Integer Programming 1

l l I l I manx planck institu e Vanables: x(1)..... x(n)
informatik

o Lmear gbjectve tuncuon: c(Dx(1) + -+ +c(n)x(n)

Fast Algorithms for Ilfteger.Programmmg in Fixed o Task: Find integer assignment to x(1).....x(n) such that all
Dimension constraints are satisfied and objective function is maximized.

Friedrich Eisenbrand

i p |1 Foderri
GCDs and IP GCDs and IP
Theorem. gediu.b) = min{va+yvb|oyeZ. xa+yb> 1} Theorem. gcd(a,b) = min{xa+yvb|x,yeZ, xa+yb2 1}
minimize  xa+yvh minimize  xd-+yvb
condition  xa+yvb = | condition xa+ybz21
xvel. x.vELZ.

Integer Programming: Combinatorics & Number Theory
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Euclidean Algorithm Euclidean Algorithm

e Input Integersa = b -0 e Input: Integersa =z b >0
e while b0 o whileb#0

o Computeg>land0<r<bwitha=gb+r e Computegzland0<r<bwitha=gb+r

e a-—— b o u—2»

« he—r e bhe—:-7r
s return g e returna

Analysis:

e r<a/2 = running time is O(loga)
« Running time depends on binary encoding iength of numbers
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Goals of this course

s Develop algorithm for IP in fixed dimension with tixea numbe:
Ctozonsiraints which runs in linear time (match complexity of
Euclidean algorithm)

« Reduce the dependence of the running time on the number of Integer feasibility
constraints {Clarkson’s algorithmy)

To achieve that we need to learn about:

* Lattices

e Basis reduction especially LLL algorithm
« Flatness theorem

« Integer feasibility in polynomial time
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The feasibility problem for ellipsoids A re-formulation
s A< Q" rational nonsingular matrix e A€ Q"™ rational nonsingular matrix
e u« (" rational vector e we Q" rational vector (w = Aa)
o E{Aua = {xeR'|||Ax—a}|| < 1} rational etisport defined by e AA)={Ax|xec 2"}
Aanda

+ Question: What is the point in A(A) which is closest to w ?
e Question: E{A.«}NZ" =9 7?

lllpll

Lattices Lattices

4 5
A=
0 2
A Lattics is a set:

AlAr= {Ax|xe 2"}
where A ¢ ™" is nonsingular rational matrix.

e AisDansof A

(™
—

=
f
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Lattices Exercise

( 4 \) « Let A be a lattice basis of A. Suppose that B originates from A
- by:
3 /

to

« Swapping columns.
« Subtracting integer multiples of a column from another

column.
Show that B is also a basis of A.
) « Show that (33) and (1) generate the same lattice. What is
B . the shortest vector of this lattice?
()
mpn: mipn:
The central lattice problems Quiz: What is the shortest vector?

« Given a nonsingular matrix A € Q™" and a vector w € Q"

o Tucsestvector proviem: Determine v € A(A) with {jv — wl|
minimai C\

e =h rebiza Determine v e A(4) — {0} with [|v])

minimal SV /

lllpl

Quiz: What is the shortest vector? Quiz: What is the shortest vector?

/ /
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Quiz: What is the shortest vector? Quiz: What is the shortest vector?

— L.
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Exercise The lattice determinant

Let A and B be bases of A

L h | o | N | e There exists integer matrix Q, such that B = AQ,
" cach other Show ina e shortestvector of AGA Wit fa 5 » There exists integar matrix Q; such that A = 50;
the shortest vector of the basis A. o ThusA=0,0:A thus 0, Qs =1,
o 1 =det(Q,0)) = det(Q)det{Q))
e (; and Q, integer matrices: det(Q,).det(Q,) = £1
o |det(4)] = |det(B)!.

Lathce determynant;

det(A) = |det(4)|, where A is basis of A.

(111 p | | ¥ [ 1 1] p B8

Example lattice determinant Example lattice determinant

e Lattice determinant is volume of parallelepiped of basis

e Lattice determinant is volume of paralielepiped of basis
elements.

elements.
4 5
« The two bases below are 45 and ! . e The two bases below are and 41 .
0 2 0 2 02 0 2
KO ¢) (2)
Fap—
B '
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Example lattice determinant Gram-Schmidt orthogonalization

« Lattice determinant is volume of paralielepiped of basis * by and b, vectors.
elements ’ « We search b; orthogonal o b, s.t. (b,.b;) generate same
45 4 1 vectorspace as (b,.b;
» The two bases below are and . P (br:b2)
0 2 0 2 b
v b

by
—T3) .
o bi=by—puby
o) ' ' ' o 0= (babi) = (bib2) —pibi.b1)
. . . . . o u=(br.ba)/{br.by)
lllpllt lllpll:::..:
Gram-Schmidt orthogonalization Gram-Schmidt orthogonalization

o input: by,....b, e R" o Decomposes matrix B € Z™" into
e Output: b}..... by, € R" pairwise orthogonal and o

b by = (b . .bforallk=1...n 1 ui, )
o bi—b B=8 :
o Fori=2. .k 0 1

o b —b,— 3 pii jib;, where pli. j) satisfies

=1

where B* is matrix with pairwise orthogonal columns.
thy =i, Yb; b1y =10

I mpnzs -
Exercise Exercise
o letB=t(h..... b, . b by biia. ... h,} and 1 ui, j)
B b)..... bi_a.biyy. b b, ..., b,) De two lattice bases. tetB =8 . be the GSO of B
Notice that B originates from B via swapping the i-th and 0 1

i+ 1-st column. Prove that B* and B only differ in the i-th and
i+ 1-st column.

o Show that [jb;[| < bl fori=1,....n

o Show that |det(B)| < ||b1]] -+ ||b.|} where equality holds if and
only if B is orthogonal (Hadamard ineguality)

mi p LI g
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Orthogonality defect Proof

Let A € Q""" be a nonsingular matrix. The number y > 1 with e Suppose that |i(n)| >v.
idet{A¥-y = hay - Jla,'| IS the orthogonahty asfect of A e LetB=5B -Rbethe GSOof B
o Since ||| > [i6]1l and |lby ]+ fbull = y-IB7 1+ 1651 one has
] . lbali < vl
Theorem. A shorrest vecior of A(A) is of the form
o Bi=B"-Rh=u+\(n)b;, where (u,b;) =0
E).(i}a,. where w(i)€Z and —y<Ai)<y. e Thus | BM| 2 M) lbzli > v-[IB]] > [l.]| which is a
0]

contradiction to B being shortest vector

Small defect means SV is simple Exercise

Conseguence

Theorem. Ler A € """ be a rational lattice basis with orthogonality

defecty, then a shortest vector can be computed in time O({(2y+ 1)"). o Let A be an orthogonal matrix, i.e., columns are orthogonal to
each other. Let w € Q". Suppose that w = S7_, u(i)a;. Show
that the closest vector of A(4) to w is the vector 3i_, |u(i)] a;.

Latuce nases reduction is a way to compute a basis B for A(A)
which has orthogonality defect < d(n), where d(n) is a number
which depends only on the dimension.

lllpl!

(11 pll::::m"’““'

Small defect means CV is simple Proof

o gyl = faull /v
e Suppose w = 31, u(i)a;

Theorem. HiH)eR,1<i<n
o Let A€ QU be alattice basis with orthogonality defect . o B..NAA)=0 =
o Suppose w.lo.g. that last column a, of A has largest norm PVIORS Lu(i))ai ¢ Bo.c.
o Letw € Q" and let B¢ be the ball of radius € around w. « Since g, is largest basis

vector = |la,|l 2 ¢/n

o == l|lail| 2¢e/(yn
IfBue MA(A} = 0. then |ia))]| 2 &/(y-n) e / )
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Searching the closest vector

Let d =/, |

Ve AlA) =— v=A" Rk
where » = 7"

= dv=d’A* Rh=
(0.....0.1YRL=hi{n) €

max{d7vivE B} —min{d x|
LE B} = 2eidl < 2yn

Recuisnery, searcr for lat-
tice vector in B, ,, Mid7x = 8),
where & € 7 and max{d’ x| x €
Beut 2oz min{d’xtx€ B}

lllpll

Basis reduction makes CV simple

Theorem (LLL Algorithm). Let A € Q%" be a lattice basis There exists
an algorithm which runs in polynomial time (in binary input encoding)
which computes a lattice basis B € Q™" with

A(A) = A(B)

o orthogonality defect of B is < 2111

If the dimension is fixed, the algorithm runs in linear time.

lllpll:;:

Proof

A -— LLL — B, let b, be largest vector of B
orthogonality defect y < 27" 1/*

w= S0 uli)b;
v B LD by
d = b b

lllpll

Searching the closest vector

o letd=d’/|ja,l|*

e vEA(A) = v=A"-RA
where ».€ 2"
e = d'v=d"A* Ri=
0..... 0.1)Rh=4h(n) €
o max{d’x|x€B,.}-min{d x|
x€ B} =2elid|l <2yn
e Reacursively search for lat- dTx =%
tice vector in BN (d7x =8),
where & € Z and max{d"x|x€
B }=02 min{d"x|x € B,.}

Solving CV

Theorem (Flatness theorem, Lenstra’s algorithm).
Lt Aec Q™" we Q' e € Qs
There exists a polynomial algorithm which computes either

e vEA(A)NB, . 0r
o deQ withd"velforeachv € A(A) and

max{d"x | x € B.,,} ~min{d x| x € B} < 2n2"" 1)/,

If n is fixed the algorithm runs in linear time.

lllpll:'.":,.""“

Solving IP feasibility for ellipsoids

Theorem (Flatness theorem, Lenstra’s algorithm).
Let E(A,a) be a rational ellipsoid. There exists a polynomial algorithm
which computes either

o aninteger pointx € E(A,a)NZ"
e oraninteger vector d € 2" with
max{dTx | x € E(A,a)} ~min{d"x | x € E(A,a)} < 2n2nr-1)/4
If the dimension n is fixed. the algorithm runs in linear time.

Illpll::...u""‘*



proof

Find vector in A(A)N B, 4. O
Find vector f with f7A = 2 and

max{f7xjx e By} —min{fTx|xe B, <2p2m

o= jlaa
E{A.a)=A"1B,

d! :fIA

|Ilpll

The flatness theorem for convex

bodies

Better flatness constants

For Ellipsoids: O(n) [Ban96]
Simplices: O(nlogn) [BLPS99)

lllpll:‘:‘,

Solving IP feasibility for ellipsoids

Theorem. [f the dimension n is fixed. there exists a linear-time algorithm
to solve the IP-feasibility problem for ellipsoids.

» Algorithm above either determines integer point or determines
d € Z" with
max{d7x[x € E{A.a)} —min{d x| x € E(A,a)} < 2n 2D/

e We can assume ged(d) =1
« Compute unimodular matrix U with d’U = (1.0.....0)

e E(A.a)N(d7x = §) contains integer point if and only if
E(AU 1,a)x(1) = & contains integer point. (ellipsoid in lower
dimension)

o Exercise: Give a closed formuia for the ellipsoid above in n — 1
variables.

Illpll.';‘,'

Max. volume ellipsoids

e Each convex body K C R” has a unique max. volume ellipsoid
E(A.b) contained in K.

o E(A/na)2K2DE(Aa)

Theorem (Flatness theorem convex bodies). Ler K C R" be a convex
body. If KNZ" # O then there exists ad € Z" — {0} such that

max{d7x|x€ K} —min{d"x | x € K} 212 2" D)4,

LY SRR by

The LLL algorithm
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A lower bound on SV, Proof of theorem

Theorem. Let B be a latiice basis and let B* = (b} .. b)) be its o O#veAthenv=3,_, ()b, wherek<n,
Gram-Schmidt orthogonalization, then SVa(A(B)) 2 minj=i_ b fi2. rMieZoj=1...., kand x;, # 0.
e Using GSO:

It

> (Mn(b; +§uijh:>>
S i =

k-1
AE)Y b} + E,r(i)h,'. for some x{i) € R.
=1

i

RSN WEOR A I LA

LT V) Tt
Summary of insight progress Natural conclusion

« |f lattice basis is orthogonal, shortest vector is easy. « Given a basis, turn it into something which resembles as
« The Gram-Schmidt orthogonalization of lattice basis provides much as possible to its GSO.

jower bound on shortest vector. « Try to assure that the vectors in GSO do not decrease fast, so
« First vector of GSO is first vector of basis. that first vector is about the size of the minimum in GSO.
« Typically vectors in GSO B* of B are decreasing rapidly, thus

spoiling the lower bound.

LTV ) LESE LELE LT sy
The LLL Algorithm Swap: Explanation

« Normalize: Subtract integer multiples of columns from another o The vector b}, + u; ;11 b} is the new j-th vector of B* after the

column so that i, | < 1/2forevery 1 <i< j< nin GSO swap because

decomposition o B =bp— S kb

1 H o The vector b%, | +u; ;1 b5 is projection of ., into
B=8B orthogonal complement of by.....5,.;.
0 I o The vector b}, | +u; j+1 b; is new j-th column of B* after

» Swap (fight the decrease of the ||b3])): I there exists a j such the swap.

that « The j-th column decreases by 3/4

1921+ sy a1 DI < 374115512 « The only possible side effect is an increase of the j + 1-st
T B J = AL

column. The rest of the GSO remains unchanged.
swap b, and h,,,. Goto Normalize

lllpll‘::.r-""““



A potential function

o QB = by PR R

o Define B, =1h.....h,)

e |[hii- by is j-dimensional volume of parallelepiped of
byooh,

o deuB'B,)={piP - |h1PeZ

e ¢(Bi =[]} det(B/B,j< Z

e Aswapofb, andh,., of LLL does not change voiume for

(=1.. .. j—1.j=1....nand decreasesdet(B/TBj)byafactor
of 374

s Since ¢(B) is an integer (all bases remain integral during LLL)
the algorithm terminates in a polynomial number of steps.

Illpll‘;'

The first vector is short

Let B be a basis returned by LLL:
.

CIETT RN PR TP &
< B 14

A

o Thus b2 < 245]
decrease!)

o fib= b2 i min{ |l =0 n}

o Thus ibii< 2" DISV(A(B))

17 (we successtully fought the rapid

s Thus sV can be approximated within a factor of in
polynomial time

lllpll:.:

The complexity of the LLL

Conclusion:

e The LLL algorithm is polynomial in the bit mode! of
computation.

« [f the dimension is fixed, it runs in linear time in binary
encoding length (as the Euclidean algorithm)

lllpll;

Termination of the LLL

We just proved:

Theorem. Given an integer lattice basis B, the LLL algorithm performs a
polynomial number of steps.
What remains to be done:

« Need to argue that the binary encoding length of numbers
involved remains polynomial.

[1]] p B

The binary encoding length

What follows is a sketch of polynomiality.
o After normalization:
j
o =Y wllei i <Y 116117 < n det(a)
=1 =]

o b; are integral vectors, together with fact above, their encoding
length is polynomial in input. (Remember Hadamard bound})!

¢ GSO is polynomial operation.

e The normalization is polynomial, because it operates on
upper-right matrix in GSO decompoaosition.

m p LI i

Orthogonality defect; Exercise

e Show that LLL basis B satisfies

Tl < 20072 {gex(s)).

i=

lllpll:‘..".‘n""“



Basis reduction, historical notes Basis reduction, historical notes

« Lattice basis reduction has its origin in the work of Lagrange o The LLL algorithm is by Lenstra, Lenstra and Lovasz [LLL82].

on binary quadratic forms. « A non-algorithmic and beautifut proof of these facts was given

» With a technical, but algorithmic proof, GauB3 [Gau01] showed by Minkowski [Min68], who opened the stage for a new
that a 3-dimensional lattice A has a nonzero vector of length discipline of mathematics, the geometry of numbers.
(4/3) 2 det{A)!

» Hermite [Her50] generalized this result by showing that each
n-dimensional lattice A has a nonzero vector v, such that
fivfa € (4730 Pt dey A

lllpll

ez

Exercise

« Show that, given a lattice basis B, one can in polynomial time
compute a nonzero vector v € A(B) — {0}, such that
livil < 27717 /I det(B)].

Computing the width of a simplex

I LT VL
The width of a simplex Exercise
« Since translation leaves flatness invariant 0 is a vertex « Let = be a simplex in fixed dimension. Show that one can
o T =conv{0.vp.. v} Nimplex. determine an integer direction d € Z” — {0} with
e 4 matrix with rows v].... A7 max{d"x|x € £} ~min{d x| x € 2}
e width of T along ¢: .
in inear time.
i1Acx € we(Z) < 2|Aclix « Hint: Given an LLL-reduced basis in fixed dimension and a

constant a, one can enumerate all vectors whose length is at
most o times the shortest vector length in constant time.

Minimal width along integer ¢ € 2" - {0} = length of shortest vector
of A(A) = {Ac|ceZ"}

lllpl
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Integer Programming I1

SOlVing the Optimization prOblem o Task: Find integer assignment to x(1),...,x(n) with largest
efficiently vaiue of x(1).

lllpll,‘

Integer Programming Integer Programming

lllpll

T EEES

Binary search

« Given a polyhedron in fixed dimension with m constraints,
each of binary encoding length s one can solve the integer
feasibility problem in time O(m + s)

« Via binary search the optimization problem can be solved in
time O((m + s)s) [Len83)

Effient algorithms for the plane

lllpll:‘.:‘.‘.t‘“““



History

w Number of constraints
< largest binary encoding length of coefficient

- Method . Complexity
Kannan 1980, Scharf 1981 i polynomial }
T Lenstra 1983 . O(ms+s)
Feit 1984 L Opn logn +ms) ‘1

Zamanskij and Cherkasskij 1984 | O(mlogm +ms)
MKanamaru, Nishizeki and Asano 1994 . O(mlogm+5)

E. and Rote 2000 I O(m+ (logm)s)
E. 2003 ‘ O(m+ (logm)s)
T L& Lan | Oims \
. Feasibility test + Euclidean algorithm ! O(m+5) "
any tixed dimension
m p 1

Megiddo’s Algorithm for LP in the plane

» Partition constraints
into "down” and “up”
constraints

Megiddo’s Algorithm for LP in the plane

- e Partition constraints
. ‘ into “down” and "up”

: constraints
- >/
7 ~

« Pair “up-constraints”
arbitrarily

« Compute median of
intersections

Prune & Search: Dealing with the
combinatorics

Megiddo’s Algorithm for LP in the plane

o Partition constraints

into “down” and “up”

>< constraints
« Pair “up-constraints”

arbitrarily

1me p | | Jedriang

Megiddo’s Algorithm for LP in the plane

o Partition constraints

| into “down” and “up”
!‘ >< constraints
! o Pair “up-constraints”
""""'V/ arbitrarily

« Compute median of
intersections

o Decide whether

| optimum is left or

' right

lllpll:‘.'_‘.'_“"“'



Megiddo’s Algorithm for LP in the plane Megiddo’s Algorithm for LP in the plane

e Partition constraints e Each round at feast 1/4-th of the constraints pruned

into “down” and “up  Each round costs linear time

~\
>// - constraints Overall cost i |
~ verall cost is linear
~ W o Pair “up-constraints” ¢
/T—/ arbitrarily

+ Compute median of

\ intersections Theorem ([Meg83]). A linear program in the plane with m constraints
¢ Decide whether can be solved in O(n).

optimum is left or
right

e Prune 1/4-th of con-
straints

L1 1] p | ] S
Partitioning the Polygon
x(1)
.. . ///\\\.
Combining Prune&Search with / )
feasibility algorithm p /
/ /
/ /
, -
N _—
s p | § Redoane L1 ]] p | § =
Partitioning the Polygon Partitioning the Polygon
x(1) x(1)

Upper right kind

s p | | 1 p |1 =i
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Prune & Search Prune & Search

:LR_ AN %
- ~ e Principle: Improve /., and « Principle: Improve /.., and
T ! =

~ Lright Lrighe
i \ ; e Pair constraints arbitrarily e Pair constraints arbitrarily
i T\ ! « Compute median of « Compute median of
[t ; \ intersections intersections
| k P e Compute width of triangle
i ‘i :
/L | / defined by median
L - !
T
Viept! lnedgian Ui liefe! lmedian Iright
Prune & Search Prune & Search
\—B‘T \ e Princi . %
- rinciple. Improve /., and il
~— \ o ' pe— . fnnc«ple. Improve /.., and
A right
l « Pair constraints arbitrarily o Pair constraints arbitrarily
| * Compute median of o Compute median of
! intersections intersections
! \ > + Compute width of triangle  Compute width of triangle
1 Jl, — defined by median defined by median
[ ¢ Update bounds e Upd
— pdate bounds
Higr Lot befs Lright e Prune 1/4-th of constraints
mpn: LT V) LRy
Analysis Analysis
e Each round 1/4-th of constraints pruned e FEach round 1/4-th of constraints pruned
o Computing median is linear
O(m + ) is also possible [ELO5] O(m+s) is also possible [ELO5]
s LT VLT




Analysis

« Each round 1/4-th of constraints pruned
« Computing median is linear
« Running time without width checking: O(m)

Oim+ 5) 15 also possible [ELOS)

lllpll:

Efficient algorithms for arbitrary
fixed dimension

ll|pll‘

Integer Programming I1I

e Vanapies x(l),.... (1)
o Set // of rational linear constraints

o Exphotbox constrante: 0 x < M

e Tucr: Compute 1" (H): Unique integer point which satisfies all
constraints in H and the box-constraints which is
exicographicaiy maximal (linear objective)

Analysis

« Each round i/4-th of constraints pruned

« Computing median is linear

« Running time without width checking: O{m)
« Number of checked triangles: O(logm)

O(m~+s) is also possible [ELOS5]

Roadmap

« Show that a problem with m constraints can be solved in
expected time O(m) -+ running time to solve O(logm) problems
with a fixed number of constraints (Clarkson’s aigorithm)

o Intotal: Expected O(m+ s logm) algorithm

lllpll

A theorem of Bell and Scarf

Theorem ([Bel77},[Sca77]). Let H be a set of rational linear constraints
in R". If there does not exist an integer point which satisfies all
constraints, then there exists a subset BC H with |B| < 2" such that there
does not exist an integer point which satisfies all constraints in B.

lllpll:‘.‘::."““



Proof

e Let H be minimal such that H
has no feasible integer point

¢ Assume constraints are

4“/;\// alx < Pii=1...m where a;
- i N and §; are integers
\L\\\ \\
\\\\
I p n:
Proof
e Let H be minimal such that /
_— has no feasible integer point
'« Assume constraints are
S e alx < B;i=1...m, where g,
7 \\ and B; are integers
— Tx < B, there
N . Fo_r each ax g Bi, r
| . \\\ exists an integer solution

which satisfies all but the i-th
) constraint. Let v; be such an
— integer solution with a7y,
minimal
e Z=conv({v,.... Ym}NZ")

lllpl

Exercise

Prove the following theorem

Theorem ({Sca77]). Let H be u set of linear constraints. If x* (H) exists
then there exists a subset B of H with |B] < 2" — 1 with x"(H) = x™(B).

sof H.

e D =2"_1is compinateral dimension

e This Bis called a bas:

« Let H be minimal such that H
has no feasible integer point

« Assume constraints are
zl,Tx < B i=1,...m, where g,
and p, are integers

e Foreach alx < B,, there
exists an integer soiution
which satisfies all but the i-th
constraint. Let y; be such an
integer solution with [y,
minimal

m p |} [

Proof

e Ltety,....y,€Zst a,-T.x <y

FNEFRI N

has no solution in Z and
Y1+ +vn IS maximal

e For each i there exists a
w€Zst a'zi=yv,+1and
alz; <y,foreach j#i

e Since m > 2" there exist i #

I Jj with z; = z; (mod 2) =

! 1/2(z;+z;) € Z and satisfies alil

: constraints which is a contra-
diction

Illpll

Clarkson 1

Input: H with |[H{=m

. Output: Basis B with x*(B) =x"(H)

re—Dym, G—0

. REPEAT

(a) Choose random R € (¥)

(b} Compute x* = x*(GUR) with Clarkson 2

(c) V « {heH |x* violates h}

(d) IF|V|C2y/m, THEN G — GUV, Augmentation step

. UNTILV =90
. RETURN x"

lleII:.:T."“"



Analysis

Lemma. In Step (4.c30 E{QV = /m.
Let B be optimal basis.
« Each augmentation step. a f-w element ot B enters G
» Thus at most d augmentation steps
o P(IV] 3 24/ < 1/2 Markow inequality
« Expected number of draws is 2d
Clarkson 1 performs:

» Expected 24 integer linear programs with Clarkson 2 on
3D\ /m constraints

Illpll:::

Proof

* See [GW96]
o E{Vili= (ZR:»(»;)WR‘;) /(M

. I i xt(GuQ) violates h,
AQh) = .
Kl Q7) {0 otherwise.

I
=
>

(") eave

}(‘ 2 XG(R.)
Re[1yHEMR

il
2
R
L)
b
SN
©
|
4}
=

N
l»}

Clarkson 2

1. INPUT: cand H, |[Hi=m
2. OUTPUT: x'(H)
3. r—6d*
4. REPEAT:
(a) Choose random R & (")
(b) Compute x* =" (R), Base Case
(€) V — {heH|x violates h}
(d) IF (V)< 1/(3d)p(H) THEN forall he v do puy — 2y
5. UNTILV =9
6. RETURN 1"

lllpll::;'

Sampling Lemma

Lemma. Let G and H {multi-)sets of constraints |H| = m and let
1 < r < m. Then for random R € ('r') :

E(|Vah) gd{m=r)/(r+1).

where Vg = {h € H | x"(GUR) violates h}.
This lemma establishes our desired bound because r = [D/m) and
thus

Dim—r)/(r+1)<Dm/r< vm. (-2)

lllpll

Clarkson 2

« Each h € H is assigned a multiplicity p-
» Inthe beginning w, = Lforalihe H.

Lemma. After kd successful iterations (entering re-weighting step):
2 < u(B) < mé*"*, for basis Bof H.

Lemma. Clarkson 2 requires O(d*mlogm) arithmetic operations and
expected 6d lam base case computations.

lllpll:;.-:‘—“



Result of combining 1 and 2

‘Theorem. An integer linear program can be solved with expected O(m)

arithmetic operations and O(logm) oracle calls 10 solve an IP with a fixed

number of constraints

o So far IP with fixed number of constraints O(s?)

e With Clarkson: [P with m constraints costs expected
Olm + s -logm)

Lenstra’s IP algorithm

Lenstra’s algorithm is an
algorithm for IP feasibility
Computes width of
polyhedron

It width is to large, then return
feasibie

Otherwise, recursivehy search
for integer point on one of
the constant number of hyper-
planes (lower dimension)
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Lenstra’s IP algorithm

Lenstra's algorithm is an
algorithm for IP feasibility

Computes width of
polyhedron

If width is to large, then return
feasible

Otherwise, recursively search
for integer point on one of
the constant number of hyper-
planes (lower dimension)

Solving IP with fixed number of
constraints in linear time
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Lenstra’s IP algorithm

Lenstra’s algorithm is an
algorithm for IP feasibility

Computes width of
polyhedron

If width is to large, then return
feasible

Otherwise, recursively search
for integer point on one of
the constant number of hyper-
planes (lower dimension)
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Lenstra’s IP algorithm

Lenstra’s algorithm is an
algorithm for IP feasibility

Computes width of
polyhedron

It width is to large, then return
feasiblc

Otherwise, recursively search
for integer point on one of
the constant number of hyper-
planes (lower dimension)
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Lenstra’s IP algorithm

Lenstra's algorithm is an
algorithm for IP feasibility

Computes width of
polyhedron

If width is to large, then return
teasible

Otherwise, recursively search
for integer point on one of
the constant number of hyper-
planes (lower dimension)

Sliding objective

Let objective function slide
into polyhedron

Until truncation is not flat
anymore

Optimum lies on one of a
constant number of
hyperplanes

Continue search for optimum
in the hyperplanes

Sliding objective

Let objective function slide
into polyhedron

Until truncation is not flat
anymore

Optimum lies on one of a
constant number ot
hyperplanes

Continue search for optimum
in the hyperplanes

lllpll::'

Sliding objective

Let objective function slide
into polyhedron

Until truncation is not flat
anymore

Optimum lies on one of a
constant number of
hyperplanes

Continue search for optimum
in the hyperplanes
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Sliding objective

.
\ \

L

Let objective function slide
into polyhedron

Until truncation is not flat
anymore

Optimum lies on one of a
constant number of
hyperplanes

Continue search for optimum
in the hyperplanes
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Sliding objective

—

Let objective function slide
into polyhedron

Until truncation is not fiat
anymore

Optimum lies on one ofa
constant number of
hyperplanes

Continue search for optimum
in the hyperplanes
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Sliding objective

« Let objective function slide
into polyhedron

e Until truncation is not flat
anymore

e Optimuem lies on one of a
constant number of
hyperplanes

o Continue search for optimum
in the hyperplanes

lllpll

Key idea: Restrict to two-layer simplices

e I is two-layer simplex if vertices partition into two sets V and
W such that

Tv=l

Vand Tw=cw forali v eV, wow € W
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Example in 3D

— Vi

y
0~ \ (b = g0vy + pwy
oo
N ’ 1 — vy + pw
SN \( HIVE A pwy
uwy Nopewy
\ \
; N\ \
i \, \
\ N
il b
\\\\ \\
-

wa

Sliding objective

. * Let objective function slide
| T i into polyhedron

| s Untit truncation is not fiat
anymore

|
. i ¢ Optimum lies on one of a
| | constant number of
} ‘ hyperplanes
|
| ‘ e Continue search for optimum
in the hyperplanes

Problem: Geometry of truncation changes too much in the sliding

process
Example in 3D
Vi
0
Wy
w2
1 p [ ] Rt
Example in 3D
AVl

o (T=pwi 4wy

(1= pvi + pwz
’ Width of truncation is
approximately width of
simplex spanned by vV
and pW.
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Width and shortest vector

Width of Xy, is abm the length of shortest vector in A(Au4).
where

e Ais matrix with rows w7 wl o] g

o A, results from A by scaling first k rows with

lllpl

Algorithm for PSV

P Z\In«_v(
B Apx
repeat
it p=
return SV(A) > U
B Bin
p—pil
B — LLL(B)
until by € 22U
return 2p

Complexity of TP any fixed dimension

Using Clarkson's algorithm for LP-type problems one then obtains:

Theorem (E. 2003). An integer program with m constraints, each
involving coefficients of size at most s can be solved in expected time
O{m+ {logm)si.

Parametric shortest vector

The following problem has to be solved:

PARAMETRIC SHORTEST VECTOR:

4 N such that U € SV(A(4,)) £ 2077 -U

Given matrix A € Z*" and parameter U € N, find parameter

Theorem (E. 2003). The parametric shortest vector problem can be

solved in linear time in fixed dimension.

Running time

« Potential of basis: ¢(B) = |1b}11*"|
« Potential strictly decreases

o B, — LLL — Ba: logo(Bi) —log¢(B,) iterations

o §{Aus) < $(Aua) € U (el a1

« in fixed dimension O(size(U) + size(A)) iterations,

by

20 2

T e

linear

What have we learned in these lectures ?

» We know why and how to reduce a basis

« We know how to compute shortest and closest vectors in fixed

dimension in linear time

« We have learned about Prune&Search and about Clarkson's

random sampling algorithm

» We have seen that IP in fixed dimension can be solved with

an almnst optimal algorithm
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Research problems

Is there a deterministic O(m + stogm) algorithm ?
Is there a O1m — s} algorithm ?

lleII?:

Bibliography

[Bang6]  W. Banaszczyk. Inequalities for convex bodies and polar reciprocat lattices in R".
it. Application ot K-convexity. Discrete Comput. Geom., 16(3):305-311. 1996

[Bel77] David E. Bell. A theorem concerning the integer lattice. Studies in Appl. Math..
56(2):187-188, 1976/77.

{BLPS99] Wojciech Banaszczyk. Alexander E. Litvak, Alain Pajor, and Stanistaw J. Szarek
The flatness theorem for nonsymmetric convex bodies via the local theory of
Banach spaces. Mathematics of Operations Research, 24(3):728-750, 1998

[ELOS) F. Eisenbrand and S. Laue.
A linear algorithm for integer programming in the plane. Mathematical
Programming, 102(2):249 — 259, 2005.

[Gau0t] C. F. GauBl. Disquisitiones arithmeticae. Gerh. Fleischer fun., 1801,

[GW96]  Bernd Gartner and Emo Welzl. Linear programming —randomization and
abstract frameworks. In STACS 96 (Grenoble, 1996}, volume 1046 of Lecture
Notes in Comput. Sci., pages 669—687. Springer, Beriin, 1996.

[Her50]  Ch. Hermite. Extraits de lettres de M. Ch. Hermite & M. Jacobi sur différents




