal to ( v ) for r < m, so that
r+1
P(x,0) = (1—-1)° (mod. m*1),

) m
' By (2.7) it follows that P(X,1) = 3 b,(—u), where
¥ r=0

s P(x, 1 Px,n

b, = - +1
(I=1" 1o (L=t ey

Ii

m -1

o= () () =2 (")

(H)“"] —(1—0”"“] ,

S0 that

!-ix:f"?ivr v‘\.v,w-'y]},'vw
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Hence

r=1 r—1

FX,n=1+ 3 ’i (”“r"l) F(t—1y.

From this the number of g-simplexes in X (0 <g <2m~—1) can be picked out as the
coefficient of (—£)?* !, The answer agrees with [2; p. 166].
Next consider the solutions of (2.1) when d is even, say d = 2m. This time, we
have to solve the equation
FO+/(1-1) = j(X).
If we put

1) = () —45(X),
then f,()+f,(1-1) = 0. Consequently J1(¥) has a zero at ¢ = %, and so has 1 -2
as a factor: say

J10) = (1-20) f,(n).

Then £,(1) = f,(1 —1), and so by our previous analysis £,(t) is a polynomial of degree
minu = t(1—1). Consequently

PROPOSITION (2.8). If d = dim X is even, then the polynomial P(X —1ox, 0) is
of the form
P(X 40X, 1) = 35X + (1= 20) by + b, u+ ... +by, 4™,

where u = t(1—1) and m = 4d.
In place of (2.7) we find

2.9) —f‘(LL

b =
r (l_t)r+l

by the same sort of residue argument as before.,

dimension d in a Euclidean or spherical space of dimension d. For each simplex &

of X, let w(o) denote the angle subtended by X at o, as in §1. We take ¢(g) = ¢! +dime
as before. Then
S(X, wg) = Ex w(o)(—n!*éime = Gx, ), say,

and since ¢*(0) = (1—y)! +dim ’, we have
S(X, wp*) = (X, 1-1).
Hence, from (1.8) and (1.10),
ProposiTion (2.10).  {i(x, =0 = (—1y"*"1 $(x, »).

In particular, when | X [ is a simplex the equation (2.10) is equivalent to Poincaré’s

€quations between the angle-sums of a (spherical or Euclidean) simplex: see [2; ;

chapter 14].
With X as above let

B@X, ) = Z 0@)(=n'*ime = SGX, wg).

Then from (1. 11) we have
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PROPOSITION (2.11).  §3(0X, 1)+ (- D'G0X,1~1) = P@x, n—y(x).

In particular, if 6X is a simplicial polytope, then |X| is a closed ball, so that
7(X) = 0; in this case (2.11) is equivalent to the set of relations between the angle-
sums of a simplicial polytope, due to Perles and quoted on p. 307 of [2].

o

3. Cubical complexes

-

Txo

i A cell-complex X is cubical if all its cells are combinatorial cubes. For cubical
complexes there are results analogous to those of §2. As before, we take the vector
’ space V' to be the space R{1] of real polynomials in one variable, but this time we
{ define '
i &(0) = tdime jr o # &,
.
. $(2) = 0.
: »  Then )
P : —S(X,¢) = 3 (-pfime = px, 1), say,
§ v ceX
)
= Go=ay t4.. + (= 1)q, ¢
-
where ¢, is the number of r-cubes in X sforr=0, 1, -+, d, and the symbol Y indicates
that the empty cell is to be omitted from the summation. We have
} B . .
)g (]5*(0') — ;/ (_t)dnm T _ _(Z_I)dlm a,

since an r-cube hag 274 faces of dimension g, for0<g <r. Hence
S(X,¢*) = P(X,2—-1)
and therefore we deduce from (1 .5) that (since here e = #(D) = 0)

! THEOREM (3. ). The polynomial P(X-30X,1) = P(X, 1)-1 P(0X, 1) satisfies the
« Junctiong] equation

P(X~10X,2-1) = (-1 P(X-30X,1).
In particular, if X has no boundary this becomes simply

1 (3.2) P(X,2-1 = (-1 P(X, ).

The Polynomial solutions of this functional equation can be derived from the results
of §2 by putting J(0) = P(X~30X, 2f), for then we have f(1) = +/(1—1). When x

IS a convex cubjca] polytope, the equation (3.2) is equivalent to the set of equations
On p. 156 of [2].

NeXt we shall apply the results of §1 to obtain angle-relations for rectilinear
Cubica] complexes in Euclidean space. With ¢ as above and ¢ as in §1, we have
% —5(X, w¢) = E;w(a)(—')‘““”’ = Q(X, 1), say,

and

S(X, wp*) = Q(X,2-1).

i

, Hence, from (; -8) and (1.10)

2

UIvw

T Ny
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ProposiTION (3.3). Q(X,2-1) = (-1 QX, 1),
which is the analogue of (2.10) for a cubical complex of dimension d.

Let Q@X, 1= Z’x w(o)(— f)dime,
aed

the empty cell being excluded from the summation. Then from (1.11) we have
PROPOSITION (3.4). Q(0X, N+ (=0t Q(0X,2—1) = P(0X,1).

For the case where 6X is a cubical polytope (i.e., |X| is a closed ball), (3.4) is
equivalent to the set of relations found by Perles and Shephard {51

4. Lattice polyhedra

Let L be the lattice of points with integer coordinates in RY, where N is a positive
integer, and for each positive integer 7 let n~! L denote the lattice consisting of all
veR" such that nxeL. Let X be a finite rectilinear simplicial complex in RY, all
of whose vertices belong to the lattice L. As before, we shall suppose that [X| is a

manifold of dimension d.
Let o be a simplex belonging to X, and for each integer # > O let L(a, n) be the '

number of points of n~* L which belong to o. Then L(o, n) is a polynomial function
of n (see below) of degree equal to dim o. Let L(o, f) be the corresponding polynomial,

and define ¢ on X with values in R[t] by
¢(o) = (=)' "7 Lo, 1).
Then S(X,9)= ¥ L(g, )= L(X,1), say,
celX

is a polynomial with the property that, for each integer n > 0, the number of points ‘
of n~! L which lie in X is equal to L(X,n). In particular, :
¢*(0) = S(G,9) = L3, 1).
ProposITION (4.1).  L(3,1) = (=1)*™7 L(0,— 1)
Proof. Since the intersection of the lattice L with the affine subspace spanned }
by o is a sublattice of L, we may as well assume that dim o = N, the dimension of ]
the ambient space. The proof to be given involves a certain amount of repetition of
[4], but this seems desirable in order to present a self-contained account. ’
Let e, ..., ey be the standard basis of L, and embed RY as the (N+1)th co-¢
ordinate hyperplane in R¥**. Then we have an integer lattice I in R¥*! generated
by ey, ...,ey and, say, e;. Let o, ..., Uy be the vertices of the simplex o, and let
v; = eo+u; (0 i < N). Then the points v; are the vertices of a simplex ¢’ congruent
to o, and they generate a sublattice M of finite index in L. The set T of points xel
of the form :

N
x=Y wv,with0< p; <1 fori=0,1,..,N
i=0
is a complete set of representatives for M in . So also is the set T' of points xel
of the form :

i v, with 0 < g < 1fori= 0,1,...,N.
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Now L(&,n) is equal to the number of points y € L which lie in the simplex ng’
F with vertices nv, ..., nvy.  Each such point y is congruent mod. M to exactly one
g point X of T, so that we have

for suitable integers m; > 0. From the eq-coordinates of either side of this equation

we get
N
4.2) n=xy,+ EO m;,

where x, is the eg-coordinate of xe T'; and conversely each solution of (4.2) in
non-negative integers m; gives rise to a point y € L such that y = x (mod M) and
yend’'. Hence the number of such points is equal to the number of solutions of
(4.2), which in turn is equal to the coefficient of 4" in

wo(l+ut+u?+. ) = w1 —u)V*!

o " n+N-—

“and is therefore equal to ( " N o ) . Hence we have
- n +N—x° A

. L 3 = b
4.3) @n= % ( N )

from which it is clear that L(G,n) is a polynomial in n. (This proof that L(g, n) is
a polynomial in » is due to Ehrhart [1]).
Exactly the same argument, with T’ in place of T and ¢ in place of &, shows that

N_ !
(@.4 ten=x (")
x'eT’ N
Now the mapping x — x’ = vo+...+vy—x interchanges the sets T and T,
The eg-coordinates satisfy
XO, - N+ 1 “XO
and therefore from (4.4)
n—1 +X0
L = .
=2 ("3"™)

Hence finally

/

= (=D L(,n).
This completes the proof of (4.1).
From (4.1) it follows that
“4.5) ¢*(c) = L(5,1) = (= 1)*™° L(g, —1)

and therefore
S(X,¢*) = ZX —L(o, - = —L(X, —-1).

-
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Hence from (1.1) we have

THEOREM (4.6). L(X, —t) = (—1)L(X-0X, 1),
since in the present situation e = $(F) = 0. This functional equation (4.6) was
conjectured in 1959 by Ehrhart, who calls it the reciprocity law, and we refer to [1]
for various consequences of it. We remark also that it remains valid, when suitably
reformulated, under the more general hypothesis that the vertices of X belong not to
the lattice L but to some “fractional ™ lattice m™! L, where m is a positive integer.
In this case, L(X, n) is no longer a polynomial function of # but is what Ehrhart calls
a ““ polyndme mixte ”’ [1].

Also, from (1.4) (or from (4.6)) we deduce
CoROLLARY (4.7). L(X—10X, —t) = (—=1)’ L(X—1dX, 1),

where of course L(X—40X,t) means L(X,t)—3L(0X,1). Hence the polynomial
L(X—30X, t) is of the form

agt+a ' ra, L

In fact, the leading coefficient a,, is equal to the Euclidean volume of X (see [4], where
the fact that the coefficient of #*~! is zero was proved directly), and the constant term
is y(X—10X).

Finally, consider the polynomial A(X, n) of [4, §5], which is defined as follows:
AX,n) = ¥ ox),

nxe L

where w(x) is the angle subtended by X at x, in the sense of §1 (so that w(x) =0
unless x€ X, and therefore the sum above is finite). Clearly .

AX,n) = ZX (o) L(o, n),

L SRR G s Ol o, ., g b

so that A(X, n) is the value at # of the polynomial
AX,)= ¥ w(o)L(o, 1) = S(X, w¢).
geX

Hence from (1.8), (1.10) and (4.5) we have

THEOREM (4.8). A(X, —1) = (= 1)? A(X, 1) for a lattice polyhedron of dimension
d in Euclidean d-space.
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