Integer Programming I

Fast Algorithms for Integer Programming in Fixed Dimension

Friedrich Eisenbrand

- Variables: x(1),...,x(n)
- Linear constraints: $a_{i1}x(1) + \cdots + a_{in}x(n) \leq b(i)$, for $i = 1, \dots, m$
- Linear objective function: $c(1)x(1) + \cdots + c(n)x(n)$
- Task: Find integer assignment to x(1),...,x(n) such that all constraints are satisfied and objective function is maximized.

при

GCDs and IP

Theorem. $gcd(a,b) = min\{xa + yb \mid x,y \in \mathbb{Z}, xa + yb \ge 1\}$

 $minimize \quad xa + yb$ condition $xa + yb \geqslant 1$ $x, y \in \mathbb{Z}$.

GCDs and IP

Theorem. $gcd(a,b) = min\{xa + yb \mid x,y \in \mathbb{Z}, xa + yb \ge 1\}$

 $minimize \quad xa + yb$ condition $xa + yb \ge 1$ $x, y \in \mathbb{Z}$.

Integer Programming: Combinatorics & Number Theory

III PH marginal masses

mpuzz

Euclidean Algorithm

- Input: Integers $a \geqslant b > 0$
- while $b \neq 0$
 - Compute $q \geqslant 1$ and $0 \leqslant r < b$ with a = qb + r
 - a ← b
 - b ← r
- return a

Euclidean Algorithm

- Input: Integers $a \geqslant b > 0$
- while $b \neq 0$
 - Compute $q \geqslant 1$ and $0 \leqslant r < b$ with a = qb + r

 - a ← b
 b ← r
- return a

Analysis:

- $r \leqslant a/2 \Longrightarrow \text{running time is } O(\log a)$
- · Running time depends on binary encoding length of numbers

Goals of this course

Primary goals:

- Develop algorithm for IP in fixed dimension with fixed number of constraints which runs in linear time (match complexity of Euclidean algorithm)
- Reduce the dependence of the running time on the number of constraints (Clarkson's algorithm)

To achieve that we need to learn about:

- Lattices
- · Basis reduction especially LLL algorithm
- · Flatness theorem
- · Integer feasibility in polynomial time

mhn

Integer feasibility

mpn

The feasibility problem for ellipsoids

- $A \in \mathbb{Q}^{n \times n}$ rational nonsingular matrix
- $a \in \mathbb{Q}^n$ rational vector
- $E(A,a) = \{x \in \mathbb{R}^n \mid \|A(x-a)\| \leqslant 1\}$ rational ellispoid defined by A and a
- Question: $E(A,a) \cap \mathbb{Z}^n = \emptyset$?

шришш

A re-formulation

- $A \in \mathbb{Q}^{n \times n}$ rational nonsingular matrix
- $w \in \mathbb{Q}^n$ rational vector (w = Aa)
- $\Lambda(A) = \{Ax \mid x \in \mathbb{Z}^n\}$
- Question: What is the point in $\Lambda(A)$ which is closest to w ?

mpuss

Lattices

 $\Lambda(A) = \{Ax \mid x \in \mathbb{Z}^n\}$

where $A \in \mathbb{Q}^{mn}$ is nonsingular rational matrix.

A is basis of Λ.

A Lattice is a set:

Lattices

$$A = \begin{pmatrix} 4 & 5 \\ 0 & 2 \end{pmatrix}$$

Lattices

$A = \begin{pmatrix} 4 & 5 \\ 0 & 2 \end{pmatrix}$ \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots

mpn

Exercise

- Let A be a lattice basis of Λ . Suppose that B originates from A by:
 - · Swapping columns.
 - Subtracting integer multiples of a column from another column.

Show that B is also a basis of Λ .

• Show that $\binom{4}{0}$ $\stackrel{5}{2}$) and $\binom{4}{0}$ $\stackrel{1}{2}$) generate the same lattice. What is the shortest vector of this lattice?

mpn

The central lattice problems

- Given a nonsingular matrix $A \in \mathbb{Q}^{n \times n}$ and a vector $\mathbf{w} \in \mathbb{Q}^n$
- Codsest vector problem: Determine $v \in \Lambda(A)$ with $\|v-w\|$ minimal CV
- Shortest vector problem: Determine $v \in \Lambda(A) = \{0\}$ with ||v|| minimal SV

Quiz: What is the shortest vector?

THI PIT Replant and the second second

Quiz: What is the shortest vector?

Quiz: What is the shortest vector?

Quiz: What is the shortest vector?

Quiz: What is the shortest vector?

при

шришш

Exercise

• Let A be an orthogonal matrix, i.e., columns are orthogonal to each other. Show that the shortest vector of $\Lambda(A)$ w.r.t. ℓ_2 is the shortest vector of the basis A.

The lattice determinant

Let A and B be bases of Λ

- There exists integer matrix Q_1 such that $B = AQ_1$
- There exists integer matrix Q_2 such that $A = BQ_2$
- Thus $A = Q_2 Q_1 A$, thus $Q_1 Q_2 = I_n$.
- $1 = \det(Q_2 Q_1) = \det(Q_2) \det(Q_1)$
- Q_2 and Q_1 integer matrices: $\det(Q_1), \det(Q_2) = \pm 1$
- $|\det(A)| = |\det(B)|$.

Lattice determinant:

 $det(\Lambda) = |det(A)|$, where A is basis of Λ .

шризам

mpnee

Example lattice determinant

- Lattice determinant is volume of parallelepiped of basis elements.
- The two bases below are $\begin{pmatrix} 4 & 5 \\ 0 & 2 \end{pmatrix}$ and $\begin{pmatrix} 4 & 1 \\ 0 & 2 \end{pmatrix}$.

Example lattice determinant

- Lattice determinant is volume of parallelepiped of basis elements.
- The two bases below are $\begin{pmatrix} 4 & 5 \\ 0 & 2 \end{pmatrix}$ and $\begin{pmatrix} 4 & 1 \\ 0 & 2 \end{pmatrix}$.

Example lattice determinant

- Lattice determinant is volume of parallelepiped of basis elements.
- The two bases below are $\begin{pmatrix} 4 & 5 \\ 0 & 2 \end{pmatrix}$ and $\begin{pmatrix} 4 & 1 \\ 0 & 2 \end{pmatrix}$.

шри

Gram-Schmidt orthogonalization

- b₁ and b₂ vectors.
- We search b₂* orthogonal to b₁ s.t. (b₁, b₂*) generate same vectorspace as (b₁, b₂)

- $b_2^* = b_2 \mu b_1$
- $0 = \langle b_2^*, b_1 \rangle = \langle b_1, b_2 \rangle \mu \langle b_1, b_1 \rangle$
- $\mu = \langle b_1, b_2 \rangle / \langle b_1, b_1 \rangle$

приш

Gram-Schmidt orthogonalization

- Input: $b_1, \ldots, b_n \in \mathbb{R}^n$
- Output: $b_1^*, \dots, b_n^* \in \mathbb{R}^n$ pairwise orthogonal and $\langle b_1^*, \dots, b_k^* \rangle = \langle b_1, \dots, b_k \rangle$ for all $k = 1, \dots, n$
- b₁ ← b₁
- For $j = 2, \dots, k$
 - $b_j^* \leftarrow b_j \sum_{i=1}^{j-1} \mu(i,j) b_i^*$, where $\mu(i,j)$ satisfies $\langle b_j \mu(i,j) b_j^*, b_i^* \rangle = 0$

Gram-Schmidt orthogonalization

• Decomposes matrix $B \in \mathbb{Z}^{n \times n}$ into

$$B = B^* \begin{pmatrix} 1 & \mu(i,j) \\ & \ddots & \\ 0 & & 1 \end{pmatrix},$$

where B* is matrix with pairwise orthogonal columns.

шриш

mpn===

Exercise

• Let $B=(b_1,\ldots,b_{i-1},b_i,b_{i+1},b_{i+2},\ldots,b_n)$ and $\widetilde{B}=(b_1,\ldots,b_{i-2},b_{i+1},b_i,b_{i+2},\ldots,b_n)$ be two lattice bases. Notice that \widetilde{B} originates from B via swapping the i-th and i+1-st column. Prove that B^* and \widetilde{B}^* only differ in the i-th and i+1-st column.

Exercise

Let
$$B = B^* \begin{pmatrix} 1 & \mu(i,j) \\ & \ddots \\ 0 & 1 \end{pmatrix}$$
 be the GSO of B

- Show that $||b_i^*|| \le ||b_i||$ for i = 1, ..., n
- Show that $|\det(B)| \le ||b_1|| \cdots ||b_n||$ where equality holds if and only if B is orthogonal (Hadamard inequality)

Orthogonality defect

Let $A\in Q^{n\times n}$ be a nonsingular matrix. The number $\gamma\geqslant 1$ with $|\det(A)|\cdot\gamma=||a_1|\cdot\cdots||a_n||$ is the orthogonality defect of A.

Theorem. A shortest vector of $\Lambda(A)$ is of the form

$$\sum_{i=1}^{n} \lambda(i)a_{i}, \quad where \quad \lambda(i) \in \mathbb{Z} \quad and \quad -\gamma \leqslant \lambda(i) \leqslant \gamma.$$

Proof

- Suppose that $|\lambda(n)| > \gamma$.
- Let $B = B^* \cdot R$ be the GSO of B
- Since $\|b_i\|\geqslant \|b_i^*\|$ and $\|b_1\|\cdots\|b_n\|=\gamma\cdot\|b_1^*\|\cdots\|b_n^*\|$ one has $\|b_n\|\leqslant\gamma\cdot\|b_n^*\|$
- $B\lambda = B^* \cdot R\lambda = u + \lambda(n) b_n^*$, where $\langle u, b_n^* \rangle = 0$
- Thus $||B\lambda|| \ge \lambda(n) ||b_n^*|| > \gamma \cdot ||b_n^*|| \ge ||b_n||$ which is a contradiction to $B\lambda$ being shortest vector

mpu

mpn

Small defect means SV is simple

Consequence:

Theorem. Let $A \in \mathbb{Q}^{n \times n}$ be a rational lattice basis with orthogonality defect γ , then a shortest vector can be computed in time $O((2\gamma+1)^n)$.

Lattice basis reduction is a way to compute a basis B for $\Lambda(A)$ which has orthogonality defect $\leqslant d(n)$, where d(n) is a number which depends only on the dimension.

Exercise

• Let A be an orthogonal matrix, i.e., columns are orthogonal to each other. Let $w \in \mathbb{Q}^n$. Suppose that $w = \sum_{i=1}^n \mu(i) a_i$. Show that the closest vector of $\Lambda(A)$ to w is the vector $\sum_{i=1}^n |\mu(i)| a_i$.

приже

шришы

Small defect means CV is simple

Theorem.

- Let $A \in \mathbb{Q}^{n \times n}$ be a lattice basis with orthogonality defect γ .
- Suppose w.l.o.g. that last column an of A has largest norm
- Let $w \in \mathbb{Q}^n$ and let $B_{w,\varepsilon}$ be the ball of radius ε around w.

If $B_{w,\varepsilon} \cap \Lambda(A) = \emptyset$, then $||a_n^*|| \ge \varepsilon/(\gamma \cdot n)$

Proof

- $||a_n^*|| \geqslant ||a_n||/\gamma$
- Suppose $w = \sum_{i=1}^{n} \mu(i)a_i$ $\mu(i) \in \mathbb{R}, 1 \leqslant i \leqslant n$
- $B_{w,\varepsilon} \cap \Lambda(A) = \emptyset \Longrightarrow \sum_{i=1}^{n} (\mu(i) \lfloor \mu(i) \rfloor) a_i \notin B_{0,\varepsilon}.$
- Since a_n is largest basis vector $\Longrightarrow ||a_n|| \ge \varepsilon/n$
- $\bullet \quad \Longrightarrow \|a_n^\star\| \geqslant \epsilon/(\gamma \cdot n)$

Searching the closest vector

- Let $d = a_n^*/||a_n||^2$
- $v \in \Delta(A) \implies v = A^* \cdot R\lambda$, where $\lambda \in \mathbb{Z}^n$
- \Longrightarrow $d^T v = d^T A^* R \lambda = (0, \dots, 0, 1) R \lambda = \lambda(n) \in$
- $\max\{d^T x \mid x \in B_{\epsilon, n}\} \min\{d^T x \mid x \in B_{\epsilon, n}\} = 2\epsilon ||d|| \leqslant 2\gamma n$
- Hecurever, search for lattice vector in $B_{t,w} \cap (d^Tx = \delta)$, where $\delta \in \mathbb{Z}$ and $\max\{d^Tx \mid x \in B_{t,w}\} \geqslant \delta \geqslant \min\{d^Tx \mid x \in B_{t,w}\}$

mpi minim

Searching the closest vector

- Let $d = a_n^*/||a_n||^2$
- $\bullet \quad v \in \Lambda(A) \quad \Longrightarrow \quad v = A^* \cdot R \lambda,$ where $\lambda \in \mathbb{Z}^n$
- $\Longrightarrow d^T v = d^T A^* \quad R \lambda = (0, \dots, 0, 1) R \lambda = \lambda(n) \in \mathbb{R}$
- $\max\{d^T x \mid x \in B_{\varepsilon,w}\} \min\{d^T x \mid x \in B_{\varepsilon,w}\} = 2\varepsilon ||d|| \le 2\gamma n$
- Recursively search for lattice vector in $B_{\epsilon,w} \cap (d^Tx = \delta)$, where $\delta \in \mathbb{Z}$ and $\max\{d^Tx \mid x \in B_{\epsilon,w}\} \geqslant \delta \geqslant \min\{d^Tx \mid x \in B_{\epsilon,w}\}$

mpn

Basis reduction makes CV simple

Theorem (LLL Algorithm). Let $A \in \mathbb{Q}^{n \times n}$ be a lattice basis There exists an algorithm which runs in polynomial time (in binary input encoding) which computes a lattice basis $B \in \mathbb{Q}^{n \times n}$ with

- $\Lambda(A) = \Lambda(B)$
- orthogonality defect of B is $\leq 2^{n(n-1)/4}$

If the dimension is fixed, the algorithm runs in linear time.

Solving CV

Theorem (Flatness theorem, Lenstra's algorithm).

Let $A \in \mathbb{Q}^{n \times n}$, $w \in \mathbb{Q}^n$, $\varepsilon \in \mathbb{Q}_{>0}$.

There exists a polynomial algorithm which computes either

- $v \in \Lambda(A) \cap B_{\varepsilon,w}$ or
- $d \in \mathbb{Q}^n$ with $d^T v \in \mathbb{Z}$ for each $v \in \Lambda(A)$ and

$$\max\{d^T x \mid x \in B_{\varepsilon,w}\} - \min\{d^T x \mid x \in B_{\varepsilon,w}\} \le 2n2^{n(n-1)/4}.$$

If n is fixed the algorithm runs in linear time.

Шримын

mpn

Proof

- $A \longrightarrow LLL \longrightarrow B$, let b_n be largest vector of B
- $\bullet \quad \text{orthogonality defect } \gamma \leqslant 2^{n(n-1)/4}$
- $w = \sum_{i=1}^{n} \mu(i)b_i$
- $v = \sum_{i=1}^{n} \lfloor \mu(i) \rfloor b_i$
- $\bullet \quad d = b_n^* / \|b_n^*\|^2$

Solving IP feasibility for ellipsoids

Theorem (Flatness theorem, Lenstra's algorithm).

Let E(A,a) be a rational ellipsoid. There exists a polynomial algorithm which computes either

- an integer point $x \in E(A,a) \cap \mathbb{Z}^n$
- or an integer vector $d \in \mathbb{Z}^n$ with $\max\{d^Tx \mid x \in E(A,a)\} \min\{d^Tx \mid x \in E(A,a)\} \leqslant 2n 2^{n(n-1)/4}$

If the dimension n is fixed, the algorithm runs in linear time.

mpn-man mpn-man

proof

- Find vector in $\Lambda(A) \cap B_{1Aw}$ or
- Find vector f with $f^T A \in \mathbb{Z}^n$ and

$$\max\{f^T x \mid x \in B_{1,w}\} - \min\{f^T x \mid x \in B_{1,w}\} \le 2n2^{n(n-1)/4}.$$

- $f^T x = f^T A A 1x$
- $\bullet \quad E(A,a) = A^{-1}B_{1,a}$
- $\bullet \quad d^T = f^T A$

mpn

Solving IP feasibility for ellipsoids

Theorem. If the dimension n is fixed, there exists a linear-time algorithm to solve the IP-feasibility problem for ellipsoids.

- Algorithm above either determines integer point or determines $d \in \mathbb{Z}^n$ with $\max\{d^Tx \mid x \in E(A,a)\} \min\{d^Tx \mid x \in E(A,a)\} \leqslant 2n \ 2^{n(n-1)/4}$
- We can assume gcd(d) = 1
- Compute unimodular matrix U with $d^TU = (1, 0, ..., 0)$
- $E(A,a) \cap (d^Tx = \delta)$ contains integer point if and only if $E(AU^{-1},a) \cap x(1) = \delta$ contains integer point. (ellipsoid in lower dimension)
- Exercise: Give a closed formula for the ellipsoid above in n-1 variables.

приж

Max. volume ellipsoids

- Each convex body $K \subseteq \mathbb{R}^n$ has a unique max. volume ellipsoid E(A,b) contained in K.
- $E(A/n,a) \supseteq K \supseteq E(A,a)$

Theorem (Flatness theorem convex bodies). Let $K \subseteq \mathbb{R}^n$ be a convex body. If $K \cap \mathbb{Z}^n \neq \emptyset$ then there exists $a \in \mathbb{Z}^n - \{0\}$ such that

$$\max\{d^T x \mid x \in K\} - \min\{d^T x \mid x \in K\} \leqslant 2n^2 2^{n(n-1)/4}.$$

при

mpn==

Better flatness constants

The flatness theorem for convex

bodies

For Ellipsoids: O(n) [Ban96]
Simplices: O(nlogn) [BLPS99]

The LLL algorithm

тири попеч тири

A lower bound on SV₂

Theorem. Let B be a lattice basis and let $B^* = (b_1^*, \dots, b_n^*)$ be its Gram-Schmidt orthogonalization, then $SV_2(\Lambda(B)) \geqslant \min_{j=1,\dots,n} \|b_j^*\|_{2^*}$

Proof of theorem

- $0 \neq v \in \Lambda$, then $v = \sum_{j=1,...,k} \lambda(j) b_j$, where $k \leq n$, $\lambda(j) \in \mathbb{Z}$. j = 1,...,k and $x_k \neq 0$.
- Using GSO:

$$v = \sum_{j=1,\dots,k} \left(\lambda(j) \left(b_j^* + \sum_{i=1}^{j-1} \mu_{ij} b_i^* \right) \right)$$
$$= \lambda(k) b_k^* + \sum_{i=1}^{k-1} x(i) b_i^*, \text{ for some } x(i) \in \mathbb{R}.$$

 $||v|| = |\lambda(k)| ||b_k^*|| + \sum_{i=1}^{k-1} |x(i)| ||b_i^*|| \ge ||b_k^*||.$

mpn ======

mpnaa

Summary of insight progress

- If lattice basis is orthogonal, shortest vector is easy.
- The Gram-Schmidt orthogonalization of lattice basis provides lower bound on shortest vector.
- · First vector of GSO is first vector of basis.
- Typically vectors in GSO B* of B are decreasing rapidly, thus spoiling the lower bound.

Natural conclusion

- Given a basis, turn it into something which resembles as much as possible to its GSO.
- Try to assure that the vectors in GSO do not decrease fast, so that first vector is about the size of the minimum in GSO.

III pir miles mine

mpu

The LLL Algorithm

 Normalize: Subtract integer multiples of columns from another column so that |μ_{ij}| ≤ 1/2 for every 1 ≤ i < j ≤ n in GSO decomposition

$$B = B^* \begin{pmatrix} 1 & \mu \\ \ddots & \\ 0 & 1 \end{pmatrix}.$$

• Swap (fight the decrease of the $\|b_j^*\|$): If there exists a j such that

$$||b_{j+1}^* + \mu_{j,j+1} b_j^*||^2 < 3/4 ||b_j^*||^2$$

swap b_i and b_{i+1} . Goto Normalize

Swap: Explanation

- The vector $b_{j+1}^* + \mu_{j,j+1} \, b_j^*$ is the new j-th vector of B^* after the swap because
 - $b_{j+1}^* = b_{j+1} \sum_{i=1}^j \mu_{i,j+1} b_i^*$.
 - The vector b^{*}_{j+1} + μ_{j,j+1} b^{*}_j is projection of b_{j+1} into orthogonal complement of b₁,...,b_{j-1}.
 - The vector b^{*}_{j+1} + μ_{j,j+1} b^{*}_j is new j-th column of B* after the swap.
 - The j-th column decreases by 3/4
 - The only possible side effect is an increase of the j+1-st column. The rest of the GSO remains unchanged.

A potential function

- $\phi(B) = ||b_1^*||^{2n} ||b_2^*||^{2(n-1)} ||b_3^*||^{2(n-2)} \cdots ||b_n^*||^2$
- Define $B_j = \{b_1, \dots, b_j\}$
- $\|b_1^*\| \cdot \|b_j^*\|$ is j-dimensional volume of parallelepiped of b_1, \dots, b_j
- $\det(B_1^T B_1) = ||b_1^*||^2 \cdots ||b_1^*||^2 \in \mathbb{Z}$
- $\phi(B) = \prod_{j=1}^{n} \det(B_j^T B_j) \in \mathbb{Z}$
- A swap of b, and b_{j+1} of LLL does not change volume for
 i = 1,..., j 1, j + 1,..., n, and decreases det(B_j^TB_j) by a factor
 of 3/4.
- Since φ(B) is an integer (all bases remain integral during LLL) the algorithm terminates in a polynomial number of steps.

mpu

Termination of the LLL

We just proved:

Theorem. Given an integer lattice basis B, the LLL algorithm performs a polynomial number of steps.

What remains to be done:

 Need to argue that the binary encoding length of numbers involved remains polynomial.

mpn

The first vector is short

Let B be a basis returned by LLL:

•

$$||3/4||b_{j}^{\star}||^{2} \leq ||b_{j+1} + \mu_{j,j+1}b_{j}^{\star}||^{2}$$
$$\leq ||b_{j+1}||^{2} + 1/4||b_{j}^{\star}||^{2}$$

- Thus $\|b_j^*\|^2 \leqslant 2 \|b_{j+1}^*\|^2$ (we successfully fought the rapid decrease!)
- $||b_1|| = ||b_1^*|| \le 2^{(n+1)/2} \min\{||b_i^*|||i=1,\ldots,n\}$
- Thus $||b_1|| \leqslant 2^{(n+1)/2} \operatorname{SV}(\Lambda(B))$
- Thus SV can be approximated within a factor of it in polynomial time

при

The binary encoding length

What follows is a sketch of polynomiality.

After normalization:

$$||b_j||^2 = \sum_{i=1}^j \mu_{ij}^2 ||b_i^*||^2 \leqslant \sum_{i=1}^j ||b_i^*||^2 \leqslant n \det(\Lambda)$$

- b_j are integral vectors, together with fact above, their encoding length is polynomial in input. (Remember Hadamard bound)!
- GSO is polynomial operation.
- The normalization is polynomial, because it operates on upper-right matrix in GSO decomposition.

mpuss

The complexity of the LLL

Conclusion:

- The LLL algorithm is polynomial in the bit model of computation.
- If the dimension is fixed, it runs in linear time in binary encoding length (as the Euclidean algorithm)

Orthogonality defect; Exercise

Show that LLL basis B satisfies

$$\prod_{i=1}^{n} ||b_i|| \leq 2^{\binom{n}{2}/2} |\det(B)|.$$

Basis reduction, historical notes

- Lattice basis reduction has its origin in the work of Lagrange on binary quadratic forms.
- With a technical, but algorithmic proof, Gauß [Gau01] showed that a 3-dimensional lattice Λ has a nonzero vector of length (4/3)^{1/2} der(Λ)^{1/3}
- Hermite [Her50] generalized this result by showing that each n-dimensional lattice Λ has a nonzero vector v_i such that $||v||_2 \leqslant (4/3)^{n-1/4} \det(\Lambda)^{1/n}$.

Basis reduction, historical notes

- The LLL algorithm is by Lenstra, Lenstra and Lovász [LLL82].
- A non-algorithmic and beautiful proof of these facts was given by Minkowski [Min68], who opened the stage for a new discipline of mathematics, the geometry of numbers.

шриза

mpnee

Exercise

Show that, given a lattice basis B, one can in polynomial time compute a nonzero vector v ∈ Λ(B) − {0}, such that ||v|| ≤ 2^{n-1/4} √(det(B)).

Computing the width of a simplex

mpuss

mpn==-

The width of a simplex

- Since translation leaves flatness invariant 0 is a vertex
- $\Sigma = \operatorname{conv}\{0, v_1, \dots, v_n\}$ Simples.
- A matrix with rows v_1^T, \dots, v_n^T
- width of Σ along c:

 $||A\varepsilon||_{\infty} \leqslant w_{\varepsilon}(\Sigma) \leqslant 2 ||A\varepsilon||_{\infty}$

Minimal width along integer $c\in\mathbb{Z}^n-\{0\}pprox \mathrm{length}$ of shortest vector of $\Lambda(A)=\{Ac\mid c\in\mathbb{Z}^n\}.$

Exercise

• Let Σ be a simplex in fixed dimension. Show that one can determine an integer direction $d\in \mathbb{Z}^n-\{0\}$ with

$$\max\{d^T x \mid x \in \Sigma\} - \min\{d^T x \mid x \in \Sigma\}$$

in linear time.

• Hint: Given an LLL-reduced basis in fixed dimension and a constant α , one can enumerate all vectors whose length is at most α times the shortest vector length in constant time.

Integer Programming II

- Variables: x(1),...,x(n)
- Linear constraints: $a_{i1}x(1)+\cdots+a_{in}x(n)\leqslant b(i)$, for $i=1,\ldots,m$
- Task: Find integer assignment to x(1),...,x(n) with largest value of x(1).

III p III recipler's points

mpn

Integer Programming

Solving the optimization problem efficiently

Integer Programming

шриш

mpnaa

Binary search

- Given a polyhedron in fixed dimension with m constraints, each of binary encoding length s one can solve the integer feasibility problem in time O(m+s)
- Via binary search the optimization problem can be solved in time O((m+s)s) [Len83]

Effient algorithms for the plane

III DII anglah anny

History

in: Number of constraints

s: largest binary encoding length of coefficient

Method	Complexity	
Kannan 1980, Scharf 1981	polynomial	
Lenstra 1983	$O(ms+s^2)$	
Feit 1984	$O(m\log m + ms)$	
Zamanskij and Cherkasskij 1984	$O(m\log m + ms)$	
Kanamaru, Nishizeki and Asano 1994	$O(m\log m + s)$	
E. and Rote 2000	$O(m + (\log m)s)$	
E. 2003	$O(m + (\log m)s)$	
E. & Lauc	O(m s	
Feasibility test + Euclidean algorithm	O(m+s)	

any fixed dimension

mpn===

Prune & Search: Dealing with the combinatorics

mpn

Megiddo's Algorithm for LP in the plane

 Partition constraints into "down" and "up" constraints

Megiddo's Algorithm for LP in the plane

- Partition constraints into "down" and "up" constraints
- Pair "up-constraints" arbitrarily

HIP II might ware

mpnaaa

Megiddo's Algorithm for LP in the plane

- Partition constraints into "down" and "up" constraints
- Pair "up-constraints" arbitrarily
- Compute median of intersections

Megiddo's Algorithm for LP in the plane

- Partition constraints into "down" and "up" constraints
- Pair "up-constraints" arbitrarily
- Compute median of intersections
- Decide whether optimum is left or right

mpn approximate mpn approximat

Megiddo's Algorithm for LP in the plane

- Partition constraints into "down" and "up" constraints
- Pair "up-constraints" arbitrarily
- Compute median of intersections
- Decide whether optimum is left or right
- Prune 1/4-th of constraints

Megiddo's Algorithm for LP in the plane

- Each round at least 1/4-th of the constraints pruned
- · Each round costs linear time
- Overall cost is linear

Theorem ([Meg83]). A linear program in the plane with m constraints can be solved in O(m).

шрв

mpu

x(1)

Combining Prune&Search with feasibility algorithm

Partitioning the Polygon

шрише

mpuss

Partitioning the Polygon

Partitioning the Polygon

Prune & Search

- Principle: Improve l_{left} and l_{right}
- · Pair constraints arbitrarily
- Compute median of intersections

- Principle: Improve l_{left} and l_{right}
- Pair constraints arbitrarily
- Compute median of intersections
- Compute width of triangle defined by median

mpn

mpn

Prune & Search

- Principle: Improve l_{left} and l_{right}
- Pair constraints arbitrarily
- Compute median of intersections
- Compute width of triangle defined by median
- Update bounds

Prune & Search

- Principle: Improve l_{left} and l_{right}
- · Pair constraints arbitrarily
- Compute median of intersections
- Compute width of triangle defined by median
- Update bounds
- Prune 1/4-th of constraints

приш

mpnaa

Analysis

• Each round 1/4-th of constraints pruned

Analysis

- Each round 1/4-th of constraints pruned
- · Computing median is linear

O(m+s) is also possible [EL05]

O(m+s) is also possible [EL05]

Analysis Analysis

- Each round 1/4-th of constraints pruned
- Computing median is linear
- Running time without width checking: O(m)

O(m+s) is also possible [EL05]

Each round 1/4-th of constraints pruned

Computing median is linear

ullet Running time without width checking: O(m)

• Number of checked triangles: $O(\log m)$

O(m+s) is also possible [EL05]

mpn

при

Roadmap

- Show that a problem with m constraints can be solved in expected time O(m) + running time to solve $O(\log m)$ problems with a fixed number of constraints (Clarkson's algorithm)
- In total: Expected $O(m + s \log m)$ algorithm

Efficient algorithms for arbitrary fixed dimension

III P I I made and

mpn===

Integer Programming III

- Variables: x(1),...,x(n)
- Set H of rational linear constraints
- Explicit box constraints: $0 \le x \le M$
- Task: Compute $x^*(H)$: Unique integer point which satisfies all constraints in \boldsymbol{H} and the box-constraints which is lexicographically maximal (linear objective)

A theorem of Bell and Scarf

Theorem ([Bel77],[Sca77]). Let H be a set of rational linear constraints in \mathbb{R}^n . If there does not exist an integer point which satisfies all constraints, then there exists a subset $B \subseteq H$ with $|B| \le 2^n$ such that there does not exist an integer point which satisfies all constraints in B.

Proof

- Let H be minimal such that H has no feasible integer point
- Assume constraints are
 a_i^Tx ≤ β_i i = 1...,m, where a_i
 and β_i are integers

Proof

- Let H be minimal such that H has no feasible integer point
- Assume constraints are $a_i^T x \leq \beta_i$ i = 1,...,m, where a_i and β_i are integers
- For each $a_i^T x \leqslant \beta_i$, there exists an integer solution which satisfies all but the *i*-th constraint. Let y_i be such an integer solution with $a_i^T y_i$ minimal

mpn

Proof

- Let H be minimal such that H has no feasible integer point
- Assume constraints are
 a_i^Tx ≤ β_i i = 1,...,m, where a_i
 and β_i are integers
- For each a_i^Tx ≤ β_i, there exists an integer solution which satisfies all but the i-th constraint. Let y_i be such an integer solution with a_i^Ty_i minimal
- $Z = \operatorname{conv}(\{y_1, \dots, y_m\} \cap \mathbb{Z}^n)$

Proof

- Let $\gamma_1, \dots, \gamma_m \in \mathbb{Z}$ s.t. $a_i^T x \leqslant \gamma_i$ has no solution in Z and $\gamma_1 + \dots + \gamma_m$ is maximal
- For each i there exists a $z_i \in Z$ s.t. $a_i^T z_i = \gamma_i + 1$ and $a_j^T z_i \leqslant \gamma_j$ for each $j \neq i$
- Since m > 2ⁿ there exist i ≠ j with z_i ≡ z_j (mod 2) ⇒ 1/2(z_i+z_j) ∈ Z and satisfies all constraints which is a contradiction

III DII minimi mini

III p II man

Exercise

Prove the following theorem

Theorem ([Sca77]). Let H be a set of linear constraints. If $x^*(H)$ exists then there exists a subset B of H with $|B| \le 2^n - 1$ with $x^*(H) = x^*(B)$.

- This B is called a basis of H.
- $D = 2^n 1$ is combinatorial dimension

Clarkson 1

- 1. Input: H with |H| = m
- 2. Output: Basis B with $x^*(B) = x^*(H)$
- 3. $r \leftarrow D\sqrt{m}, G \leftarrow \emptyset$
- 4. REPEAT
 - (a) Choose random $R \in \binom{H}{r}$
 - (b) Compute $x^* = x^*(G \cup R)$ with Clarkson 2
 - (c) $V \leftarrow \{h \in H \mid x^* \text{ violates } h\}$
 - (d) IF $|V| \subseteq 2\sqrt{m}$, THEN $G \leftarrow G \cup V$, Augmentation step
- 5. UNTIL $V = \emptyset$
- 6. RETURN x*

Analysis

Lemma. In Step (4.c): $E(|V|) = \sqrt{m}$.

Let B be optimal basis.

- Each augmentation step, a new element of B enters G
- Thus at most d augmentation steps
- $P(|V| > 2\sqrt{m}) \leqslant 1/2$ Markow inequality
- Expected number of draws is 2d

Clarkson 1 performs:

 Expected 2d integer linear programs with Clarkson 2 on $3D\sqrt{m}$ constraints

Sampling Lemma

Lemma. Let G and H (multi-)sets of constraints |H| = m and let $1 \leq r \leq m$. Then for random $R \in \binom{H}{r}$:

$$E(|V_R|) \leq d(m-r)/(r+1).$$

where $V_R = \{h \in H \mid x^*(G \cup R) \text{ violates } h\}.$

This lemma establishes our desired bound because $r = \lceil D \sqrt{m} \rceil$ and thus

$$D(m-r)/(r+1) \leqslant Dm/r \leqslant \sqrt{m}. \tag{-2}$$

III pit miles and

mpn

Proof

- See [GW96]
- $E(|V_R|) = \left(\sum_{R \in \binom{n}{r}} |V_R|\right) / \binom{m}{r}$
- $\chi_G(Q,h) = \begin{cases} 1 & \text{if } x^{\bullet}(G \cup Q) \text{ violates } h, \\ 0 & \text{otherwise.} \end{cases}$

$$\binom{m}{r} E(|V_R|) = \sum_{R \in \binom{n}{r}} \sum_{h \in H \setminus R} \chi_G(R, h)$$

$$= \sum_{Q \in \binom{n}{r-1}} \sum_{h \in Q} \chi_G(Q - h, h)$$

$$\leq \sum_{Q \in \binom{n}{r-1}} D$$

$$= \binom{m}{r+1} D.$$

Clarkson 2

- Each $h \in H$ is assigned a multiplicity μ_h .
- In the beginning $\mu_h = 1$ for all $h \in H$.

IIIDII ====

Clarkson 2

- 1. INPUT: c and H, |H| = m
- 2. OUTPUT: $x^*(H)$
- 3. $r \leftarrow 6d^2$
- 4. REPEAT:
 - (a) Choose random $R \in \binom{H}{r}$
 - (b) Compute $x^* = x^*(R)$, Base Case
 - (c) $V \leftarrow \{h \in H \mid x^* \text{ violates } h\}$
 - (d) IF $\mu(V) \leqslant 1/(3d)\mu(H)$ THEN for all $h \in V$ do $\mu_h \leftarrow 2\,\mu_h$
- 5. UNTIL $V=\emptyset$
- 6. RETURN X*

Lemma. After kd successful iterations (entering re-weighting step):

$$2^k \leqslant \mu(B) \leqslant m e^{k/3}$$
, for basis B of H.

Lemma. Clarkson 2 requires $O(d^2m\log m)$ arithmetic operations and expected 6d lnm base case computations.

Result of combining 1 and 2

Theorem. An integer linear program can be solved with expected O(m) arithmetic operations and $O(\log m)$ oracle calls to solve an IP with a fixed number of constraints

- So far IP with fixed number of constraints $O(s^2)$
- With Clarkson: IP with m constraints costs expected
 O(m + s · log m)

Solving IP with fixed number of constraints in linear time

III pir mayber a matrix

mpn

Lenstra's IP algorithm

- Lenstra's algorithm is an algorithm for IP feasibility
- Computes width of polyhedron
- If width is to large, then return feasible
- Otherwise, recursively search for integer point on one of the constant number of hyperplanes (lower dimension)

- Lenstra's algorithm is an algorithm for IP feasibility
- Computes width of polyhedron
- If width is to large, then return feasible
- Otherwise, recursively search for integer point on one of the constant number of hyperplanes (lower dimension)

mpu

приже

Lenstra's IP algorithm

- Lenstra's algorithm is an algorithm for IP feasibility
- Computes width of polyhedron
- If width is to large, then return feasible
- Otherwise, recursively search for integer point on one of the constant number of hyperplanes (lower dimension)

Lenstra's IP algorithm

- Lenstra's algorithm is an algorithm for IP feasibility
- Computes width of polyhedron
- If width is to large, then return feasible
- Otherwise, recursively search for integer point on one of the constant number of hyperplanes (lower dimension)

Lenstra's IP algorithm

- Lenstra's algorithm is an algorithm for IP feasibility
- Computes width of polyhedron
- If width is to large, then return teasible
- Otherwise, recursively search for integer point on one of the constant number of hyperplanes (lower dimension)

Sliding objective

- Let objective function slide into polyhedron
- Until truncation is not flat anymore
- Optimum lies on one of a constant number of hyperplanes
- Continue search for optimum in the hyperplanes

mpu

mpn

Sliding objective

- Let objective function slide into polyhedron
- Until truncation is not flat anymore
- Optimum lies on one of a constant number of hyperplanes
- Continue search for optimum in the hyperplanes

- Let objective function slide into polyhedron
- Until truncation is not flat anymore
- Optimum lies on one of a constant number of hyperplanes
- Continue search for optimum in the hyperplanes

mpu man

mpnaa

Sliding objective

- Let objective function slide into polyhedron
- Until truncation is not flat anymore
- Optimum lies on one of a constant number of hyperplanes
- Continue search for optimum in the hyperplanes

Sliding objective

- Let objective function slide into polyhedron
- Until truncation is not flat anymore
- Optimum lies on one of a constant number of hyperplanes
- Continue search for optimum in the hyperplanes

Sliding objective

- Let objective function slide into polyhedron
- Until truncation is not flat anymore
- Optimum lies on one of a constant number of hyperplanes
- Continue search for optimum in the hyperplanes

Sliding objective

- Let objective function slide into polyhedron
- Until truncation is not flat anymore
- Optimum lies on one of a constant number of hyperplanes
- Continue search for optimum in the hyperplanes

Problem: Geometry of truncation changes too much in the sliding process

mpn

шришш

Key idea: Restrict to two-layer simplices

• Σ is two-layer simplex if vertices partition into two sets V and W such that

$$c^T v = c^T v'$$
 and $c^T w = c^T w'$ for all $v, v' \in V$, $w, w' \in W$.

Example in 3D

HIDH man --

mpn===

Example in 3D

Example in 3D

Width of truncation is approximately width of simplex spanned by V and μW .

Width and shortest vector

Width of $\Sigma_{V,\mu W}$ is largest the length of shortest vector in $\Lambda(A_{\mu,k}),$ where

- A is matrix with rows $w_1^T, \dots, w_k^T, v_1^T, \dots, v_{n-k}^T$
- $A_{\mu k}$ results from A by scaling first k rows with μ

Parametric shortest vector

The following problem has to be solved:

PARAMETRIC SHORTEST VECTOR: Given matrix $A \in \mathbb{Z}^{n \times n}$ and parameter $U \in \mathbb{N}$, find parameter $\mu \in \mathbb{N}$ such that $U \leqslant \mathrm{SV}(\Lambda(A_{\mu,k})) \leqslant 2^{n+1/2} \cdot U$

Theorem (E. 2003). The parametric shortest vector problem can be solved in linear time in fixed dimension.

HIP11

шри

Algorithm for PSV

```
\begin{array}{l} p \sim 2^{\mathrm{nlog}t} \\ B \sim A_{p,k} \\ \mathbf{repeat} \\ \quad \mathbf{if} \ p = 1 \\ \quad \quad \mathbf{return} \ \mathrm{SV}(\Lambda) > U \\ B \sim B_{1/2,k} \\ p \sim p/2 \\ B \sim \mathrm{LLL}(B) \\ \mathbf{until} \ \|b_1\| \leqslant 2^{(n-1)/2} \cdot U \\ \mathbf{return} \ 2p \end{array}
```

Running time

- Potential of basis: $\phi(B) = \|b_1^*\|^{2n} \|b_2^*\|^{2(n-1)} \cdots \|b_1^*\|^2$
- Potential strictly decreases
- $B_1 \rightarrow \text{LLL} \rightarrow B_2$: $\log \phi(B_1) \log \phi(B_2)$ iterations
- $\phi(A_{U,k}) \leqslant \phi(A_{U,n}) \leqslant U^{2n^2}(\|a_1\| \cdots \|a_n\|)^{2n}$
- In fixed dimension $O(\operatorname{size}(U) + \operatorname{size}(A))$ iterations, linear

mpumm

mpn =====

Complexity of IP any fixed dimension

Using Clarkson's algorithm for LP-type problems one then obtains:

Theorem (E. 2003). An integer program with m constraints, each anyolving coefficients of size at most s can be solved in expected time $O(m + (\log m)s)$.

What have we learned in these lectures?

- We know why and how to reduce a basis
- We know how to compute shortest and closest vectors in fixed dimension in linear time
- We have learned about Prune&Search and about Clarkson's random sampling algorithm
- We have seen that IP in fixed dimension can be solved with an almost optimal algorithm

Research problems

- Is there a deterministic $O(m + s \log m)$ algorithm?
- Is there a O(m+s) algorithm ?

Bibliography

References

[Ban96]	 W. Banaszczyk, Inequalities for convex bodies and polar reciprocal lattices in R". II. Application of K-convexity. Discrete Comput. Geom., 16(3):305–311, 1996.
[Bel77]	David E. Bell. A theorem concerning the integer lattice. Studies in Appl. Math., 56(2):187–188, 1976/77.
[BLPS99]	Wojciech Banaszczyk, Alexander E. Litvak, Alain Pajor, and Stanislaw J. Szarek. The flatness theorem for nonsymmetric convex bodies via the local theory of Banach spaces. <i>Mathematics of Operations Research</i> , 24(3):728–750, 1999.
[EL05]	F. Eisenbrand and S. Laue. A linear algorithm for integer programming in the plane. Mathematical Programming, 102(2):249 – 259, 2005.
[Gau01]	C. F. Gauß. Disquisitiones arithmeticae. Gerh. Fleischer lun., 1801.
[GW96]	Bernd Gärtner and Erno Welzl. Linear programming – randomization and abstract frameworks. In STACS 96 (Grenoble, 1996), volume 1046 of Lecture Notes in Comput. Sci., pages 669–687. Springer, Berlin, 1996.
[Her50]	Ch. Hermite. Extraits de lettres de M. Ch. Hermite à M. Jacobi sur différents objets de la théorie des nombres. <i>Journal für die reine und angeseige le letter de le lettre de lettre de</i>