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Abstract

The elementary closure P’ of a polyhedron P is the intersection of P with
all its Gomory-Chvétal cutting planes. P’ is a rational polyhedron provided
that P is rational. The known bounds for the number of inequalities defining
P’ are exponential, even in fixed dimension. We show that the number of in-
equalities needed to describe the elementary closure of a rational polyhedron
is polynomially bounded in fixed dimension. If P is a simplicial cone, we con-
struct a polytope @, whose integral elements correspond to cutting planes of
P. The vertices of the integer hull Q; include the facets of P’. A polynomial
upper bound on their number can be obtained by applying a result of Cook
et al. Finally, we present a polynomial algorithm in varying dimension, which
computes cutting planes for a simplicial cone that correspond to vertices of

Qr-



1 Introduction

Integer programming is concerned with the optimization problem
max{c’z | Az < b, x € Z"}, where A € Z™ " and b € Z™.

It is well-known that integer programming is NP-hard. However, the situation is
different if the number of variables, here n, is fixed. Lenstra (1983) showed that
integer programming in fixed dimension is solvable in polynomial time. Lenstra’s
algorithm relies on results from the geometry of numbers like Khintchine’s flat-
ness theorem, lattice basis reduction, and the ellipsoid method. Lovasz & Scarf
(1992) found a way to avoid the ellipsoid method. However, present algorithms
for integer programming in fixed dimension are still far from being elementary.

The cutting plane method pioneered by Gomory (1958) computes iteratively
tighter approximations of the integer hull P; of a polyhedron P, until Pr is finally
obtained. We shortly describe the method. An inequality ¢’z < |J], with ¢ € Z"
and 6 = max{clz | z € P}, is called a Gomory-Chvétal cutting plane. The set
of vectors P’ satisfying all cutting planes for P is called the elementary closure
of P. Let P(®) = P and PUt+YD) = (POY for i > 0. Chvétal (1973) showed that
every polytope P satisfies P() = P; for some t € Ng. Schrijver (1980) extended
this result to rational polyhedra. The number of iterations ¢t until P(®) = P;
is not polynomial in the size of the description of P, even in fixed dimension
(Chvétal 1973). Yet, if P = () and P C R", Cook, Coullard & Turdn (1987)
showed that there exists a number (n), such that P({") = . Cook (1990) proved
the existence of cutting plane proofs for integer infeasibility that can be carried
out in polynomial space. These results raise the question whether it is possible
to come up with a polynomial cutting plane algorithm for integer infeasibility in
fixed dimension. Using binary search this would also yield a polynomial cutting
plane algorithm for integer programming in fixed dimension.

In this context we are motivated to investigate the complexity of the ele-
mentary closure in fixed dimension. More precisely, we will study the ques-
tion whether, in fixed dimension, the elementary closure P’ of a polyhedron
P ={z € R" | Az < b}, with A and b integer, can be defined by an inequality
system whose size is polynomial in the size of A and b.

It is well-known that the elementary closure P’ can be defined by cutting
planes of the form AT Az < |[ATb|, where A € [0,1)™ (see e.g. (Cook, Cunning-
ham, Pulleyblank & Schrijver 1998, Lemma 6.34)). This leads to the insight
that P’ is a rational polyhedron again, if P is rational. Carathéodory’s theorem
implies that the vectors A can be further restricted such that at most rank(A)
many components of A\ are strictly positive.

Proposition 1. Let P = {x € R" | Az < b}, A € Z™ ", b € Z™, be a rational
polyhedron. The elementary closure P' is the polyhedron defined by Ax < b and
the set of all inequalities \T Az < |ATb|, where \ has at most rank(A) positive
components, A € [0,1)™ and \TA € Z".

It follows that P’ can be described by at most (||A”||s)® many inequalities,
since this is a straightforward upper bound on the number of integer vectors of



the form AT A, A € [0,1]™. This upper bound is exponential in the encoding
length of A, even in fixed dimension. One can further restrict the cutting planes
cT'z < | 6] to those corresponding to a totally dual integral (TDI) system defining
P (Edmonds & Giles 1977, Giles & Pulleyblank 1979, Schrijver 1980). The
number of inequalities of a minimal TDI-system for a polyhedron P can still be
exponential in the size of P, even in fixed dimension (Schrijver 1986, p. 317).
The contributions of this paper are twofold. In the first part, we prove that
in fixed dimension the number of inequalities needed to describe P’ is polynomial
in the encoding length of P. Based on this result, we develop in the second part
a polynomial algorithm in varying dimension for computing Gomory-Chvéatal
cutting planes of simplicial cones. Our approach uses techniques from integer
linear algebra like the Hermite and the Howell normal form of matrices. While
the Hermite normal form has been applied to cut generation before (see e.g.
(Hung & Rom 1990, Letchford 1999)), the cutting planes that we derive here
are not only among those of maximal possible violation in a natural sense, but
also belong to the polynomial description of P’ developed in the first part of
our paper. Caprara, Fischetti & Letchford (1999) apply Gaussian elimination
to find mod k-cuts, for k prime, which are violated by (k — 1)/k. We present
a framework that captures all Gomory-Chvéatal cuts in an algebraic structure,
namely the kernel of a matrix and one solution of an inhomogeneous system of
linear equalities over some residue ring Z4, where d is not necessarily prime. This
structure comfortably allows for local search techniques to improve on various
criteria for the quality of cuts, like the Euclidean distance, norm or sparsity.

2 Notation and definitions

A polyhedron P is a set of vectors of the form P = {z € R" | Az < b}, for
some matrix A € R™*" and some vector b € R™. We write P = P(A,b). The
polyhedron is rational if both A and b can be chosen to be rational. If P is
bounded, then P is called a polytope. The integer hull Pr of a polytope P
is the convex hull of the integral vectors in P. If P is rational, then P; is a
rational polyhedron again. The dimension of P is the dimension of the affine
hull of P. An inequality ¢’z < § defines a face F = {x € P | ¢’z = §} of P, if
6 > max{clz | x € P}. Fis called a facet of P, if dim(F) = dim(P)—1. If F # ()
and dim(F') = 0, then F' is called a vertez of P. If P is full-dimensional, then
P has a unique (up to scalar multiplication) minimal set of inequalities defining
P. They correspond to the facets of P. We refer to (Nemhauser & Wolsey 1988)
and (Schrijver 1986) for further basics of polyhedral theory.
The size of an integer z is the number

. ()_ 1 ifz=0
T T+ logs(l2])] iz #£0

Likewise, the size of a matrix A € Z™*", size(A) is the number of bits needed to
encode 4, ie., size(4) = mn + ), ;size(a; ;), (see (Schrijver 1986, p. 29)). If P
is given as P(A,b), then we denote size(A) + size(b) by size(P).



A lattice L C R™ is a subgroup of R" of the form {Az | € Z"}, where A
is a nonsingular square matrix. We write L = L(A). The dual lattice L*(A)
of L(A) is the lattice L*(4A) = {z € R" | 2Ty € Z,Vy € L(A)}. One has
L*(A) = L((A1)T) (see e.g. (Schrijver 1986, p. 50)).

If P is a rational polyhedron, then the number of extreme points of P; can
be polynomially bounded by size(P) in fixed dimension. This follows from a
generalization of a result by Hayes & Larman (1983), see (Schrijver 1986, p. 256).
The following upper bound on the number of vertices of P; was proved by Cook,
Hartmann, Kannan & McDiarmid (1992). Béardny, Howe & Lovéasz (1992) show
that this bound is tight.

Theorem 2. If P C R" is a rational polyhedron which is the solution set of a
system of at most m linear inequalities whose size is at most o, then the number
of vertices of Pr is at most 2m®(6n%p)?~1, where d = dim(Py) is the dimension
of the integer hull of P.

Last we recall some basic number theory (see e.g. (Niven, Zuckerman &
Montgomery 1991)). Z4 denotes the ring of residues modulo d, i.e., the set
{0,...,d—1} with addition and multiplication modulo d. We will often identify
an element of Z; with the natural number in {0,... ,d — 1} to which it corre-
sponds. Zg4 is a commutative ring but not a field if d is not a prime. However Zg4
is a principal ideal ring, i.e., each ideal is of the form (g) = {9z | x € Zq} < Zq.
Since (d) = (eg) for each unit e € Z} and since g/gcd(d, g) is a unit of Zg, it
follows that (g) = (gcd(d, g)). Therefore we can assume that g divides d, g | d.
Thus each ideal of Z4 has a unique generator dividing d, call it the standard gen-
erator. The standard generator g of an ideal (aq,... ,ax) <Zg4 is easily computed
with the Euclidean algorithm.

3 The elementary closure of a rational simplicial cone

Consider a rational simplicial cone, i.e., a polyhedron P = {z € R" | Az < b},
where A € Z"*", b € Z™ and A has full rank. Observe that P, P’ and Pj are all
full-dimensional. The elementary closure P’ is given by the inequalities

(AT A)z < |ATb], where X € [0,1]", and AT A € Z". (1)

Since P’ is full-dimensional, there exists a unique (up to scalar multiplication)
minimal subset of the inequalities in (1) that suffices to describe P’. These
inequalities are the facets of P’. We will come up with a polynomial upper
bound on their number in fixed dimension.

The vectors A in (1) belong the dual lattice £*(A) of L(A). Recall that each
element in L£*(A) is of the form p/d, where d = det(L(A4)) = |det(A)]| is the
absolute value of the determinant of A. It follows from the Hadamard inequality
that size(d) is polynomial in size(A), even for varying n. Now (1) can be rewritten
as

T T
% x < {#TbJ , where € {0,... ,d}"*, and uT A € (d - Z)". (2)



Notice here that u7'b/d is a rational number with denominator d. There are two
cases: either u7b/d is an integer, or u7'b/d misses the nearest integer by at least
1/d. Therefore |uTb/d] is the only integer in the interval

pTb—d+1 u_Tb
d " d

These observations enable us to construct a polytope @), whose integral points
will correspond to the inequalities (2). Let Q be the set of all (u,y,2) in R?"+1
satisfying the inequalities

p = 0
p < d
pr'A = dy (3)
(uTd) —d+1 < dz
(uTh) > d=.

If (1, y, 2) is integral, then p € {0,... ,d}", y € Z"™ enforces T A € (d-Z)" and z
is the only integer in the interval [(uTd 4+ 1 —d)/d, uTb/d]. Tt is not hard to see
that (3) defines indeed a polytope.

The correspondence between inequalities (their syntactic representation) in
(2) and integral points in @ is obvious. The facets of P’ are among the vertices

of QI-
Proposition 3. Each facet of P' is represented by an integral vertex of Q.

Proof. Consider a facet ¢’z < § of P'. If we remove this inequality (possibly
several times, because of scalar multiples) from the set of inequalities in (2),
then the polyhedron defined by the resulting set of inequalities differs from P’,
since P’ is full-dimensional. Thus there exists a point Z € Q" that is violated by
cT'z < 6, but satisfies any other inequality in (2). Consider the following integer
program:

max{(p"A/d)& — =z | (p,y,2) € Qr}. (4)
Since & ¢ P’ there exists an inequality (u” A/d)z < |pTb/d] in (2) with
(W7 A4/d)i — (1Tb/d) > 0.

Therefore, the optimal value will be strictly positive, and an integral optimal
solution (p,y, z) must correspond to the facet ¢’z < § of P'. Since the optimum
of the integer linear program (4) is attained at a vertex of @, the assertion
follows. O

Remark 4. Not each vertex of QQ; represents a facet of P’. In particular, if P is
defined by nonnegative inequalities only, then 0 is a vertex of @; but not a facet
of P'.



Theorem 5. The elementary closure of a rational simplicial cone P = {z €
R™ | Az < b}, where A and b are integral, is polynomially bounded in size(P)
when the dimension is fized.

Proof. Each facet of P’ corresponds to a vertex of Q7 by Proposition 3. Recall
from the Hadamard bound (see e.g. (Schrijver 1986, p. 7)) that d < ||ay|| - - - ||an]|,
where a; are the columns of A. Thus the number of bits needed to encode d is
in O(nsize(P)). Therefore the size of @ is in O(nsize(P)). It follows from
Theorem 2 that the number of vertices of Q; is in O(size(P)") for fixed n, since
the dimension of @) is n + 1. O

It is possible to explicitly construct in polynomial time a minimal inequality
system defining P’ when the dimension is fixed. As noted in (Cook et al. 1992),
one can construct the vertices of Q)7 in polynomial time. This works as follows.
Suppose one has a list of vertices vi,...,v; of Q7. Let @ denote the convex
hull of these vertices. Find an inequality description of @, Cx < d. For each
row-vector ¢; of C, find with Lenstra’s algorithm a vertex of Q; maximizing
{cTz | € Qr}. If new vertices are found, add them to the list and repeat the
preceding steps, otherwise the list of vertices is complete. The list of vertices of
Qg yields a list of inequalities defining P’. With the ellipsoid method or your
favorite linear programming algorithm in fixed dimension, one can decide for each
individual inequality, whether it it is necessary. If not, remove it. What remains
are the facets of P'.

4 The elementary closure of rational polyhedra

Let P = {z € R" | Az < b}, with integral A and b, be a rational polyhedron.
If A does not have full column rank, then there exists a unimodular matrix U
transforming A from the right into a matrix with only rank(A) many nonzero
columns. Since unimodular transformations applied to A from the right and the
elementary closure operation are compliant (see e.g. (Schrijver 1986, p. 341)), we
can assume that A has full column rank. Such a unimodular matrix U can be
found in polynomial time. Simply choose rank(A) linearly independent rows A
of A with Gaussian elimination and compute U transforming A into its Hermite
normal form (Schrijver 1986, p. 45). Recall that the Hermite normal form of
an integral matrix A € Z™*™ with full row rank is a nonnegative, nonsingular
lower triangular matrix H, such that there exists a unimodular matrix U with
(H | 0) = AU, where each row of H has a unique maximal entry, located at the
diagonal h;;. Polynomial algorithms for computing the Hermite normal form
have been given by Kannan & Bachem (1979), Hafner & McCurley (1991), and
Storjohann & Labahn (1996), among others.

It follows from Proposition 1 that any Gomory-Chvatal cut can be derived
from a set of n inequalities out of Az < b where the corresponding rows of A are
linear independent. Such a choice represents a simplicial cone C' and it follows
from Theorem 5 that the number of inequalities of C’ is polynomially bounded
by size(C) < size(P).



Theorem 6. The number of inequalities needed to describe the elementary clo-
sure of a rational polyhedron P = P(A,b) with A € Z™™ and b € Z™, is
polynomial in size(P) in fized dimension.

Proof. As we observed, we can assume that A has full column rank. An upper
bound on the number of inequalities that are necessary to describe P’ follows
from the sum of the upper bounds on the number of facets of C’ where C is a
simplicial cone, formed by n inequalities of Ax < b. There are at most (Z’) <m"
ways to choose n linear independent rows of A. Thus the number of necessary
inequalities describing P’ is O(m™size(P)") for fixed n. O

Following the discussion at the end of Section 3 and using again Lenstra’s
algorithm, it is now easy to come up with a polynomial algorithm for constructing
the elementary closure of a rational polyhedron P(A,b) in fixed dimension. As
we observed, we can assume that A has full column rank. For each choice of n
rows of A defining a simplicial cone C, compute the elementary closure C’ and
put the corresponding inequalities in the partial list of inequalities describing P’.
At the end, redundant inequalities can be deleted.

5 Finding cuts for simplicial cones

In Section 3 we saw that the vertices of Q)7 include the facets of the elementary
closure P’ of a simplicial cone P(A,b). In practice the following situation often
occurs. One wants to find a cutting plane that cuts of the extreme point of P,
& = A7'b. It is easy to see that the scenario of Gomory’s corner polyhedron
(Gomory 1967) (see also (Schrijver 1986, p. 364)), is of this nature. In this
section, we will show how to generate such cutting planes. Following Section 3,
they will have the special property that they correspond to vertices of @7 and
thus belong to a family of inequalities which grows only polynomially in fixed
dimension. While the separation problem for the elementary closure is NP-hard
(Eisenbrand 1999) in general, these cutting planes can be computed in polynomial
time in varying dimension.

Let P = {z € R” | Az < b} again be a rational simplicial cone, where
A € Z™™ and b € Z". Let d = |det(A)| denote the absolute value of the
determinant of A. Let @ be defined by the inequalities in (3). We will find a
face-defining inequality of ;7 that represents the cutting planes with a maximal
rounding effect. This relates to the study of maximally violated mod k-cuts by
Caprara et al. (1999). A cutting plane

(n/d)" Az < | (u/d)"b)
can be found by solving the following linear system over Z,.
(A |b) =(0,...,0,v), (5)

where v/d for v € {0,...,d — 1} is the desired value for the rounding effect
(uTb)/d — | (uT'b)/d]. If P is a simplicial cone, then this rounding effect is the



amount of violation of the cutting plane by the extreme point & of P. Caprara
et al. (1999) fix v in the system (5) to the maximal possible value d—1. However,
there does not have to exist a solution to (5) when v is set to d — 1. We show
here that the maximal v, denote it by vyax, for which a solution to (5) exists,
can be computed efficiently.

For this we have to reach a little deeper into the linear algebra tool-box. In
the following we will make extensive use of the Hermite and Howell normal form
of an integer matrix. The Hermite normal form belongs to the standard tools
in integer programming. Hung & Rom (1990) for example use a variant of the
Hermite normal form to generate cutting planes of simplicial cones P, such that
the outcome P has in integral vertex. Letchford (1999) uses the Hermite normal
form to cut off the minimal face of a cone P(A,b) where A has full row rank.
We use the Hermite normal form because it allows us to represent the image and
kernel of matrices A € Z7*" in a convenient way. Notice that Zg is not a field
if d is not a prime. Therefore, standard Gaussian elimination does not apply for
these tasks in general.

5.1 The Howell and Hermite normal form

Let us study the column-span of a matrix B € Z]""
span(B) ={z € Z7' | 3y € Z}, By = z}.

The column-span of an integral matrix B € Z™*" is defined accordingly. We
write spany, (B) and spany(B) to distinguish if necessary. The span of an empty
set of vectors is the submodule {0} of Z7.

Consider the set of vectors S(i) C span(B), i = 0,...,m, whose first i
components are 0. Clearly S(¢) is a Zg4-submodule of span(B). We say that a
nonzero matrix B is in canonical form if

i. B has no zero column, i.e., a column containing zeroes only,

ii. B is in column-echelon form, i.e., if the first occurrence of a nonzero entry
in column j is in row ij, then i; < i;/, whenever j < j' (the columns form
a staircase “downwards”),

iii. S(7) is generated by the columns of B belonging to S(i).

We shortly motivate this concept. If B € ZJ'*" is in canonical form and
y € Z§ is given, then it is easy to decide whether y € spany (B). For this, let
i be the number of leading zeroes of y. Clearly y € spany (B) if and only if
y € S(¢). Conditions ii) and iii) imply that if y € S(¢), then there exists a unique
column b of B with exactly i leading zeroes and

bit1- T = yit1 (6)

being a solvable equation in Z4. It is an elementary number theory task to
decide, whether such an z exists and if so to find one (see e.g. (Niven et al. 1991,



p. 62)). Now subtract x b; 1 times column b from y. The result is in S(i + 1).
One proceeds until the outcome is in S(n), which implies that y € spany, (B), or
the conditions discussed above fail to hold, which implies that y ¢ spany (B).

Storjohann & Mulders (1998) show how to compute a canonical form of a
matrix A with O(mn®~!) basic operations in Zg4, where O(n“) is the time re-
quired to multiply two n X n matrices. The number w is less then or equal
to 2.37 as found by Coppersmith & Winograd (1990). In the rest of this pa-
per, we use the O-notation to count basic operations in Z4 like addition, mul-
tiplication, or (extended)-gcd computation of numbers in {0,... ,d — 1}. The
bit-complexity of a basic operation in Z; is O(size(d) log size(d) log log size(d)) as
found by Schénhage & Strassen (1971) (see also (Aho, Hopcroft & Ullman 1974)).
Recall that size(d) = O(n size(4)).

Storjohann & Mulders (1998) give Howell (1986) credit for the first algo-
rithm and the introduction of the canonical form and call it Howell normal form.
However, there is a simple relation to the Hermite normal form already used in
Section 4.

Proposition 7. Let A € Z’dnxnbe a nonzero matriz and let H be the Hermite
normal form of (A | d-I) where (A | d-I) is interpreted as an integer matriz.
Then a canonical form of A is the matriz H' which is obtained from H by deleting
the columns h(") with hi; = d (notice that h;; | d).

Proof. Clearly, spany, (H') C spany (A) and H' is in column-echelon form. We
need to verify iii). Let u € spany, (A) withu € S(i), where i is maximal. Property
iii) is guaranteed if i = m. If i < m, then u;11 # 0. Interpreted over Z, this
means that 0 < u;;1 < d. Clearly u € spany(H), and since uj11 € hiy1,i+1 - Z
(recall that H is a lower triangular matrix with nonzero diagonal elements and
that u;41 is the first nonzero entry of u), it follows that the column h(+1) appears
in H'. After subtracting w;;1/hi41,i+1 times the column RGTY) from wu, the result
will be in S(i+ 1) and, by induction, the result will be in the span of the columns
of H' belonging to S(i + 1). All together we see that u is in the span of the
vectors of H' belonging to S(z). O

It is now easy to see that the canonical forms of a matrix A have a unique
representative B that, using the notation of ii), satisfies the following additional
conditions that we will assume for the rest of the paper:

iv. the elements of row i; are reduced modulo b;; ; (interpreted over the inte-
gers) and

v. the natural number b;; ; divides d.

5.2 Determining the maximal amount of violation

We now apply the canonical form to determine the maximal amount of violation
Umax/d. Notice that P # Py if and only if there exists a ¥ # 0 such that (5)
has a solution. If (A | b)T consist in Z, of zeroes only, then P = P;. Otherwise
let H be the canonical form of (A | b)T, which can be found with O(n®) basic



operations in Z4 (Storjohann & Mulders 1998). Since P # Py, the last column
of H is of the form (0,...,0, )7, for some g # 0. The ideal (g) < Zy generated
by g is exactly the set of v such that (5) is solvable for x. Since g | d, the largest
vel{l,...,d—1}N{g) is

Vmax = d — g.
Thus we can compute vpyx in O(n“) basic operations in Z; and the inequality
(b7, 0T, —1)(p,y,2) = b — 2z < Vax (7)
will be valid for @, defining a nonempty face of Q7,
F=(Qrn(0 p— 2= vmax))- (8)

Theorem 8. Let P = {z € R" | Az < b} be a rational simplicial cone, where
A € Z™" is of full rank, b € Z™ and d = |det(A)|. Then one can compute in
O(n¥) basic operations of Zg4 the mazimal possible amount of violation Vmax/d.
Here, Umax @5 the mazimum number v € {0,...,d — 1} for which there exists a
cutting plane (p/d)T Az < | (uTb)/d| separating A~1b with (uT'b)/d—|(uTb)/d]| =
v/d.

5.3 Computing vertices of Q;

We proceed by computing a vertex of F', which will also be a vertex of Q. First
we find in O(n*“) basic operations of Z4, a solution fi to

pT (A1) =(0,...,0, vmax)- (9)
Let K € Z1** represent the kernel of (4 | b)7 i.e.,
spany (K) = {z € Z2 | «T(A| b) = (0,... ,0)}.

The canonical form of K again can be computed in time O(n“) (Storjohann &
Mulders 1998). The solution set of (9) is the set of vectors

$={ii+7i | fi € spang, (K)}. (10)

Notice that 8 is the set of integral vectors in F'. Vertices of @J; will be obtained
as minimal elements of § with respect to some ordering on 8. Fori =1,... | n
and a permutation o of {1,... ,n}, we define a quasi-ordering <’ on § by

© Szlr p iff (ﬂa(l)a ce ap’a(i)) <lex (IELU(].)) ce aua(i))'
Here, <;., denotes the lexicographic ordering on {0,... ,d — 1}%.

Proposition 9. If u € 8§ is minimal with respect to <7, then (u,y, z) is a vertex
of Qr, where y and z are determined by p according to (3).



Proof. Assume without loss of generality that o = id. Let 4 € § be minimal with
respect to <! and suppose that p = ijl,___,l aj,u(f) is a convex combination

of vertices of Qr, where each u(9) # p and a; > 0. Clearly, each p9) is in
(4)

8. Therefore, there exists an index ¢ € {1,...,n} such that p; < g/, for
all 7 € {1,...,l}, and u; < ,ul(-y), for some j € {1,...,l}. Since o; > 0 and
doic1,.,0 =1 wehave >3, ; ozj,uz(]) > ui, a contradiction. O

We now show how to compute a minimal element 4 € § with respect to <.
For simplicity we assume that ¢ = id, but the algorithm works equally well for
any other permutation. For pu € 8, we call (pu1,...,u;) the i-prefiz of u. We
will construct a sequence ,u(i),i =0,...,n, of elements of § with the property
that the i-prefix of 19 is minimal among all i-prefixes of elements in 8 with
respect to the <jox order. Since <y is a total order, the ¢-prefix of ,u(i) is unique
and the i-prefix of ) is the i-prefix of u(¥, for all j > 7. In other words, the
j-prefix of ) coincides with the i-prefix of u(¥) except possibly in the last (j —i)
components.

Define K(i) C spany (K) as the Zz-submodule of spany (K) consisting of
those elements having a zero in their first i components. For j > ¢, the vector
19) is obtained from pu(® by adding an element of K (7). Suppose that K is in
canonical form and let K be the submatrix of K consisting of those columns
of K that lie in K(i). Notice that K(®) is in canonical form, too, and that
spany, (K(") = K (i).

We initialize 1(9) with an arbitrary element of 8. Suppose we have constructed
19, By the preceding discussion, pu(¢+1) is of the form p(¥) + i, for some p € K(i).
We have to take care of the (i + 1)-st component. Let x be the first column of
K® and let g be the (i + 1)-st component of k. If g = 0, then (¥ is minimal
with respect to <**1. Otherwise the smallest component that we can get in the
(i + 1)-st position is is the least positive remainder r of the division of /%(21 by
:
number ¢ and some r € {1,...,9 — 1}. Thus, by subtracting gx from p@,
we obtain a vector p(t1) that is minimal with respect to <**'. Notice that
the computation of ¢+ from p(®) involves O(n) elementary operations in Zg.
Repeating this construction n times we get the following theorem.

g (remember that g | d). We have p;/; = gg + r with an appropriate natural

Theorem 10. Let P = {x € R" | Az < b} be a rational simplicial cone, where
A € Z™"™ is of full rank, b € Z" and d = |det(A)|. Then one can compute
in O(n¥) basic operations of Zq a vertex of Qy corresponding to a cutting plane
(p/d)T Az < |(p/d)T'b| separating A='b with mazimal possible amount of viola-
tion Vmax/d.

In practice one would want to generate several cutting planes for P. Here is
a simple heuristic to move from one cutting plane corresponding to a vertex of
Q1 to the next. If one has computed some p € § then it can be easily checked,
whether a component of y can be individually decreased. This works as follows.
Suppose we are interested in the i-th component p;. Compute the standard
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generator g of the ideal of the i-th components of spany (K). Recall that g | d.
Now p; can be individually decreased, if g < p;. In this case we swap rows 7 and
1 of K and components ¢ and 1 of g and proceed as discussed in the previous
paragraph. This “swapping” corresponds to another permutation. It results in
a new order <, and a new vertex of Qj.
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