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Abstract

We prove the following result: For every two natural numbers n and g, n > q + 2, there is
a natural number E(n, ¢} satisfying the following:

(1) Let S be any set of points in the plane, no three on a line. If |S| > E(n, q), then there exists
a convex n-gon whose points belong to S, for which the number of points of § in its interior is
0 (mod g). ‘

{2) For fixed ¢g. E(n,q) < 2°9°" ¢(q) is a constant depends on g only.
Part (1) was proved by Bialostocki et al. [2] and our proof is aimed to simplify the original
proof. The proof of Part (2) is completely new and reduces the huge upper bound of [2]
(a super-exponential bound) to an exponential upper bound.

1. Introduction
In their classical paper [3] Erd6s and Szekeres proved:

Theorem A. For every integer n = 3 there is an integer f(n) such that if S is any set
of f(n) points in the plane, no three on a line. Then there are n points of S forming
( CORtex n-gon.

The determination of f(n), n = 6, as well as the determination of the order of
magnitude of f(n) are still open problems. The best known bounds for f(n) are [5]

) w4
o "+1<f(n)<(n >+1
n—2

and 1t is a famous conjecture of Erdds that the lower bound is in fact equal to f(n). It
was conjectured for a while (some 20 years ago) that for every n = 3 there exists a g(n)
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such that if S is any set of g(n) points in the plane, no three on a line. Then there are
n points of S forming a convex n-gon whose interior is empty. This was proved by
Harborth [6] for n = 3,4, 5, but was disproved by Horton [7] for n = 7. Motivated by
the positive result of Erdds and Szekeres and the negative result of Horton [7],
Bialostocki et al. [2] raised the following weaker conjecture (see e.g. [1, 2]).

Conjecture 1. For every two positive integers # and ¢, n = 3, there is a natural number
Cin. q) satisfying the following: Let S be any set of C(n, ¢) points in the plane, no three
on a line. Then there are n points of S forming a convex n-gon whose interior contains
0 (mod ¢) points of S.

They proved conjecture 1 whenever n > g + 2 showing that

C{n,q) <f(R3(n,n,...,n)),
\_.ﬁ(..._J

g-times

where f(n) is the Erdés—Szekeres function and

g-times

is the Ramsey number for the complete 3-uniform hypergraph K; using g colors (a
large number indeed). Let us consider the following more general setting, already
anticipated in [1, 2]. Suppose S is a set of points in the plane, no three on a line, and
suppose G is a finite abelian group. Assume further that each point x of S is labeled
with an element of G say w(x) = g € G. We say that a convex n-gon K has a zero-sum
interior (mod G) if

Y wix)=0 (inG)

xeinterior K

Thus Conjecture 1 deals with the case G = Z,, w(x) = 1, x € S. We shall prove the
following,

Theorem 1. For every two integers n and q, n = q + 2, there is an integer E(n,q)
satisfying the following:

(1) Let S be a set of points in the plane, no three on a line, and let G be an abelian
group of order . Assume w:S — G and |S| = E(n,q). Then there are n points of
S forming a convex n-gon having a zero-sum interior.

(2) For a fixed g, E(n,q) < 2°?", ¢(q) depends only on q but not on n or on the
structure of G.

2. The proof of Theorem 1

Proof of Part (1). The proof combines ideas from [2] and some simple but useful
observations. Suppose first n > ¢, n=2(mod g). Let E(n,q) =f(R(K,-1,9)+ 1)
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where f is the Erdos—Szekeres function and R(K, - ,q) is the Ramsey number for
K, -1 using ¢ colors. Recall that in [ 1] the authors used R(K;, ¢) which is much larger.
By Theorem A there are R(K,_,q) + 1 points of S forming a convex polygon. Pick
an arbitrary point of this polygon and mark it by z. Number all the other points
from | to R(K, ;,q). Define the following coloring on the pairs (i, j),
I <i<j<R(K,-1.9), wli, j) = Yw(x): x is inside the triangle (i, j, z). Since |G| = g
this is a coloring of pairs using ¢ colors and by the definition of the Ramsey numbers
there are n - 1 points say x;,X,, ..., x,—; such that w(x;, x;) = g € G for every choice
of lgi<jg<n~1.

In particular we may assume that x,,x,,...,x,_; appear in this order on the

boundary of the polygon and hence z,x;,x,,...,x,- is a convex n-gon K (in that
order).

Claim. All the triangles in K are monochromatic of the same color (have the same
element of G as a sum of the points in their interior).

Indeed we may consider only two types of triangles.

(1) a triangle of type (x;, x;, z), but all of them have (because of Ramsey) the color
ge G.

(2) a triangle of type (x;,x;,x¢), i <j<k. But then consider the quadruple
A = (X;.x;. 5, 2). Clearly

wiA) = Y wlx) = wx, X, 2) + w(x;, X, z)

xeinterior A
= W‘(.\’,‘,.\'k,z) + W(xiaxjaxk)'

Clearly this implies g + g = g + w(x;,x;,x,) hence w(x;, x;,x;) =g as claimed.
Now as n = 2 (mod g), the convex n-gon K is covered by exactly 0 (mod g) triangles,
namely (z,x;,x;.1), i = 1,2.....n — 2. Hence

n—2

ﬂv{1\) - Z W'(X): Z “;(stivxi#’l) =g +g+ o +g:0 (ln G)’
%(—J

xeinterior K i=1

n-2 times

because n -2=0(modg), |G| =¢q and recall Lagrange’s theorem. So K has
a zero-sum interior and |K|=2(mod ¢). Suppose now n =g+ 3, and write
n=n,+1 where ny=2(modg) and 1 <t<qg—1. Once again we will show
Elng) < [(R(K,-1.4q) + 1). Indeed, as above, there exists a convex n-gon K all of
whose triangles are monochromatic (have the same interior sum in G).

Let K be listed clockwise, x,, x5, ..., X,, and let the fixed sum of the interior points
of a triangle in K be g € G. If g = 0 then clearly w(K) = 0 and we are done. Hence
assume g # O which means that each triangle contains a point from § in its interior
{since by convention w(¢) = 0). Consider the convex ng-gon, ny = n — t given by the
pPoINts B = {X{,X3,X5, . c00Xoi— 12 X204 15 X204 2> X214 3> -+ s Xetng— 15 Xedn, = Xnj. Since
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ny = 2 (mod ¢q), w(B) = 0. Consider the following t points y,,y,,...,y, where y; is
inside the triangle x,; q,Xx,;,X5;+y and has the property that the triangle
Xai—1,Vi»X2;+1 contains no point of S. The point y; may be selected as the point
of § in the triangle x,; ,Xx,;,X5;41 closest to the line segment X,; 1,X5;11.
Clearly w(x3;-1,yi,X2i41) = w(¢) =0, hence the convex n-gon given by
X1 V15X3, V25 X5, V35 o5 Xa1— 1> Vs X214+ 12 X201 25 .-+, Xy} has @ zero-sum interior as
needed. This completes the proof of Part (1).

Proof of Part (2). Recall first the old theorem of Erdés—Ginzburg and Ziv [3]: Let
G be a finite abelian group of order ¢, and let g, ¢, ..., ¢2,-1 be a sequence of 2g — 1
elements of G. Then there exists I < {1,2,...,2¢g — 1}, |I| = ¢ such that ',_, g, = 0.
Recall also that by Part (1) we have proved E(n,¢q) < f(R(K,_1,q) + 1) and we shall
use this bound for g+ 2<n<3g—2 Now suppose n>=>3g—1 and write
n=nyg+tqg where 2qg—1<n,<3g—2. We will show that for fixed g,
E(n,q) <f([R(K,,-1,9) + 1]{t + 1)q). Indeed by the Erd6s—-Szekeres theorem there
exists a convex polygon of size [R(K, _,q) + 1](t + 1)q:= z. Label the points by
Xoe X1 oo X a 1ygm 10X+ 1ygo o2 X2+ a—15  X2(+1ygs o> Xzm1- Observe  that
VX0 X4 1> X240+ 1)gs -+ - ,xR(K"”Aw)(,H)q} form a convex polygon A of size
R(K,, -1,9) + 1, hence by Part (1) must contain a convex ng-gon B with a zero-sum
interior. Say the points of this ne-gon B are yy, y,, ..., y,, and observe that for each i, y;
and y;, are separated by at least tq points of the original polygon, and further
ny = 2q — 1. Pick for each 1 <i < ny a point x; € A\ B, x; is between y; and y;,, and
define w; = w(y;, x;, Viv 1) = Yw(x): x €interior (¥;, X;, yi+1) Since ny = 2g — 1 we
have a sequence wy,w,,...,w, of elements in G and by the Erdés-Ginzburg-Ziv
theorem there is a subsequence of cardinality ¢ which sum to 0. Say the points chosen
are xp,...,x, then B* =y x,y,X; ... ¥4 XgVq+1 --- Vn, 1S @ cOnvex (ny + g)-gon with
zero-sum interior. Clearly by the construction this argument can be repeated at least
t times giving lastly a convex n-gon with zero-sum interior as claimed. Thus
En.q) <f([R(K34-3.¢) + 110 + 1)q) <f(c1(q) n) < 2" using the upper bound
for the Erdds—Szekeres function

. 2n —4
=)o

This completes the proof of Part (2). [

3. Concluding remarks

(1) The accumulated experience with zero-sum problems strongly indicated that
the upper bound E(n, q) < f(c(g)n) is still too large and that we can expect an upper
bound of the form E(n, q) < f(c{q) + n). This would be the case once we can ensure in
the proof of Part (2) that a convex polygon with R(K,,_,¢9) + 1 + (t + 1)g points
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suffices to guarantee a convex ng-gon with zero-sum interior whose adjacent points
are separated by tg points of the original polygon. Such an argument eluded me. On
the other hand the results of Horton [7] imply that E{(n,q) = n + g for n = 7 and
every ¢. So E{n.q)» f(n) if q is sufficiently large and hence some dependence on
¢ must occur.

{2) The assumption that G is a finite abelian group is not essential. Indeed one can
easily modify the proof to the case when G is an arbitrary finite group, using a theorem
of Olson [8] instead of the Erd6s—Ginzburg—Ziv theorem.

{3) Certainly the most challenging problem now is to prove the existence of E(n,q)
inthecase 3<n<q+ 1.
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