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Abstract

George Voronoi (1908, 1909) introduced two important reduction
methods for positive quadratic forms: the reduction with perfect forms,
and the reduction with L-type domains, often called domains of De-
launay type. The erst method is important in studies of dense lattice
packings of spheres. The second method provides the key tools for
gnding the least dense lattice coverings with equal spheres in lower
dimensions. In his investigations Voronoi heavily relied on that in di-
mensions less than 6 the partition of the cone of positive quadratic
forms into L-types regnes the partition of this cone into perfect do-
mains. Voronoi conjectured implicitely and Dickson (1972) explicitely
that the L-partition is always a repnement of the partition into perfect
domains. This was proved for n < 5 (Voronoi, Delaunay, Ryshkov,
Baranovskii). We show that Voronoi-Dickson conjecture fails already
in dimension 6.
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1 Introduction and mailn result

Quadratic Forms are inportant to many areas of pure and applied mathe-

matics, including number theory, combinatoirics, the theory of gnite groups,
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error-corresting codes, cryptography, crystallography, etc. (e.g. see Conway
and Sloane (1999)). Positive (semidegnite) quadratic forms (referred to as
PQFs) in n indeterminates form a closed cone B(n) of dimension N = —n—(—%t-l—)
in RV, and this cone is the main object of study in our paper. The inte-
rior of B(n) consists of quadratic forms of rank n. PQFs serve as analitic
representations of point lattices. Let vy,...,Vy be a coordinate frame in
Euclidean space E®. A lattice of points with basis [vy,...,V,] is the set of
all integal linear combinations of vi,...,Vv,. If G is the Gramm matrix of a
PQF. then the basis [Vl,... ,Vn] of the corresponding lattice is degned (up
to isometry) by ¢;; = v;*V;. The Gramm matrix of the corresponding PQF is
[Vl. ... .Vn]T[Vl, . ,Vn]. Thus, there is a one-to-one correspondence between
congruence classes of n-dimensional lattices and integral equivalence classes
{(i.c. with respect to GL(n,Z)—conjugation) of positive quadratic forms. For
basic results of the theory of lattices and PQFs and their applications see
Ryshkov and Baranovskii (1978), Gruber and Lekkerkerker (1987), Erds,
Gruber and Hammer (1989), Conway (1998), Conway and Sloane (1999).
GL(n,Z) acts pointwise on the space of quadratic forms RY™. The L-
type and perfect partitions are important polyhedral subdivisions of 2]3(n),
invariant with respect to the action of GL(n,Z). These partitions have been
intensively studied in geometry of numbers and combinatorics. In our paper

we study how they are related to each other for n = 6.

Degnition 1 Let S be a discrete set of points in E®. A convex polytope P
in " is called a Delaunay cell of the system of points .5 if:

1) all vertices of P belong to S,

2) there is a sphere circumscribed about P (called the empty sphere of
P,

3) no points of S, except for the vertices of P, lie inside or on its empty

sphere.

If S is not pathological, Delaunay cells form a convex face-to-face tiling
of conv .S that is degned uniquely by S. Delaunay tilings have many appli-
cations in computational geometry, mesh generation, the theory of lattices,
mathematical crystallography, etc. If L is a lattice, the Delaunay tiling of L
is invariant under the action of the isometry group of L.

Lattices Ly and Ly belong to the same L-type if their Delaunay tilings are
a(Bnely equivalent (the notion of L-type is, in fact, due to Voronoi (1908)).
The L-type of a quadratic form is degned as the L-type of its lattice. L-
type domains are open pointed polyhedral cones in RV (N = H(L;H) In



each dimension there are only gnitely many L-type domains (Voronoi, 1908).
Lach L-type domain is, of course, the union of ingnitely many convex cones
that are equivalent with respect to GL(?”L,Z) acting pointwise on RY™. The
closures of these convex cones tile ‘B(n)

The notions of Delauny tiling and L-type are extremely important in the
study of extremal and group-theoretic properties of lattices. For example, the
analysis of Delaunay cells in the famous Leech lattice conducted by Conway,
Sloane and Borcherds showed that 23 jdeep holesy (Delaunay cells of radius
equal to the covering radius of the lattice) in the Leech lattice correspond
to 23 even unimodular 24-dimensional lattices (Niemeier’s list) that, in turn,
give rise to 23 jgluing) constructions of the Leech lattice from root lattices.
Barnes and Dickson (1967, 1968) and, later, Delaunay et al. (1969, 1970)
proved that the closure of each N-dimensional L-type domain has at most
one local minimum of the covering density, and if such a minimum exists and
lies in the interior of the domain, the group of GL(n,Z)——automorphisms of
the domain maps this form to itself.

Theorem 2 (Barnes, Dickson) The closure of any N-dimensional L-type

domain contains at most one local minimum of the sphere covering density.

Using this approach Delaunay, Ryshkov and Baranovskii (1963, 1976)
found the best lattice coverings in E* and E°. The theory of L-types also has
numerous connections to combinatorics and, in particular, to cuts, hyperme-
frics. and regular graphs (see Deza et al. (1997)).

The L-type partition of the cone of PQFs is closely related to the theory
of perfect forms originated by Korkine and Zolotarece (1873). Let f(x,x)
be a PQI. The arithmetic minimum of f(x,x) is the minimum of this form
on Z". The integral vectors on which this minimum is attained are called
the representations of of the minimum, or the minimal vectors of f(x,x):
these vectors have the minimal length among all vectors of Z™ when f(x,x)
is used as the metrical form. A form f(x,x) is called perfect if it can be
reconstructed from all representations of its arithmetic minimum. In other

words, a form f(x,x) with the arithmetic minimum m and the set of minimal
vectors {Vk.

F=1,...,2s} is perfect if the system

n

E AUV = M,

t,5=1



where k = 1,...,2s, has a unique solution (ai]-) in the space of symmetric
matrices RY (of course, there must be at least ﬂ%l) non-collinear mini-
mal vectors). In each dimension there are only gnitely many perfect forms
up to Gl(n,Z)—equivalence (Voronoi, 1908). Intuitively, perfect lattices are
those that have a large supply of minimal vectors, although a perfect lattice
in dimension higher than 8 is not always spanned by its minimal vectors
(Ryshkov. 1973). A perfect form f(x,x) can obviously be described as a
hyperplane in R¥Y that contains N + 1 integer points whose coordinates are
the images of the minimal vectors {vg|k = 1,...,2s} under the Veronese
mapping V : vy — {Uikvjk|l <1 <3< n} Perfect forms play an impor-
tant role in lattice sphere packings. Voronoi’s theorem (1908) says that a
form is extreme i.e., a maximum of the packing density if and only if it

is perfect and eutactic (see Coxeter (1951), Conway, Sloane (1988) for the
proof). The notion of eutactic form arises in the study of the dense lattice
sphere packings and is directly related to the notion of perfect form. The
dual (also called reciprocal) of f(x,x) is a form whose Gramm matrix is the
inverse of the Gramm matrix of f(x,x). The dual form is normally denoted
by f*(x,Xx). A form f(x,X)is called eutactic if the dual form f*(x,X) can be

s

written as Zk ap(vi ® X)z, where {vg|k =1,...,s} is the set of mutually
=1

non-collinear minimal vectors of f(X,X), and ay > 0.

Theorem 3 (Voronoi) A form f(x,x) is a maximum of the sphere packing
density if and only if
1) f(\,\) is perfect

2) f(\\) is eutactic

A cone in RY spanned by the images of the minimal vectors of a perfect
form is called a perfect cone. The union of all (closed) perfect cones corre-
sponding to forms integrally equivalent to f is called the perfect domain of
f. For each perfect cone there are ingnitely many GL(n,Z)—equivalent ones,
so the perfect domain of f consists of ingnitely many equivalent perfect
cones. just like an L-type domain consists of ingnitely many convex cones.
A fundametal theorem of Voronoi (1908) in the interpretation of Delaunay
and Ryshkov (1968) says that the cone of PQFs is tiled face-to-face by per-
fect conex. Voronoi proved that there are only gnitely many non-equivalent
perfect forms. Therefore, there is a gnite set of perfect cones in RY such
that each form n n variables is equivalent to a form lying in one of these

domains. Voronoi gave an algorithm g¢nding all perfect domains for given



n. This algorithm is known as Voronoi’s reduction with perfect forms. For
the computational analysis of his algorithm and its improvements see Mar-
tinet (1996). Voronoi’s algorithm was sucsessfully applied by him and other
rescarchers in searching for perfect forms in lower dimensions, i.e. n <9
(Voronoi (1908), Barnes (1957), Stacey (1972), Martinet (1996)). Perfect
forms have been completely classiged in dimensions n < 7, but already for
n =9 there are billions of them (see Martinet (1996)). The theory of perfect
forms was used for gnding the best lattice packings in low dimensions and
for classifying gnite subgroups of GL(n,Z) for small values of n (Ryshkov et
al., 1978).

For n = 2,3 the L-partition and the perfect partition of ‘13(71) coincide.
The perfect domain of Dy (the second perfect form in 4 variables) exempliges
a new pattern in the relation of these partitions. Namely, the domain of Dy
is decomposed into a number of simplicial L-type domains like a pie. These
simplexes are L-type domains of two arithmetic types: type 1 is adjacent to
the the perfect/L-type domain of Ay, type 11 is adacent to an arithmetically
equivalent L-type domain (also type II, indeed) from the L-subdivision of
the adjacent Dy domain (the situation is depicted schematically in Fig. I;
for more details see Delaunay et al. (1963, 1968)).

Voronoi (1909) proved that for n < 4 the tiling of B(n) with L-type do-
mains reones the partition of this cone into perfect domains. He wondered if
it was just a coincidence. Ryshkov and Baranovskii (1976) proved that this
resnement hypothesis is true for n = 5. In his paper of 1972 Dickson proved
that the perfect domain of A,, also called the grst perfect form after Korkine
and Zolotarece (1873), is the only perfect domain that is also an L-type do-
main; he was also grst to mention explicitly the common believe in Voronoi’s
regnement conjecture. Baranovski, Delaunay and Ryshkov also suspected
that Voronoi’s conjecture would hold in all dimensions (see Ryshkov and
Baranovskii (1975), Delaunay et al. (1945, 1963, 1969)). Using the theory
of repartitioning complexes (developed by Ryshkov and Baranovski (19786))
and the theory of dual system of vectors (introduced by Erdahl and Ryshkov
(1990, 1991a,b)), we show that Voronoi's conjecture does not hold in dimen-

sion 6.



2 Perfect forms in dimension 6

Figure 1: The incidence graph of perfect domains of B(6)

The incidence graph of perfect domains for n=6 will be inserted
right before the submission.

All perfect forms in dimension 6 were classified by Barnes (1957). Fig.
1 shows the incidence graph of perfect domains for n = 6. The nodes of
the graph are non-equivalent perfect forms, the edges of the grpah are non-
cquivalent facets (called walls) between adjacent perfect domains. Notice
that the graph has loops (two perfect cones of the same type are adjacent)
and multiple edges (two perfect domains are adjacent through non-equivalent
walls). Fach wall is marked with the number of integral rank one forms that
serve as extreme rays for this wall.

In Fig. 1 we use Voronoi-Barnes notation for perfect forms. Below we
give the full list of quadratic forms in dimension 6. Coxeter’s symbols are in
the second column, Korkine-Zolotareff’s symbols in the third, and Conway-
Sloane’s in the fourth.

Table 1: The senary perfect forms






2 Perfect forms in dim ension 6

Figure 1: The incidence graph of perfect domains of ‘B(ﬁ)

The incidence graph of perfect domains for n=6 will be inserted
right before the submission.

All perfect forms in dimension 6 were classiged by Barnes (1957). Fig.
I shows the incidence graph of perfect domains for m = 6. The nodes of
the graph are non-equivalent perfect forms, the edges of the grpah are non-
equivalent facets (called walls) between adjacent perfect domains. Notice
that the graph has loops (two perfect cones of the same type are adjacent)
and multiple edges (two perfect domains are adjacent through non-equivalent
walls). Each wall is marked with the number of integral rank one forms that
serve as extreme rays for this wall.

In Fig. 1| we use Voronoi-Barnes notation for perfect forms. Below we
give the full list of quadratic forms in dimension 6. Coxeter’s symbols are in

the second column, Korkine-Zolotarece’s symbols in the third, and Conway-
Sloane’s in the fourth.

Table 1: The senary perfect forms

6



H Oy H A H Us H Pé H Tl + Di<ici<e Titj —H
Lo ] Dy [ Ve [ pé | G — 1172 B
Lo ] Eq | X s | o — 212 — 212 |
‘ Oy H Ag H “ e “ by — %(113@ + 2324 + T5T6) H
“ D, H E§ = Ef = Asp H H e H $o — %(551‘7"2 + Z3<i<]‘<6 i) H
Lol A R O — (@123 + @3%4 + Ts25 + T4z5) |
} Dy H 4(2) H “ e H o — %(25151«’102 + X123 + 2126 + T2T5 + T4T6 + 2$5$6ﬂ]

It is known since the times of Korkine and Zolotarece that the central
ray (centroid) of the perfect domain of Ej is equivalent to Fg, and that the
centroid of the perfect domain of EY is equivalent to E} (see e.g. Coxeter
(1951)). Barnes (1956, 1957) showed that there is only one arithmetic type
of wall between KEg and E} (see Fig. 1). In Section 6 we prove that the
Delaunay type of lattice does not change in some interior points of the wall

between domains Eg and Eg

3 L—Lypes of lattices

Ryshkov and Baranovskii (1976) showed that for n = 5 there are 221 general
(simplicial) L-types. The total number of L-types for n = 5 is not known.
Recently. P. Engel (1998) has made important steps towards a complete
desrciption of the combinatorics of L-types of 5-dimensional lattices. In
particuar, he classiged all extreme L-types, i.e. L-types that serve as extreme
rays of L-type domains (see Engel (1998), Engel and Grishukhin (2000)). A
complete classigcation of L-types in the 6-dimensional case seems to be out of
reach in the near future, although the L-types of the perfect lattices have been
completely classiged by Baranovski (1991). Below we give a short description
of Delauuay tilings of Eg and E;.

3.1 L-partition of Ejg

In this subsection we discuss Delaunay tilings of lattices lying in a small
neighourhood of Eg in the space of parameters. More specigcally, we study
the L-partition of J3(n) near the ray corresponding of Fg. The Delaunay

tiling of lattice Eg is formed by congrueut copies of the Gosset polytope



(29110 Coxeter’s notation), which is the convex hull of a unique two- distance
spherical set in E°. We refer to the Gosset polytope as G-tope. The G-topes
of the Delaunay tiling of Fg fall into two translation classes. The star of a

lattice point is formed by 54 G-topes, 27 in each translation class.

The G-tope is quite remarkable. 1t has 27 vertices, 216 edges, 72 regular
simplicial facets, and 36 regular cross-polytopal facets (e.g. Coxeter (1995)).
Thus, the vertices of the G-tope form a spherical two distance set. Polytopes
whose vertices form a spherical two distance set are very interesting combina-
torial objects (see Deza and Laurent (1997), Deza, Grishukhin, and Laurent
(1992)). In the case of G-tope the two distance structure is realized so that for
each vertex Vv of the G-tope there is a vector P, such that the vertex set of G-
tope can be represented as vUV;UV,, where V] = {u €S l (u — V)Op = 1},
and 1, ={u € S| (u—v)ep =2} (see Fig. 77 ). For a detailed descrip-
tion of geometric and group theoretic properties of the G-tope see (Coxeter
(1973, 1995)).

Fig. 2: The three-Aoor structure of the Gosset polytope

Below. we show that for every subset of vertices of a Dealunay cell of
Es, Es can be perturbed so that this subset becomes a Delaunay cell for
the perturbed lattice. In particular, this implies that there are perturbations
of E¢ having a Delaunay simplex of volume 3, the maximal relative volume
of a Delaunay lattice simplex in R®. Delaunay (1937) was the grst to ask
about possible volumes of Delaunay simplexes. Ryshkov (1973) showed that

in every dimension 2r-+1 there is a lattice with a Delaunay simplex of relative
k

ny Where

volume r. Namely, Ryshkov proved that a Coxeter-Barnes lattice A
n > 2k + 1, has a Delaunay simplex of volume k. Ryshkov also noticed that
in the case of Aﬁ the existence of non-fundamental Delaunay simplexes is
directly related to another interesting phenomenon: for n > 9 perfect lattice
4{‘1 is not generated by its shortest vectors (Coxeter (1951), Ryshkov (1973)).
Our approach to the Delaunay structure of Fg gives us as a by-product an

ingnite series of lattices with a Delaunay simplex of relative volume n — 3.
Proposition 4  For every convex polytope I) whose vertex set is a subset
ol the vertex set of the G-tope there is a perturbation of Fg making D a
Delaunay polytope for the perturbed lattice.

Proof. Denote by ¢E6(;1:) an inhomogenious quadratic function whose

quadratic part is Fg, and such that <f)E6(”c) = (0 is an ellipsoid circumscribing

the G-tope. For > 0 consider quadratic function
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6(x) = dp,(x) + Y (pvex—1)(pyex—2).

v¢D

When «is suEciently small the quadratic part of ¢E6(x) is close to Ejg in
the space of parameters. The ellipsoid ¢Ee = 0 circumsecribes D, since forms
o(pvex —1)(pyex—2), v & D guarantee that all vertices of the G-tope

that are not in I lie outside of ¢Ee =0. O

3.2 Delaunay tiling of Eg

The Delaunay tiling of Eg consists of polytopes congruent to a 9-vertex
diagonal-free polytope T which is the convex hull of three regular trian-
gles with common center situated in three mutually orthogonal 2-planes. We
shall refer to this polytope as T-tope. Two Delaunay cells are said to belong
to the same homology class if one of them can be obtained from the other
by a lattice translation or by the superposition of a lattice translation and
an inversion. The Delaunay cells of EJ fall into 40 homology classes; the
Delaunay star of a point of EF has 720 polytopes congruent to T-tope, 18 in
cach homology class (Baranovskii, 1992).

['the following sections we give a description of some L-types having Eg or

x . .
El as extreme rays. In our description we use the language of commensurate

Delaunay tilings.

4 Commensurate Delaunay Tilings

Remark 5 1Instead of varying the parameters of the lattice one can set L =
Z" and vary the parameters of the metrical form. In this model points in the
space of parameters are interpreted as metrics, and all Delaunay polytopes
have integer coordinates. In the context of gxed lattice Z™ we refer to the
quadratic form of a lattice W as the metrical form of W. We will use this
model for the rest of the paper.

Degnition 6 Let 1, 1% be two lattice tilings of Z" They are called com-

menurate if the vertex set of their intersection tiling is Z"™.

Proposition 7 Delaunay tilings D(f) and D(g) of Z" for metrical forms I

and ¢ are commensurate if and only if their intersection tiling is Delaunay

for of + Fg, a, 3 > 0.

10



Proof.

fat

Commensurate and incom mensurate tilings

Let P and () be two lattice polytopes. We do not require that they have full
dimension, although that is the most signigcant case for our considerations,
when they are tiles in distinct Delaunay tilings. Any integer point belonging
to both is a vertex of the intersection polytope P M . There is, of course,

the possibility that this intersection has vertices that do not belong to yAS

Degnition 8 We will say the lattice polytopes P and () are commensurate
il the vertices of the intersection polytope P N () belong to 7.

The following lemma characterizes the vertices of P M () that do not belong

Lo Zd.

Proposition 9 Assume that v %Zd. Then Vv is a vertex of PN if and only
if it can be represented Vv :Telint(Fp) Nrelint(Fgy), where Fp is a face of P
and Fg is a face of Q).

As we will see, this Proposition gives a useful test to determine whether
lattice polytopes are commensurate. SUDA [

The remaining sections will be devoted to the proof of the following the-

arernn.

Theorem 10  Let gb(EG) and (b(Eg) be two forms of types Eg and Eg respec-

tively, that have the same determinant and are the centroids of two adjacent
perfect domains of types Ef and Eg. The segment with the end points gb(Eg)
and @(E}) has forms of 5 distinct L-types. The points where L-type changes
are o Ey), é(Eg), and %¢<Eg) + %(ﬁ(E;) The wall between the perfect do-

mains crosses this segment at point %d)(Eg) + %é(Eg)

6 Metrical form s for the lattices E6 and Eg

Consider the following three symetric sets of vectors in 75,

Py o= {£[-3.2;2Y, £[1,0; (=1)%], £[2, —2; —1*]}

Py = {£][-2,1:2,1%] x 4, 4£[—1,1;0,1%] x 4, 4[1,0;0, —1°] x 4,4{0,0; —=1,0%] x 4
+[1,-1;-1%,0%] x 6, £[2, —1; —1"], £[0, —1; 0*]}

Py = {£[0,0:1,~1,0%] x 6,£[1,0; —1%,0%] x 6}

11



A compact notation is used where, for example, £[0,0;1,—1,0%]x6 denotes

the 12 vectors generated by permuting the last four components of [0,0; 1, —1,0,0].
Let Pg, = Py U Ps3, and let 'PE(; = P; U P, As indicated by the notation,
these are sets of minimal vectors for metrical forms for the root lattice Eq
and its dual EF. More precisely, if TE, TrEp are the metrical forms with
coe(F cient matrices

S 1 3 3 3 3 (16 5 5 5 5 5
1 2 0 0 0 0 5 4 1 1 1 1
m| 3 0 2 1 1 1 m| 5 1 4 1 1 1
P"”f‘? 30 1 2 1 11| PEs‘“Z 5 1 1 4 1 11|°
30 1 1 2 1 5 1 1 1 4 1
|3 0 1 1 1 2] 5 1 1 1 1 4

then, if z €Z% is non-zero, TTEg(Z) > m with equality if and only if z € PEg,
and, g, (2z) > m with equality if and only if 2 € PEy. That is, Pg, is the set
of minimal vectors for mg,, and, PE(;« is the set of minimal vectors for TEr.
That p,. Tgy are metrical forms for the root lattices FEg, Eg is congrmed by

= 54. Both TE,
and Tpy are perfect forms. The arithmetic minimum for each of these forms,

the respective numbers of minimal vectors: |,PEeI =72, |'PEg

the minimum value on non-zero integer vectors, is equal to m. As shown
below. if this scale parameter is set equal to 1/8/3, then, the geometric
lattices corresponding to Tg,, TEy are dual lattices ™ up to a scale factor, the
lattices Eg and Eg

Minimal vectors and perfect domains. The perfect domains corre-

sponding to Tg,, TEy are given by

(I)lt'(-, = { Z wp(p ) X>2 | Wp 2 O}a (I)Eg = { Z wp(p ) X)2 I Wp Z 0}

p+ D+
peP g, pEPEé,

As indicated by the superscript +, these summations are over oriented subsets
of vectors ” one vector from each pair of opposites in the symmetric sets Pr,,
7755; thus. the summation in the expression for ‘I)Eg is over 27 vectors. These
domains are independent of the orientation that is chosen because the sign

of each minimal vector is absorbed by the square in the formula (p-X)2.

12



Perfection requires that the minimal vectors be su(Eciently numerous that
the closed polyhedral cones ®p,, (I)Eg have the full dimension 21 in the linear
space of metrical forms.

The two sets of minimal vectors Pg,, PE(; have an overlap given by Pg,N
731;;5 = P,, which is a symmetric set of 48 vectors. This corresponds to an

overlap

e, N0 =Y wplp %) | wp 20}
pePS

for the corresponding perfect domains, where the summation is over an ori-
ented subset of 24 elements. As can be checked, the elements of ®p, ﬂ‘bEg
generate a linear sub-space of co-dimension one, so the perfect domains (I)Eg,
$r, share a facet and are adjacent.

A scalar product on forms can be introduced as follows. If forms 7, ¢ have
coe(dicient matrices P, F, degne <7T7L,O> = trace(PF). Consider now the form
TEr = TE, and the rank one form gop(X) = (p - X)Q. Then, <7r75v6 — 7TEG,gOp> =
f’l'(Z,('(f(PEg—PE(.))ppT = pT(PEé«—PEG)p = WEg(p) — 7T'E6(p>. Easy calcula-
tions show that: if p € Py, then ﬂEg(p) - WEG(I)) =1~ % = —%; if p € Ps,
then WEg(P)_TrEG(P) =1-1=0;if p € Ps, then TFEg(p)—WE6(p) =2-1=1
From this data it follows that the intersecion domain (I)EG N (I)Eg lies on the
hyperplane with equation <7TEg —7TE6,L,9> = (), that the domain ®pg, lies in
the positive half-space determined by this hyperplane, and the domain CI)Eg
lies in the negative half-space.

Minimal vectors and eutactic forms. The forms
. m . m
e =15 D (X enx) = > (prx)

peng PEP S,

lie on the central axes of the perfect domains (I)E;, (I’Es, and have coe(Ecient
matrices given by

S -5 -5 -5 -5 -5 10 -5 —8 -8 -8
5 4 3 3 3 3 5 4 3 3 3

po_m| =5 3 4 3 3 3| m|-8 3 6 3 3
BE=% 1 5 3 3 4 3 3|74 |-8 3 3 6 3
5 3 3 3 4 3 -8 3 3 3 6

| 5 3 3 3 3 4 8§ 3 3 3 3
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ne is the scale parameter introduced above. These forms are related to the
original mg,, TRy by the formulas 99E6(X) = WES(UX), cpEg(X) = ﬂ'Eg(UX),
where U € GL(6,Z) is given by

11 -1 -1 =1 —1] (43 111 1]
-1 0 1 1 1 1 1 10000
o -1 1 0 0 o S 111000
UShoor 01 0 o U =l110100
0 -1 0 0 1 0 110010
L0 -1 0 0 0 1 |1 1000 1

Being arithmetically equivalent, YE,s TEs are alternate metrical forms for the
same geoinetric lattice, and similarly for Ppy TE- The minimal vectors for
these forms are related accordingly: SES = Fo U F3, SEg = F1 U F;, where
Fi = U_](Ypl), Fr= U_l(Pz), Fs = U"l('P;;). Explicit form for the sets Fj,
F3. F3can be obtained by a direct calculation.

Fi={x[2, -1;1, £[0,1;0%], £[~2,0; —1%]}

Fo = {#£[0,-1;1,0°] x 4, £[2,0;0,1%] x 4, +[1,1;1,0%] x 4, £[-1,0; —1,0%] x 4
+[—1.0; =1%,0%] x 6, +[1,1;0%], £[-3, —1; —1%]}

Fy={£[0,0;1,-1,0%] x 6, %[2,1;1%,0%] x 6}

Y

The various coe(Ecient matrices satisfy the relations FESPE(; = FEgPEe =
%11121. so that when m = \/%, FEe = (PEg)_l, FEg = (PE6)_1- Under
these circumstances the pair of forms Py TEE and the pair PEr THg, are
in duality: Y, = TTOE(;, TEr = 99%6, Ppr = Tr%s, TR, — 99})55- Dual forms
correspond to dual lattices, so the single geometric lattice corresponding to
the forms g, Tg is dual to the geometric lattice corresponding to $Ez TE-
This pair of geometric lattices is the root lattice Eg and its dual Eg.

The above representations for PR PEr can equally well be considered as
representations for the dual forms W}’;g = PRy W%ﬁ = PEp which shows that
TFCI’,;J, W%fc lie interior to the domains (I)Eg, ®p, determined, respectively, by
TEy. TE,- Forms with this property are said to be eutactic. Perfect forms are
frequently eutactic, and accompanied by such eutaxy representations for dual
forms. The forms 7r°Eg, 71'°E6 lie on the central axes of their respective domains,
but this is not a requirement of eutaxy. Since TRy = 99795’ TEr = S‘QOEG’ the
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original forms have eutaxy representations identicle to those for PEes PED

. T
mr(x) = Y s w0 = Y (s %)%

sesgg SESEG

thhe summation again is over an oriented subset of minimal vectors for the
reciprocal forms, respectively, the forms PErs P

The symmetrical congguration provided by the adjacent perfect domains,
(I)E(’;. (I)Em is remarkable. It is the fact that these domains have central forms
corresponding to dual geometric lattices that distinguishes this from other
conpgurations formed from adjacent perfect domains. While the lattices are
dual, the forms ¢g , Py are not " the form Oy is arithmetically equivalent

w Tgx. which is turn is dual to @p .

The line between @pg and Py The line segment @, = (1-—?5)@]56—}—1‘30]3(;,

0 <t <1, runs between the central axes of the perfect domains (I)Eg, (I)E6,
and cach form on this segment has arithmetic minimum equal to m. At the
end points Pligs PE? the minimal vectors are respectively SE6 and SEg, but
at intermediary points, where 0 < ¢t < 1, the set of minimal vectors is the
intersection Sp, N SEg = Fs.

Proposition 11 The line segment ¢, = (l—t)tpEs—{—tgoEg, 0 <t <1, pierces

the facet Op, N (I)Eg along the central axis when ¢ = %

The short, long and perfect vectors for Fg and Ej. We will consider

SEC, 7:’1«;5 as dual sets of vectors ” the minimal vectors for ¥, and for the
dual form Ty In order to make sharp distinctions we will refer to SEG as
the short vectors for Eg, and to PEg as the perfect vectors for Eg. The long
vectors for Fgis degned by

Lr, =z €L%pp,(2) = 2m},

where 2rn is the second minimum for ¢p , the minimal value assumed on the
non-zero elements of Z% not belonging to Sg,.

The vectors in SE6 are partitioned into 36 parity classes ~ equivalence
classes determined by the quotient QZG/ZG. Each short class contains a pair
of opposite vectors, accounting for the total number 72 of short vectors. The

remaining 27 = 63 — 36 = (26 - 1) — 36 non-zero parity classes are long, each



containing ten vectors from Lg,. Thus there are 10 X 27 = 270 long vectors
for Eg, given by L, = L1 ULy U L3 U Ly U L5 U Lg, where
Ly = {+[~1;=2,0" x 5} /:2 — {4[2,—1,1%] x 5Y:
Ly = {£[3,0;1%], £[-1 ]><4}><5;
‘,1 = {£[-2.0: =17, [ ,2; 4] +£[0% -1%,1%} x 5
{+£[0,1;0%], £[2, ,,,03]><4}><5
{£[-3,-2,0; ~1%], £[-3,0, —2; —1%], &[1, 0% —1,1%] x 2} x 10.

I |

H

Fach bracket includes 10 long vectors in the same parity class, and the no-
tation indicates how these elements are generated by permuting coordinates.
The sets £y, £y each include a single parity class, accounting for 2 of the 27
parity classes. The sets L3, L4, L5 include gve parity classes, accounting for
a further 15 classes. This is indicated by the X5; in each case the gve parity
classes are generated by permuting the last gve coordinates (the form ¢pg, is
invariant with respect to permutation of these @¢ve coordinates). The gnal
set Lg completes the list of 27 parity classes since it contains 10, as indicated
by the X10; these are generated by permuting the last gve coordinates of the
single class given.

Similarly, we will refer to SEE’ Pr, as the short and perfect vectors for
-

o- The long vectors for Ef are given by
. 6 3
Lr; = {z €L% ¢, (2) = §m}a

2

where 27/ is the second minimum for O
6
The set SEg contains 27 short parity classes each with a pair of opposite

vectors, accounting for the total number 54. The remaining 36 parity classes

are long, each containing a pair of opposite vectors. The 72 long vectors for
Ef are given by ﬁEg = F3UF,, where

Fi={£[0.0;1,0°] x 4,£[2,1;0,1°] x 4, £[-1,1;0,-1°] x 4, £[-3,0; -2, -1%] x 4
+[1.-1;1%,0%] x 6,£([3,0; 1], £[—1, —2; 04]}.
These long vectors are paritioned into 36 parity classes, each containing a
pair of opposite vectors.
In summary, SEG = FoUFs3, Lg, =L UL UL3ULyULsU Lg, S r =

FiUF 5. and 'cEg = F3UF4. The sets Fy, Fo, F3, F4 are partitioned, re-
spectively, into 3, 24, 12, and 24 parity classes, each with a pair of opposite
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vectors. Notice that F1UFy C L, so that passage from g, to the form Py
is accompanied by the three parity classes of F; going from long to short,
and the twelve parity classes of F3 going from short to long. The 24 parity
classes of Fy = SEG ﬂSEg are always short, and the 24 parity classes of Fy =
L'[;G ﬁL’];g are always long.Short-perfect and long-perfect duality.

i Short triangles

The point group for the root lattice Eg is the product of two element group
generated by central inversion and the reEection group Fg; it has order 283%5.
Naturally, there are four separate representations in GL(6,Z) that are the
invariance groups of the forms Prg> TE PE3 TEe- Let g, C GL(6,Z)
be the representation that leaves ¥, nvariant, so that if gEQEG, then
;,QEg(gX) :@Ee(x)‘ The dual representation, which is given by gge = {g° =
gTi)“1 g €6, }, is the invariance group of the dual form mgy. The full invari-
ance groups of the forms Ppy TEe can also be expressed in terms of QES using
arithmetic equivalence. Using the formula gOEg(X) = ﬂEé«(UX), where U is
described above, it follows that if g egge, then @Eg(x) = @Eg(U—lgUX) =
T, (x).  Therefore, U_IQEBU is the invariance group of gz The rep-
resentation dual to this, which is given by (U‘lgésU)o = UTQEG(UT), is
the invariance group of mg,. It will be convenient to use the symbol gEz3
for the representation U_IQEGU, and the symbol QEE for the representation
UTQEG(UT)_I, which is dual to gEé. (Note It would be nice to have a
symmeltric U, Check notes)

Using eutaxy representations for the forms it is easy to show that the
groups QEB, g}%a, QE:;, gf;g are the full invariance groups the corresponding
sets of minimal vectors, which are given respectively by SES, ,PEg’ SEg, PEG-
It is well-known that these invariance groups act transitively on correspond-

ing sets of minimal vectors, and we will make use of this fact below.

Short-perfect duality. Consider a symmetric set of vectors X C Z%
Then. the dual set X°is degned by the formula

X°={z¢eZ%z x € {0,£1},x €X}.

I sets X,Y C Z%satisfy the relations ¥ = X° X =Y° we will say they are

in duality, and refer to X,Y as dual sets of integer vectors.
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Direct calculations show that SE6 = ( 7)135)0, PEg = (SES)O, so that SE6,
73;;5 are dual sets of integer vectors. Through short-perfect duality, either of
the sets Sg,, 'PEG* is determined by its partner. Similarly, the sets SE(;H P,
follow such a duality law.

Consider a lattice polytope P with vertices in Zd, and a symmetric set of
vectors X C Z% We will say that P is an X —tope if the vectors running
between vertices belong to X. That is, all the edges and diagonals of P
belong to X.

Proposition 12 Assume that X,Y C Z4 are in duality. Assume also that
Pis an N—tope, and let o(x) = Zer+ wy(y - x)?, where wy >0 and YT

is an orientation for Y. Then P is a Delaunay cell in 'Dg,.

Corollary 13 If P is an SEG—tope, then P is Delaunay with respect to the
form Pl i P is an SEg—tope, then P is Delaunay with respect to the form
Yz

Corollary 14 Any pair of SEG—topes are commensurate; any pair of SEg—topes

are commensurate,

Short and perfect triangles. If distinct non-zero vectors a,b,c € Zd,
satisfy the equation a+ b+ ¢ =0, then, by arranging them head-to-tail in
the order given, and starting at the origin, they trace out a lattice trian-
gle.  The vertices are given by {O,a,a+b}, and the edge set is given by
{#a,+b. +c}.

Deonition 15  Let T C Z% be a symmetric set of six vectors. Then, T is

triangular if and only if there are vectors a,b,c € T, distinct and non-zero,

so that a4+ b + ¢ =0.

For a triangular set there are twelve head-to-tail arrangements of three vec-
tors each, which trace out triangles at the origin. However, there are only
six triangles; each triangle is traced twice, once in the clockwise, and once
in the counter-clockwise direction. These six tiangles gt together edge-to-
edge to tile the hexagon with vertex set {:i:a, :tb,:i:c}. These triangles are
homologous.

The ten subsets

{£[3:1.1,1.1,1], £[-2; =1, -1,-1,0,0], £[~1;0,0,0, 1, —1]} x 10 C Sg,
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are triangular; as is indicated by the notation, these subsets are generated by
permuting the last gve coordinates of the representative, which is displayed.
This is the collection of all triangular subsets that contain the co-linear pair
+(3:1.1,1,1,1], which can easily be veriged by refering to the list of vectors
in 8p,. We will refer to this collection as the triangular star, or more simply,
the T-star of {:E[3; 1,1,1,1, 1]} More formally, if T(SEB) is the collection of
all triangular sets in SE@? then

T(Sg,;+3:1,1,1,1,1)) = {T € T(Sg,)| £ [3:1,1,1,1,1] € T}

is the T-star of {£[3;1,1,1,1,1]}. The permutation subgroup As C GE,

oxes this star, and acts transitively on the triangular subsets of this star. By
the observation that the gE6—action is transitive on the 36 co-linear pairs
{ia} € SE(;s it follows that: for each pair {:l:a} € Sg,, the stability group
of the T-star T(SEG;ia) acts transitively on the triangular subsets of the
star.  The [ollowing secondary conclusions are immediate: (1) the T-stars
T(Sp,;ta) are Gg,—equivalent; (2) there are (36 x 10)/3 = 120 triangular

sets in Sg,, which are Gp,—equivalent; (3) there are 120 X 6 Sp,—triangles

at the origin, and, 120 homology classes of Sg,—triangles.

Similarly, the gve subsets

{£[-3:2.2.2.2.2], £[2 -2, -1,-1,~1,-1], +[1;0,~1,-1,—1,~1]} x 5 C Pg;

are (riangular; this collection is the T-star, T(PEg; :}:[—3;2,2,2,2,2]), of the

co-linear pair £[—3;2,2,2,2.2]. The subgroup As C Gp, leaves this star

invariant. and acts transitively on its triangular subsets. As before, this
leads to the primary conclusion: for each pair {:l:a} € pEg, the stability
group of the T-star T(PEg;:f:a) acts transitively on the triangular subsets
of the star. The secondary conclusions are: (1) the T-stars T(PEg;:i:a) are
g%ﬁ~cquivalenbz (2) there are (27 X 5)/3 = 45 triangular sets in ’PE(;, which

are Gp —equivalent; (3) there are 45X 6 Ppz—triangles at the origin, and, 45

homology classes of PEg—triangles.

If 7¢(X)is a subclass of triangular subsets for some symmetric set X C
Zd, it is natural to consider the corresponding subclass of triangular stars,
T(Xsa) = {T € T°(X)|a € T}, where a€X. In this setting, it is also
natural to consider the subclass of X°—triangles, where the edge sets are
triangular subsets of TC()().
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Lemma 16  Assume that the elements of the symmetric set X C Z% are
G—equivalent, where G CGL(d,Z) is onite. Let TC(X) be a subclass of
triangular subsets, with the property that the stability group of each T-star in
the subclass, T(X;d+a),{£a} €X, acts transitively on the triangular subsets
of the star. Then, the subclass of X“—triangles are G—equivalent.

Lemma 17  Assume that the elements of the symmetric set X C Z? are

G—equivalent, where G CGL(d,Z) contains the central inversion 1, and is

onite.  Also assume that T°(X) is a G—orbit of triangular subsets, and

that X €X has the property that the stability group g(x) acts transitively on
the triangular sets in TC(X;X). Then, the subclass of X¢—triangles are

G —equivalent.

Proof. Let T:{ia, ib,j:c} € TC(X) be arbitrary, and choose g € g
so that ga=Db. Then b € gT € TC(X;b). By assumption, there is an
clement h € G(b) so that hg7 = T, and hga =Db. Since we can assume
that a,b were chosen arbitrarily, it follows that the stability group Q(T) acts
transitively on the elements of 7. This being the case, Q(T) must be either
the dihedral group D, or the re&Hection group f hb = —b, replace h by 1h,

where iis the central inversion. in the stability group of inthe m

Prbposition 18  There are 120 x 6 Sg,—triangles at the origin; these are
Ups—equivalent, mutually commensurate, and Delaunay with respect to the
form wp,. There are 45X6 SEg-—triangles at the origin; these are gEg——equivalent,
mutually commensurate, and Delaunay with respect to the form Ppr

8 lbong triangles, G-topes and T-topes

Consider the triangular set {+[2;—1,1,1,1,1], £[-2;0,-1, -1, -1, —1], :]:[0; 1,0,0,0,0]} C
L‘F;‘;: 'CEG is the set of long vectors for o degned by

Lr, = {2 €2%pp, (z) = 2m).

The value 2m is the second minimum for @, which is the minimal value
assumed on the non-zero elements of Z° not belonging to Sg,. |£Ee\ = 270.
The reference G-tope, Gp,, is the convex hull of 45 long triangles, each

with center of gravity ¢g = %[2,1,1,1,1,1], which is the center of gravity of
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Gp, itself. Representatives from each As—class of long triangles are given by

1 .
A, = conv{[0;0,0,0,0,0], [0;

[ 1,10;1,0,0,0,0],12;0,1,1,1,1]} x 5,
A’:n = conv{[3;1,1,1,1,1], [~

[ I

[ I [-

1
1;-1,0,0,0,0],[0;1,0,0,0,0]} x 5,
£0,0,0,1,1],[0:1,0,0,0,0]} x 15,

1;0,-1,0,0,0],[2;0,1,1,1, 1]} x 20;

All;l = conv{[1;0,1,1,0,0],[1
Aifj’ = conv{[1;1,1,0,0,0

bl
the notation indicates how many triangles there are in each class (permu-
tation of the last gve components generates the class). There are gve long
triangles attached to each vertex of GP1

These triangles are long because their sets of edge vectors, given respec-
tively hy

{1[010000] +[2:—1,1,1,1,1], £[-2;0, — ~1,-1]} x 5,
(£[-4;-2,-1,-1,-1,-1], :t[l;2,0,0,0,0],:i:[3,0,1,1,1,1]} x 5,
{[0:0, -1, 1,1,1]],1[ 1;1,0,0, -1, —1],4[1;—1,1,1,0,0]} x 15,
{£]-2;-1,-2,0,0,0],£[3;0,2,1,1,1), £[~1; 1,0, -1, —1, —1]} x 20,

are long vectors for Y, These 45 sets of edge vectors give a second geometric
description of the 270 long vectors for PR,
Tle reference T-tope also has a representation in terms of long triangles;

Ta, is the convex hull of the three long triangles

AL . = conv{[0,0;0,0,0,0],[0,0;0,0,1,0],[0,0;0,0,0,1]},
.SA = conv{[-1,0;-1,0,0,0],[-1,0;0,-1,0,0},(2,0;1,1,1,1]},
A}, = conv{[1.0;0,0,1,1],[~1,-1;0,0,0,0],[0,1;0,0,0,0]}.
These triangles have center of gravity ca, = %[0,0,0,0,1,1] equal to the

center of gravity of T'a,, and lie in complementary 2—spaces. They are long

because their edge vectors

{£[0,0;0,0,1,0],4[0,0;0,0, —1,1], £[0, 0, 0, 0, 0, —1]}
{#£[0,0;1,-1,0,0], £[3,0;1,2,1,1}, £[~3,0; — —1,-1]},
{£[-2,-1;0,0,—1,-1],£[1,2;0,0,0,0], £ [1,—1,0,0,1,1]},

are long vectors for PEz-



The long triangles in Lg,. The long vector [0,1;0%] participates in the

following 17 tripples of vectors in EEe’ which sum to zero.

{[O 1a 04]7 [27 —1; 14]7 ['—270; —14]}
{[0,1;0%,[3,1;0,1,1,1),{-3, —2;0, -1, -1, 1]} x 4
{[0,1;0%,[~1,-1;0,1,—1,—1],]1,0;0, —1,1,1]} x 12

Since the Gp,—action is transitive on the long vectors, this action generates
(270x17)/3 such tripples, which account for all tripples of vectors in LEg, that
sum to zero. These occur in pairs of opposites, and each pair of opposites
corresponds to a single homology class of six long triangles at the origin.
Counsequently, there are 45 X 17 homology classes of long triangles, and 45 X
17 x 6 long triangles at the origin.

The homology classes of long triangles can be classiged using the Gg,—action,

and using the notion of c—homology classes.

Degnition 19 We will say that two long triangles are ¢ — homologous if
their centers are homologous. A set of triangles belongs to the same c—class

it the triangles are mutually ¢c—homologous.

Two triangles that are homologous are neccessarily c—homologous, but c—homologous
1

) _ p1’
Af,l,...,;&:)‘;. are c—homologous because they have a common center of grav-

triangles need not be homologous. For example, the 45 triangles A

ity, but are inhomologous. As a second example, consider the vectors in

the orst tripple, which are edge vectors for the triangle A;l with vertex

set {[0;0.0,0,0,0], [0;1,0,0,0,0], [2;0,1,1,1,1]}, and, the vectors in the
second tripple, which are edge vectors for the triangle A’ with vertex set
{[0.0;04].[0,1;04},[3,2;0,1,1,1}}. The two centers, cg = %[2;1,1,1,1,1],
Car = %[3,3;0,1,1,1], are inhomologous, so the triangles themselves are in-

homologous and c—inhomologous.

Proposition 20  There are 45x17 homology classes of long triangles at the
origin.  These belong to two Gp,—classes and 121 c—classes. The grst
Gp, —class contains 45 homology classes, including the homology class of the
triangle A;l. These 45 homology classes are c—homologous, and are com-
mensurate with the star of G-topes at the origin. The second gEﬁ—class con-
tains the remaining 45x16 = 720 homology classes, including the homology
class of the triangle A’. This GE,—class is further regned into 120 c—classes
of 6 homology classes each, which are incommensurate with the star of G-

topes al the origin; the Gp,—action is tramsitive on these 120 c—classes.
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Proof. The grst assertion was established in the counting at the begin-
ning of this section.

The ove triangles ALI, Ail,...,A;l are gEs(Gpl)—equivalent, and therefore
Gp,—equivalent. The Gg,—action on A%n therefore generates dxb4d — 270 =
4526 long triangles. These long triangles are commensurate with the star of
(i-topes at the origin.

Gincotriantgument immediately prior to the ™|
The long triangles in ﬁEg-

The Delaunay tilings DE6 and DEg-

9 G-Topes, T-Topes, and incidence relations

The G-tope Gy, is the convex hull of the origin, 0 = [06], and the two layers

of vertices

Sp, = {8 €Sk, |p1 s =1} = {[3;1°],[-1; —1,0% x 5,[1;1%,0°] x 10},
‘C’Pl - {1 EﬁEs’pl 1= 2} = {[07 1704] X 57 [2;07 14] X 5}

The perfect vector py = [—3,2,2,2,2,2] c ’PEg appears in the incidence
relations that characterize these layers, and, also as a subscript. The sixteen
lattice points in the short layer, and the ten in the long layer, are found
using the incidence relations, and the list of short vectors for YE, above, and
the list of long vectors below. This reference polytope, with 27 vertices, is
frequently referred to as a Gosset polytope since X. X. Gosset was the grst
to make an extensive investigation of its properties [cite.].

The long vectors for ¥f, are degned by
Liy = {7 €28)pg, () = 2m},

where 2m is the second minimum for ¥, which is the minimal value assumed
on the non-zero elements of Z° not belonging to SE@' ’£E6| = 270.
A second reference polytope is the T-tope TA“ which is the convex hull

of the origin and the following two layers of vertices.
Sa, = {s €Sg;
, , 3 :

LAl = {l E‘L’Eé'|aAl 1= 5} - {[047 170]7 [057 1]}

an, s =1} ={[2,0,1%],[-1,0,-1,0%,[-1,0% —1,0%],[0,1,0%], [-12,0%],[1, 0%, 1
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The subscript refers to the perfect triangle A; = COTLU{O,pl,pz}, where
pr = [=-2,1,1,1,2,1], p2 = [-2,1,1,1,1,2]; we say that A is a perfect
triangle in Pg, because the edge vectors {p1,Py — P1, P2} C Pg,- The
incidence relations that characterize the short and long layers are formulated
in terms of the vector ap, = %(pl + p2).

The long vectors for Py are degned by

3
Lr, = {2 €27p5;(2) = S},

where %m is the second minimum for PEy- |£E6| = 72.

(At the moment we are unconconcerned whether the reference G-tope and
reference I'-tope are lattice polytopes. That is, we have not yet excluded the
possiblility that there are integer points interior to either of these polytopes,

or in the relative interior of one of the faces.)

Equivalent G-topes and T-topes. More generally each perfect vector

p € 'PEJ determines a short and long layer by the incidence relations Sp =
{S ESEG1p-S = 1}, ,Cp = {l E£E6|p-l = 2}, and, a corresponding G-tope Gp =
(:()'I'l'v{O,Sp,,Cp}. Each perfect triangle A € Pg, at the origin determines a
short and long layer, Sp = {S ESE(; ap S = 1}, LA = {1 E,CE(; ap 1= %},
and, a corresponding T-tope Th = conU{O,SA,EA}; ap = %(pi—}—p]‘), where
P:.P; € PE, are the two vertices of A not equal to 0 (A = conv{0,p;,p;})-

Theorem 21 The 54 G-topes given by Gp,p € PEg, are ps—equivalent.
The 720 T-topes given by Th, A € PEB, are gEg—equivalent (A is required
to have a vertex at the origin).

IProof. The grst assertion of the Theorem follows from the fact that g;;e
acts transitively on the perfect vectors PEg- The second assertion follows
from the fact that g%a act transitively on the perfect triangles A € Pr, that "
have a vertex at the origin (established in Theorem XX below).
The prool is completed by showing that the number of perfect triangles A €
Pp,, with a vertex at the origin, is 720. The perfect vector [2,—1; -1, -1, -1, —1] €
PE, belongs to the two tripples £, = {[2,-1;-1,-1,-1,-1},[-2,1;2,1,1,1],[0,0; —1,0,0,0]},
E, = {[2.-1;-1,-1,-1,~1],[~1,1;1,1,0,0],[~1,0;0,0,1,1]} C Pp,. Since
the vectors of each tripple sum to zero, each is a tripple of edge vectors for
a perfect triangle. By permuting the last four entries, three additional trip-

ples in Py, are generated from Ej, and nine additional tripples are generated

24



from Ej. Altogether there are ten, and these are the only tripples in P, that
,—1,—=1,—1]; this can easily be checked.
Since the dual action of gEg is transitive on Pg,, the total number of tripples
of edge vectors 1Is (‘PE6| X 10)/3 = (72)( 10)/3 = 240. These tripples occur in

positive and negative pairs, each pair of opposites corresponding to a single

contain the perfect vector [2,—1;—1

homology class of perfect triangles at the origin. As a consequence there are
120 homology classes of perfect triangles at the origin, and 6 x 120 = 720
perfect triangles.

|

The incidence relations for G-topes and T-topes invlove the following
values for scalar products: p-s =1, p-1=2, ap-s =1, ap-l :%. As shown

in the following Lemma, these are critical values.

Lemma 22  For p E'PEG*, MaXseSg, P - S =1 and PmaXiecy, P - 1 =2. For
A = conv{0,p;,p;} € Pr,. aa = i(p; + py) MaXses,, Aa - § =1 and

maxies,, oa -1 :%.
‘6

Proof. The ¢rst assertion follows from the fact that for p E’PE(;«, S ESE6,
1€Llp,. p-s€{0,£1}, p-le {0,£1,£2}. Similarly, for p €Pg,, s €S,
lelp:. p-s€{0,£1}, p-le {0,41,42}. Proof of the second assertion also
requires the fact that for each perfect vector p EpEa there is a unique long
vector lpéﬁEé« with the property that p-lp = 2, and the mapping p — lp
establishes a one-to-one correspondence between the elements of PEG and

’CEC* (this may be established by examining the list of vectors in PES and

,C]i‘*) ]

Proposition 23 For arbitrary G-topes Gp“Gpj, P:,P; € PEg, GpiﬂGpj is

a proper face of both GPi and Gpj, with vertex set {O,Spiﬂ Sp].,,cpiﬂ ,ij}.
For arbitrary T-topes TA”TAj, Ai,A]' € pEG, Ta, N TAJ. is a proper face of

both Tz, and TAJ,, with vertex set {0,Sa;N SA].,/:Alﬂ ﬁAj}.

Proof. Consider p;,p; € PE(;, and the hyperplane with equation (Pz’ —
p_,) -x =(). By Lemma 22, pr and ﬁpl are contained in the positive half-
space determined by this hyperplane, and, Spj and ,ij are contained in the
negative half-space. Therefore, the hyperplane with equation (pi—pj)~X =0
separates GPi and Gp]..

Any short vertex s GGpi U Gpj lying on the separating hyperplane must
satisfy the equalities p;-s = P; s =1, and therefore belong to the intersec-
tfion Sp,M Spj C Gp,N Gpj. Similarly, any long vertex 1 €Gp, U Gpj on the

]
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separating hyperplane must satisfy the equalities p;-1 = pj~l =2, and belong
to the intersection Lp,MN ,ij C Gpiﬂ Gpj. Therefore, the vertices of Gpiﬂ
Gpj are given by {O,Spiﬂspj,[:piﬂﬁpj}, and determine a proper face of both
Gpi and Gpj.

An identicle argument establishes the second assertion.

This proposition is easily generalized to cover the case of an arbitrary inter-
section of G-topes or T-topes: the intersection Gp; N Gpj N...NGp, is a face
of each of the intersection G-topes, with vertices given by {O,SpiﬂSpj MN...N
Spk,L:I,,.ﬂL'pj n...N ‘Cpk}; the intersection T, N TAj N...NTx, is a face of
cach of the intersection T-topes, with vertices given by {O,SAiHSAJ, n...n
Sa-LaNLa; NN La} :

The star of G-topes. ﬁpl is the vertex set for a cross polytope, which is

a facet of Gpl- The subsets {I‘l,rg, ...,1'5} = {[O; 1,04] X 5}, {bl,bg, ...,b5} =
{[2;0.14] X 5} C 'Cpx determine opposite facets, which we will refer to as the
red and blue 4-simplexes. These simplexes are short because their edge vec-
tors, which are generated by permuting the last gve entries of [0;1,—1,0,0,0],
are short. The diagonals intersect at the point %[2,1,1,1,1,1], which is
the centroid of L:pl. The diagonal vectors, given by {:t(bl — I‘l),:i:(bz —
ry)....t(bs —rs)} = {+[2;-1,1,1,1,1] x 5}, are long.

The dual for the stability group for Gplv which is the subgroup gE6(Gpl) C
Ui, is the stability group for the perfect vector p;, which is the subgroup
i, (p1) € G5, 1G5, (Gpy )| = |5, (1) = 0%, |/ Prz| = 2°85/54 = 51 24

The stability group for the red simplex (or the blue simplex) is the permu-
tation group As acting on the last gve coordinates, and has order |A5| = 5l
Since ./42 C g%ﬁ_)(pﬂ, it follows that A5 C gEG<Gp1).

The matrix

-1 220 0 0

001000

L - 01 0000
2710111100

~11 1010

| -1 1100 1

induces an inversion of the orst two axes of conv([,pl), and maps the red and

blue vertex sets onto vertex sets for other facets of Conv(ﬁpl): 112{1‘1,1'2,1'3,1'4,1'5} =
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{bl,bg,r;;,r,l,rg}; Ilg{bl,bg,b3,b4,b5} = {rl,rg,b3,b4,b5}. It is easy to
check that I3, € g%e(pl), so Ijp € QEG(GPI). Similarly, there are matri-
ces Ij3, T4, Ii5 that induce inversions of the pairs of axes indicated by the
subscripts. FEach is an element of gE6(Gpl), and the group Zs generated by
these actions is a subgroup of QE6(GP1). An arbitrary element I €75 inverts
an even number of axes of the cross-polytope, and Zs is the group of all such
even inversions. The Zs—orbit of the red simplex is the set of all simplicial
facets with an odd number of red vertices, and the ZIs—orbit of the blue sim-
plex is the set with an even number of red vertices. The facets in each orbit
alternate on the boundary of COnU(ﬁpl), and are short. The order of Zs is
equal to the size of cach of these orbits, which is half the number of facets
27,

Clearly, Zs x A5 C QES(GPI). Since |I5 X .A5| = |I5HA5| =5l x 2% =
G (Gp, )|, it follows that Zs X Az = G (Gp, )

Theorem 24 QEG(GM) = Ty x As. Alternate facets of conv(ﬁpl) are
g/;(.)(iGpl)—equivalent, each class containing 2% short 4—simplexes. The

k—faces, for 0 <k < 3, are short simplexes, and are Gg,(Gp,)—equivalent.

Proof. The grst two assertions were established in the discussion before
the statement of the Theorem. Assuming that alternate facets are equivalent,
each k—face, for 0 < k < 3, belongs to a pair of alternate facets, and is
therefore QEG(Gpl)—equivalent to a k—face of the red simplex. Since the
k—faces of the red simplex are As—equivalent, and since As C QEG(GPI), the
second assertion of the Theorem follows.

|

The diagonal vectors for conv(/:pl), given by L = {:12[2;—1,1,1,1,1] X
5} C Ly, are also the diagonal vectors for the opposite cross-polytope
conv(L_p, ). Since the 27 pairs {pi,—pi}CpEg are g%6—equivalent, there
are 27 scts of diagonals L£; that are Gp,—equivalent. Since the diagonals
LyCLy, belong to a single parity class, and are orthogonal to the subset
{ipl}. similar statements hold for each of the diagonal sets ﬁ,’C,CE6. The



27 G, —equivalent long parity classes are given by:

{£[-3 ]}¢L1:Lﬁ1—11]x@

{£[-21]} L L2 = {£[-1;-2,0" x 5}

{i[() 1 0]}J_£3:{i[3,0,1] [ 1,0;1,—1% x 4} x 5;
{#[-1:001°} L Ls = {£[- 37 —1%], £[-3,0, —2; 1%, £[1,0% —1,1%] x 3} x 10;
{+]-2 1]}L£18:{i[ —13),+[4,2,1; 1%, £[0% —1; —1,1%] x 3} x 5
{£][=1:0.17} L Lys = {£][0, 1. 04] [2,1;2,03] X 4} x 5.

These 27 classes account for the 270 long vectors of @p,.

Corollary 25  Lpg, = U1§i§27£i. The parity class L; is characterized by the
L, = {ipi}l N [:Ee, {ﬂ:pi} = ﬁf‘ N PEg, and has stability group
ng(/:l) = ngge(Gm), where 7 is the two element subgroup with the central
inversion.

cqualities

Prool. The orst assertion follows from the above discussion. The second
assertion can be veriged for the case of Ly, then extended to arbitrary L; by
the (g, action. Tt is apparent that the stability group for {pi,—pi} is given
by T X g;}e(pi), from which it immediately follows that the stability group
for L;is given by I X QEG(GM).

]

Consider the G-topes Gp, and Gp,, where p; = [—3,2,2,2,2,2], po= [ —
2,1,1,1,1,1] € PE(;. A straight forward calculation shows that

Sp,NSp, ={[-1;-1,0,0,0,0] x 5}
Lo, NLp, = empty.

By Proposition 23 Gp, N Gp, = CONU{O,SPIQSW} = 5, which is a facet of
both Gp, and Gp,; S is a short S—simplex.

Another example is the cross-polytope facet that results when the perfect
vectors p1 = [—3,2,2,2,2,2], p1s = [-2,2,1,1,1,1] € Pg are chosen. In

this case

[~1,0;-1,0,0,0] x 4,[1,1:1,0,0,0] x 4}

Spl m Pis {
{mlooom}

Epl mLpls

and C = conv{0,8p,NSpss Lp,NLps} is a S—dimensional cross-polytope,
which is a facet of both Gp, and Gp,,; the centroid is ¢¢ = [0, ;,0 0,0 0]
and L3 = {£[0,1;0,0,0,0],4+[2,1;2,0,0,0] x4} is the set of diagonal vectors.
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Corollary 26 Gp1 has two gEe(Gpl)—cla‘sses of facets with vertices at the
origin: 10 simplicial facets Gp, N Gp,,2 <1 < 17, which are short: 10 cross-

polytopes facets Gp, N Gpj,18 <7 <27. Gp, has two (g, (Gp, )—classes of
4—faces with vertices at the origin: 80 short 4—simplexes, which separate
simplicial and cross-polytope facets; 40 short 4—simplexes, which separate a

pair of cross-polytope facets.

Proof. It can easily be checked that g%e(pl) acts transitively on the

following two sets of perfect vectors.

{P2:Pss -, Pur} = {[=2;1°],[0;1,0% x 5,[~1;0%1%] x 10}
{P18; Prgs s Por} = {[—252,1%] x 5,[-1;0,1"] x 5}

It immediately follows that Gp, N Gp,;,3 < ¢ < 17 are simplicial facets
gEC(Gpl)—equivalenl, to the reference S, which is short, and, that Gp1 N
Gpj.19 < g < 27 are cross-polytope facets Gre(Gp, )—equivalent to the ref-
erence C

By Proposition 23 the intersection Sy = 5N C is given by

Gp, N Gp, NGy, = conv{0,Sp, N Sp, N Spy, }
= {0,[-1,0;-1,0,0,0] x 4},

which is a simplicial 4—face of both S and C, and is short. The gve
d—faces of S with a vertex at the origin are As— equivdlent, and, since
As C Gg,(Gp,), are G, (Gp,)—equivalent. Since the 16 simplicial facets are
Gr,(Gp, )—equivalent, there are 16 x 5 = 80 Gy (Gp, )—equivalent 4—faces of
this type. which separate simplicial and cross-polytope facets.

By Corollary 25 the subgroup Gg,(Gp,, ) acts ecectively on Lo3 = {=£[0,1;0,0,0,0], £[2,1;2,(
4} which is the set of diagonal vectors of C'. The subgroup of gEe(sza) that
oxes the diagonal [0,1;070,0,0] is also a subgroup of gES(Gm), so is equal to
Ore(Gpyy )NGE, (Gp, ). By the geometric description of the G, (Gp, )—action,
alternate 4—faces of C, attached to the origin, are gEe(Gma)ﬁgEe(Gpl)—equivalent,
therefore gES(Gpl)—equivalent. Therefore, C has 8 equivalent 4—faces,
which separate C from simplicial facets equivalent to S. Since there are 10
cross-polytope facets, there are 10 X 8§ = 80 equivalent 4—faces of this type,
which gives a second accounting for the 4—faces that separate simplicial and
cross-polytope facets.

Let A = GPI ﬂGplg, which by the grst assertion is a cross-polytope facet
QEC(GPI)—equivalent to C'. By Proposition 23, the intersection X4y = X NC

29



is given by

Gpl n GPIS N GP19 = COTLU{O,Spl N SPIB N SP19}
= conv{0.[-1,0,0,-1,0,0],[-1,0,0,0,-1,0],[-1,0,0,0,0,—1],[1,1,1,0,0, 0]},

which is a simplicial 4—face of X and C, and is gEG(Gpl)——inequivalent to
S4. Therefore, C has 8 equivalent 4—faces, which separate C from cross-
polytope facets equivalent to C. Consequently, there are (10 X 8)/2 = 40
equivalent 4-—faces, which separate cross-polytopes equivalent to C.

Since the 4—faces enumerated account for all 4—faces of simplicial or
cross-polytope facets, which have a vertex at the origin, the lists of facets

and 4—faces are complete. W

Theorem 27 The 54 G-topes Gp,p €Pg:, ot together facet-to-facet to form
the star of G-topes at the origin. There are 432 Gp,—equivalent facets with
a vertex at the origin that are simplexes, and 270 Gg, —equivalent facets that
are cross-polytopes. For each dimension 0 < k < 4 the faces are simplicial,

and gEG-equivalent.

Proof. The grst two assertions are immediate consequences of Corollary
26.

Consider the 4—faces Sy, Xy, which were described in the proof of Corol-
lary 26, and are representatives of the two gEG(Gpl)—classes of 4—faces
described in that Corollary. The face X4 is the intersection of two cross-

polytope facets X and C, and the simplicial facet Y, which has the following
description. »

Y = Gp,y NGy, = COTL’U{O,SPIS N SPlB}
= conv{0,[-1,0,0; —1,0,0] x 3, [1%0%],[-2,0% —13]}

Since Y is gEG—equivalent to S, X4 is gES——equivalent to a 4—face of 5. Since
Sy is also a 4—face of S, and since the 4—faces of S, with a vertex at the
origin, arc As—equivalent, X} is gEﬁ—equivalent to S4. It follows that there
is a single Gp, —class of 4—faces, with a vertex at the origin. An extension of
this arguimnent shows that all faces of each lower dimension, with a vertex at

the origin, are simplicial, and Gg,—equivalent. ®
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The star of T-topes.

Theorem 28 The 720 T-topes Th,A € Pp, ot together facet-to-facet to
form the star of T-topes at the origin. There are 6400 gEg—equivalent facets

that separate these T-topes, and have a vertex at the origin.Long triangles

10 Com mensurate and iIncom mensurate T—topes

The lattice polytope T is contained in &, and is therefore commensurate with
GG. A second reference T-tope is () = conv{Ab,A?‘ ,A%}, where

Aclg = C()TI’U{[OB, 1,02], [04, 1,0], [05, 1]},
L\zQ = conv{[-1,0,-1,0%,[2,0,1%],[—1, 0%},
L\é = CORU{[—L _1704]> [Ov 1704]7 [1702> 13]}

The edge vectors of each of these triangles belong to ,CEé«, so these triangles
are long with respect to the form Py they have a common centroid equal
to the centroid of (), which is given by CQ:%[OZ;O,l?’].

The simplex Sg = conv{[?,O; 14], [——1,0; 04], [——1, —1; 04], [0, 1; 04]} has two
vertices [rom each of the triangles A2, A%, so is a simplicial 3—face of
(). The centroid i[o,o;l,l,l,l] is also the centroid of the simplex SGPI =
conv{[0%1,0%],[0%0,1,0%,[0% 0%,1,0],[0% 0%,1]}, which is a 3—face of Gyp,.
These faces of () and Gpl lie in a complementary 3—spaces, so satisfy the
condition that relint(Sg) N Telint(SGpl) = i[0,0;LLl,l]. It follows from
Proposition 9 that i[070;1,1,1,1] is a vertex of the intersection polytope
QN Gp], and that @ is incommensurate with Gpl'

The long triangles.

Equivalence along the line of centers. The forms along the line of
centers. (1~t)t,9E6+ttpEg, are invariant with respect to the action of the group
gEmE; =Gg, N gEg, which leaves both YE, and Op: invariant. Accordingly,
both the short and long vectors of Eg and Eg are left invariant, and in
particular the subset »CEG ﬂSEg'is left invariant.

We grst consider the stability group gEG(,CEGHSEg) - QE6 of the set ﬁEgﬂ
S/;; = {:HZ, -1,1,1,1, l], :i:[O, 1,0,0,0, 0], i[—?, 0,—-1,-1,-1, —1]}, which

must contain Gr.nps. Since Lg, N Sgx is the set of edge vectors for a single
b@ﬁ[/ﬁ 8 6 g g
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homology class of long triangles in Lg,, the action of the elements of the group
G, (Lp, N SEg) must permute the six members of this homology class. We
take A = conv{0,{0,1,0,0,0,0],[—2,0,—1,—~1,—1,—1]} to be a reference
in this homology class, and consider the its stability group QEG(A). The
triangle N G, so A is commensurate with . Since QE6 acts transitively
= 31| Gy (A)].

It is geometrically obvious that The action of gEGOEé‘ must leave invariant

on the commensurate long triangles in ,CE6, |QE6(£E6 ﬂSEg)

the short and long vectors of both Fg and Eg, so must leave invariant each
of the sets SE};HSEgy SE(;HL‘EG*, Lg, ﬁSEg, Lg, ﬂﬁEg.
Consider the gve-dimensional cross-polytope opposite the origin in G,

with vertices given by

[llalza13»14715;1'171'271‘371‘4,1"5]

0000022222
1000001111
0100010111
10010011011
0001011101
(0000111 110]

The four-dimensional cross-polytope with diagonal vectors I; — r;,2 <1 <
5¢ = 2,3.that is equatorial to the grst diagonal diagonal and the diagonal
running between the opposite vertices | = [0, 1;0,0,0,0], r, = [2,0; 1,1,1, 1].
The four-dimensional cross-polytope that is equatorial to this diagonal has

vertices given by

of the cross polytope opposite the originPermutation of the last four coordi-

nates leaves each of these sets invariant, so these actions belong to gEmEg.

Classigcation of T-topes. The long triangle AIQ is a 2—face of the refer-
ence polyvtope Gpw so the edge vectors of this triangle are short with respect
to the form @ . The edges vectors of the other two triangles are long with
respect to the form PR, -
6(15/{?'5(Aé)) = {i[037 1, -1, 0]7 i[047 1, _1]7 :{:[037 1,0, _1]} € ‘CEg N SEG
edges(Ag) = {#£(3,0,2,1%], £[-3,0, -1%], £[0%, = 1,0%]} € Lg: N L,
edges(Ay) = {£[1,2,0%, £[1,-1,0,1°], £[-2,-1,0,-1°} € Lpz N LE,.
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L1 R-topes and the intersection tiling DE6QDE§

] 2 Proof of M ain Theorem .

We will refer to R = COTLU(SQ U S(;) as an R-tope. Like any other repar-
titioning complex it can be triangulated in precisely two ways. Deleting
successively the vertices of Sg gives four simplexes that tile R, each with SQ
as a d—face. This is the SQ——tiling. Deleting successively the vertices of SQ
gives another four simplexes that tile R, the Sg—tiling. R has sixteen simpli-
cial facets, each with three vertices from SQ and three vertices from Sg. The
centroid cp = %[0,0; 1,1, 1,1] is a vertex of the barycentric subdivision of R,
each tile of the subdivision formed by taking the convex hull of the centroid
and a facet. Lach of the sixteen simplicial tiles can be represented as the
intersection of a simplex in the Sg—tiling with a simplex in the Sg—tiling.

The T—star of Sg is the collection of T'—topes that have Sg as a 3—face.
The vertices of SQ are invariant with respect to permuatation of the last
four components, but under these actions three additional copies of () are
produced, and, these four T —topes form the T —star of SQ. The tiles in the
intersection with this T—star with R are the intersections of the individual
T—topes with R. Similarly, by Corollary xx below, the G—star of Sg in-
cludes four G—topes. Correspondingly, the intersection of this G—star with
R includes four tiles.

Proposition 29  The intersection of R with the T —star of SQ is the SQ——tiling
of R: the intersection of R with the GG—star of Sg is the Sg—tiling of K. The
intersection of an arbitrary G—tope in the T —star of Sg, with an arbitrary
T —tope in the G—star of S¢, is one of the simplexes in the barycentric sub-

division of R.

By this Proposition R is commensurate with both ) and G, and therefore
is commensurate with the two Delaunay tilings Dg,, DE(;. Also by this
Proposition the intersection polytope ) N G is a simplex in the barycentric
subdivision of R, once again showing that () and G are incommensurate.
This explicit description shows that i[0,0;l,l,l,l] is the only non-integer
vertex of the intersection polytope Q N G.

The triangle A% is a 2—face of the cross-polytope opposite the origin in
G, so Cal = C7, € 0G, and, T, gé (G. This is an Fg-short triangle because
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cdges(Ay) = {£[0%,1, ~1,0?], £[0%,0,1, —1,0], £[0%, —1,0,1,0]} C Sg,. The

triangles A A are Fg-long because 6dg€S(A2) = {i[B,O, 13,2],:i:[——3,0, —14],:t[05,—1]} C

Lr,, edge s( A3) = {=[1,2,01], +[1,-1,1%,0], £[-2,-1%,0]} C Lg,. 1t turns

out that the T2 is incommensurate withG and therefore is incommensurate
with the Delaunay tiling Dpg,. The determining characteristic for such incom-
mensurate T-topes is the product of one Fg-short triangle with two Fg-long
triangles.

Equivalence along the line of centers. The forms along the line of
centers, (1 — t)99E5 +t99Eg’ are invariant with respect to the action of the
group QE(;QEB* = GE6 N gEg. Accordingly, the intersection tiling DEG ﬂDEg is
also invariant with respect to this action. In order to describe this tiling, we
must grst describe the orbits of the G—topes, the T'—topes and the R—topes
with respect to this action.

The action of gEemE* must leave invariant the short and long vectors of
both Es and Ef, so must leave invariant each of the sets JF; = Lg, ﬂSE*
Fo = SEbHSE* F3 = SE6ﬂLE* Fs =Ly, N »CE* Similarly, the dual action
must leave invariant, separately, each of the subsets Py, Py, Ps.

Consider the gve-dimensional cross-polytope opposite the origin in G,

with vertices given by

[11 ) U3 £ PR ls;ry,re, 13,14, 1'5]

0000022222
1000001111
lo1o0o00101 11
0010011011
0001011101
(0000111110,

The four-dimensional cross-polytope with diagonal vectors I; — r;,2 < i <
51 = 2,3.that is equatorial to the grst diagonal diagonaland the diagonal
running between the opposite vertices I; =[0,1;0,0,0,0], r; = [2,0;1,1, 1,1].
The four-dimensional cross-polytope that is equatorial to this diagonal has

vertices given by

of the cross polytope opposite the originPermutation of the last four coordi-

nates leaves each of these sets invariant, so these actions belong to gEGhEg.
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The short complex.

A commensurate tiling with R-topes.

13 R-topes and proof of Main Theorem

14 Scrap Text

Dual forms correspond to dual lattices, so the forms ¥¢, U7 that are dual
respectively to ¥g, Y7, are metrical forms for the lattices Eg, Eg Since the
time of (***Kostya) it has been known that the dual forms g, 97 lie on
the central axes of the corresponding perfect domains Dg, Dr [cit.]. The
form @G(X) = izpepG(p-x)Z lies on the central axis of Dg, so must be
proportional to 19?;, and therefore is a metrical form for the lattice Fg. The
weights 2,1—1 are chosen so that @, has minimum one, and therefore g is
arithmetically equivalent to ¥7. That is, there is a unimodular integer matrix

. _ 1 2
U € GL(6,Z)so that QOG(X) = 19T(UX). Similarly, L,QOT(X) =33 ZpE’PT(p . X)
lies on the central axis of Dy, is proportional to 19T, and is a metrical form
for the lattice Ej. The weights are again chosen so that (g has arithmetic
minimum equal to one, making @, arithmetically equivalent to Yg. In fact,
we will show below that QDT(X) = Igg(UTX).

By direct calculation, the matrices for the forms g, @7 are given respec-

tively by
S -5 -5 -5 -5 —5] 16 —9 —11 —11 —11 —11
-5 4 3 3 3 3 -9 6 6 6 6 6
1| -5 3 4 3 3 3 1| -11 6 10 77 T
2l -5 3 3 4 3 3| a4} -11 6 710 7 7
-5 3 3 3 4 3 ~11 6 77 10 7
-5 3 3 3 3 4| | -11 6 77 710

If we denote these two matrices by Fg,Fr, then FgTg = FrTr = %I, so that
Lo = %7’?;, and @ :%19;«. If U e GL(6,Z) satisges the equality @G(X) =
Jr(Ux), then Fg = UFTTU; an easy calculation shows that Fp = UTgUT.




The tiling ¢ and its commensurable long triangles.. Let G be the
convex hull of the origin [0,0,0,0,0,0] and the following sets of 16 and 10

lattice points in Z°

i

Sa(pa) = {[3:1°],[-1; —1,0" x 5,[1;1%,0%] x 10},
La(pa) = {[0;1,07] x 5,[2;0,1%] x 5},

which we associate with the perfect vector pg = [-—3,2,2,2,2,2] € Pg. The
coordinate vectors s € Sg(pg) satisfy the equality pg s = 1, and are short
because ©s(s) = 1, which is the minimal possible value for non-zero integer
vectors. Also, the coordinate vectors 1 € ,Cc;(p(;) satisfy the equality pg- 1=
2. and are long because L,DG(I) = 2, which is the minimal possible value for
non-zero integer vectors which are not short. If s € Sg(pg) and p €Pg, then
p-s € {0.£1}, and if 1 € Lo(pg) and p €Pg, then p-1€ {0,41,+2}. The
following table gives frequency data on these scalar products, for a particular

short vector 8 € Sg and a particular long vector 1 € Lg, as P ranges over the
54 elements of Pg.

value —2 —1 0 1 2 total
p-s 0 12 30 12 0 54
p-l 2 16 18 16 2 54

By symmetry, this distribution of scalar products holds for any of the 72 short
vectors Sg of the form g, or any of the 270 long vectors L. Turning things
around, each perfect vector has a scalar product of one with (12)(72)/54 =16
short vectors, and a scalar product of two with (2x270)/54 = 10 long vectors.
Hence Sq(pg) = {s € Sg|lpg s = 1}, and ,CG(pg) ={le Lelpe -1 = 2}.
Similarly, for each perfect vector p € Pg there is a set of 16 short vectors
Sa(p). and 10 long vectors ﬁg(p), which together with the origin are the
vertices of a copy of (G. These 54 polytopes glue together along facets, which

are either simplexes or cross polytopes, to form the Delaunay star polytopes

at the origin for g.

The equation f(x) = —pg-X-HpG(X) = ( determines an ellipsoid g which
contains the origin. As can easily be checked, this ellipsoid also contains
the other vertices of G since f(V) = —pg -V + L,OG(V) = 0, when v €

Sa(pa) U ﬁ(;(p(;). Moreover, £z is empty, and this supplies a formal proof
that G is Delaunay. If U € Gg, the empty ellipsoid with equation fu(x) =
—(U°pg) - x + @G(X) = 0 circumscribes UG (U° = (U_I)T is the matrix
dual to U).



From the frequency data, each short vector attached to the origin belongs
to twelve G—topes in the star. Since only six of these can be translationally
equivalent to G, each short lattice vector has precisely six lattice translates
that ot inside (G. These six positions correspond to six parallel edges of G.
Because opposite short vectors correspond to the same set of six parallel
edges. G has a total of 6 X 36 = 216 edges. It also follows from the frequency
data that each long vector at the origin belongs to two G—topes in the star.
Since these must be in distinct translation classes, each long vector has only
a single translate that gts into G. This position corresponds to the diagonal
of a cross-polytope facet. Since the 270 long vectors account for 135 such
diagonals, there are a total of 135/5 = 27 such facets. The edges of these
cross-polytopes are short, as are the edges of the 72 simplicial facets.

The 27 cross-polytope facets can be easily located on the reference poly-
tope GG. The ten vertices belonging to Lg are the vertices of such a cross
polvtope. with center %[2,1,1,1,1,1], and with axes parallel to the gve long
vectors {[2;~—1,1,1,1,1] X 5} (generated by permuting the last gve compo-
nents). Opposite to each of the other vertices of (¢ is such a cross polytope,
which can similarly be located using perfect vectors.

The long vectors also appear as edge vectors of 45 long triangles that are
commensurable with the tiling T5. To be commensurable, a triangle must
ot entirely within a G—tope. The triangle A, with vertices {Vl,Vg,Vg,} =
{[0,0.0,0,0,0],[0,1,0,0,0,0],[2,0,1,1,1,1]}, is commensurable with 7g, since
A gts inside G and the edge vectors {el, €y, 63} = {[2, -1,1,1,1, 1], [-—-2, 0,—-1,—-1,-1, —1], [0, 1,€
arc all long. Moreover, the center of gravity of the triangle Ais %[27 1,1,1,1, 1],
which is also the center of gravity of G. The trangle A corresponds to the
two vertices [0,1,0,0,0,0],[2,0,1,1,1, 1] that are opposite ends of a diagonal
of the cross polytope opposite to the origin, and there are four others corre-
sponding to the other diagonals. Since there are gve attached to the origin,
and there are 27 vertices, the total number of long triangles in G is equal to
(27 x 5)/3 = 45. These triangles have a common center of gravity, equal to
the center of gravity of (G, and the convex hull of these triangles is equal to
G.

Another interesting point is that these commensurable long triangles are
equitorial. That is, for each triangle there is an a(Ene map of rank two so that
the image of the triangle is equal to the image of (& itself. Consider for ex-
aniple, the triangle A and the associated perfect vectors Pa = {pl,pg,pg} =
{[3.-2,-2,-2,-2,-2],[-2,2,1,1,1,1],[~1,0,1,1,1,1]}. These perfect vec-

tors suin to zero, and each provides two supporting hyperplanes for (. That

37



is. if X € G the following inequalities hold, and are sharp.
0<24+px<2, 0<pex<2, 0<pyx<2

Let Apn @ ES —5 F? be the aGune map given by the formula AA(X) =
[2 -+ p1~X.p2-X,p3-X]. A triangular coordinate system is used for the two
dimensional image (since p; + p2 + ps = 0 the three coordinates sum to
2). The image of Ais the triangle with vertices given by Aa(vy) = [2,0,0],
Aa(ve) =10,2,0], Aa(vs) =[0,0,2]. The other 24 vertices of G map to the
mid-points of the edges of this image triangle, with coordinate vectors given
by [1,1.0],[1,0,1], or [0,1,1]; each mid-point is the image of eight distinct

- . i}
vertices of G.

Figure? The image Aa(G)

The tiling 77 and its commensurable long triangles.. Let T be the
convex hull of the origin [0,0,0,0,0,0] and the following sets of 6 and 2 lattice
points in Z°

S’l'(pTla pT?) = {81752753554755756} :{[3717 1717]-’]-]7 [_1707_17070’0]?[—170707_17070]7
[1,1,0,0,1,0],[1,1,0,0,0,1],[~1,~1,0,0,0,0]}
/:’T(pTlva‘Z) = {11712} - {[07 170707070]7 [1,0,0,0, 1a 1]}>

associated with the two perfect vectors pry = [—3,2,2,2,2,2],pr1 = [1,0,0,0,1,1]
in Pr. The coordinate vectors s € ST(PTl,PTz) satisfy the equalities pr1-s =
Pr2 - s = 1, and are short because SOT(S) = 1, which is the minimal non-
zero value for integer vectors; the coordinate vectors ly,l; satisfy the equal-
ities pr1 -y = pro- b = 2,pr1 -y = pro-li = 1, and are long because
o) = ¢p(ly) = %, which is the minimal possible value greater than one
for integer vectors. The three triangles with verticesWe associate with T
the two perfect vectors py = [0,0,1,—1,0,0],p> = [0,0,1,0,—1,0] in Pr,
with the properties that pr-s =1 for s € S, pr-l = 2,p%p -l = 1, and
pf s =1 for s € S, p%«l 1= l,p?p -l = 2. Because of these properties,
the equation f(X) = —%(p%,« + p%) -X 4+ @T(X) = 0 determines an ellipsoid
Er which circumscribes T. It can also be shown that the only elements of Z®
contained in &7 are the nine vertices of T', and that & is empty. Therefore,
T is Delaunay with respect to the form wr.

The tiles in the Delaunay star can also be generated using the reEection
group Fy. More specigeally, there is a representation Gg of Eg in GL(6,Z)
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so that the Delaunay star is the Gg—orbit of G. The dual action gxes the
set of perfect vectors Pg, and if U € Gg, then the perfect vector U°pg is
associated with the Delaunay polytope UG (U°® = (U_l)T is the matrix dual
o U). That is, pug = U°pg. The empty cllipsoid Eug, with equation
~(U°pg) - x + pg(x) = 0, circumscribes the polytope UG.

Theorem 30 The action of the group Gg on the long triangle lg+1; +1, = 0
generates 49 long triangles and 270 = 6 x 45 long vectors.

Proof. Since (QS)° acts transitively on Pg, there are 5 X 27/3 = 45
perfect triangles in Pgs. Permutation of the last gve coordinates leaves Pg
invariant, so these actions belong to (gs)°. These permutations also act
transitively on the triangles containing Pg, so the 49 triangles in Pg lie in a
single (G5)°—orbit. It follows that the direct action of G5 generates 45 long
triangles.

Since each long vector has a scalar product of 2 with only two perfect
vectors, and these belong to a dual perfect triangle, distinct long triangles
have no long vectors in common. Therefore the number of long vectors
generated is 2 X 3 X 43 = 270. (The factor 2 is added for the sign.) m

Consider the long triangle ctors., a lattice triangle can be constructed
at the origin by ¢rst following po, then —p; and then —py. By permuting
the vectors of the tripple {po,——pl,—p2} gve other triangles can be traced
through the origin, which together with the original form the familiar hexag-
onal pattern of six triangles in the linear space spanned by these vectors.
There are gve such linear dependencies formed from the columns of Pg(pg),
the equalities po—Pi—Pi+1:O7i =1,3,...,9. It is easy to see that there are
no other triangles in Pg that include pg.

Since the group Gg acts transitively on Pg each perfect vector is included
in pve triangles, and there are a total of (27 X 5)/3 = 45 triangles in Ps.

Theorem 31  The group s act transitively on the triangles in Psg.

Proof. The stability group gg(po) of po is the set of elements U €Gg with
dual action satisfying the equality U°py = Ppg. Since an arbitrary permutation
of the last gve coordinates gxes Ppg, the symmetric group S5 C gs(po). In
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addition, the matrix

~12 2000 “100 -1 -1 —1]
0 01000 2 01 1 1 1
G| 0 too0o0o0l L2101 1 1
111100 000 1 0 0
111010 000 0 1 0
| -111001] [0 00 0 0 1 |

sxes Po and Pg so U Egg(pg). leaves permutes the grst and second, and
third and fourth columns of Ps(po), gxing the rest, and Pg, and leaves rthe
It is clear that this action must permute the columns of Ps(po). [

the seu trianglesinthesetthe sethat i-the fectors tripple. formed, each
corresponding to a distinct ordering of the vectors of the tripple . These
form the familiar hexagonal pattern in the linear space spanned by the
tripple..sin ceai, The columns are the ten ordered elements of Pg that are
sides of lattice triangles that have pp as a side. For example, starting at
the origin and following , traces out a lattice triangle in Z° since ; the vec-
tors pPi, P2 are the grst two columns of Ps(pg). , in ter the three vectorsthe
This tripple accounts for 6 lattice triangles at the origin, the number of dis-
tinct closed pathse aere are ten triangles at the origin of this type, two for
each of the equalities po—pi—pi+5:0,i =1,5;The columns py, P2, -.., P10 are
grouped so that p; + pis1 —PpPo = 0,2 =1,3,...,9.In total there are gve such
equalities that can be formed, the equalities po—p; —p,=0

22922200000
0111110000
1 01 11 01000
LstP)=17 1 01100100
11101000710
111100000 1|

there is a doubling because the return path depends on the order in which
the two vectors P;, Pi+s are followed.

The ten columns 1y,1s,...,1;0€ Ls(po) each satisfy the equality l; - po=2.
We will refer to these vectors as long.

Theorem 32 Degne the stability group G(po) of Po to be set of elements
U €gs with dual action satisfying the equality U°po = po. Then the direct
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action 1; — Ul,,U ¢ g(po) gxes the set Eg(po) = {11,12,...,110}, and acts

transitively on this set.

Js a consequence of the two ways to return to the originresults in the two
ways the vectors p;, Piys can be ordered.six . triangle inP There are in total
10 trianglesAlso consider the matrix of scalar products Mgl = (Pgl)TLgl.p

<

n+

—

fl
= e e O NN
— k= O R P N RN
B O = =N DN
= O == =N N
(e B N L i i A B e e e e ]
= e DN R R b = O R
H o NP /RO =N
| e N e e e B e T )
=N e = O = = DN
[N I e e = T e T S e S i W)

of forms and each of these forms is uniquely determined by the inho-
mogeneous systems of equations vg(p) =1,p € Ps,¥r(p) =1,p € Pr. The
matrices for these two forms are given by In addition, any form 1 satisfying
the homogeneous system ﬁ(p) = 0,p € PsNPr = C is necessarily a scalar
multiple of the form ¥g — ¥7. This being the case, form... These sets are °
adjacent because the intersection Pg N Pr = C vectors common to the two

seths

14 .1 To be continued
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