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Abstract

Maximum planar sets that determine k distances are identified for k < 5. Evidence is
presented for the conjecture that all maximum sets for k = 7 are subsets of the triangular lattice.

1. Introduction

Let g(k) denote the maximum number of points in the Euclidean plane that
determine exactly k different distances. Clearly, g(1) = 3, which is realized only by the
vertices of an equilateral triangle. We determine g(k) for each k < 5 and identify all
g(k)-point planar sets that have exactly k interpoint distances for k < 4. We also
present evidence for larger k that supports the following conjecture.

Conjecture 1. For every k > 3, some g(k)-point subset of the triangular lattice
L, = {a(1.0) + b(1/2,\/3/2): a,beZ)}

has exactly k interpoint distances. Moreover, if k = 7, every g(k)-point subset of the
planc that determines k different distances is similar to a subset of L,.

Two configurations are similar if one can be mapped into the other by rotation
about a point, reflection about a line, translation and uniform rescaling. We use k > 3
in the first part of the conjecture because ¢(2) is realized only by the vertices of
a regular pentagon. Avoidance of k =6 in the latter part of Conjecture 1 is
explained by
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Conjecture 2. ¢g(6) = 13. and this is realized only by the vertices of a regular 13-gon, or
the center and the vertices of a regular 12-gon, or the preceding subset of L,.

This is the only configuration in L, with more than 12 points and less than seven
distances. We prove below that g(5) = 12. Hence, every 13-point subset of the plane
determines at least six distances. Conjecture 2 asserts that every 14-point set has at
least seven interpoint distances.

Erdds [3] considered the minimum number f(n) of different distances determined
by n points in the plane. By our definitions, f{ g(k)) < k with equality if g(k — 1) < g(k).
The presently-best bounds on f are

n*3/(log n)* < f(n) < enf(log m'2.

The lower bound is from Chung et al. [2]. The upper bound was shown by Erdds to
follow from a square subset (side length ﬁ) of the integer lattice

Ly, = {a(1,0) + b0, 1): a, be Z}.

The same upper bound, perhaps with a different constant ¢, can be proved with L,.
Evidence presented below for Conjecture 1 suggests that ¢, < ¢p.

Let R, denote the vertices of a regular n-gon, and let R, be R, augmented by the
center of the n-gon. We observe that R is a seven-point set that is similar to a subset
of L. Fig. 1 identifies three other subsets of L, involved in our main theorem along
with a set not in L,. The last of these is composed of three equilateral triangles with
the same center and a horizontal edge. The smallest distance applies to the sides of the
inncr triangle and from a vertex of it to the nearest vertex of the intermediate triangle.
The next-larger distance is illustrated by the dashed lines, four of which form a square.
The diagonal of the square, or a side of the intermediate triangle, has the next-to-
largest distance. The largest distance applies to the sides of the big triangle and from
a vertex of it to the farthest vertex of the intermediate triangle.

Theorem 1. ¢(2) = 5. ¢(3) =7, y(4) = 9 and ¢(5) = 12. R; is the only 5-point set with
exactly two interpoint distances; the only 7-point sets that determine three distances are
R und Rg: a 9-point set with exactly four distances must be Ro or one of the
configurations at the top of Fig. 1; one 12-point set that determines five distances is the
configuration in L, at the bottom of Fig. 1.
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Three 9-point configurations that determine 4 distances

The only known 12-point configuration for 5 distances

Fig. 1.

We suspect that our example for g(5) = 12 is unique. The complexity of proving this
is discussed in Section 4.

The top right configuration on Fig. 1 is a curiosity in that it is the only verified or
conjectured realizer of a ¢(k) that is not an R, or R, or subset of L,. As k gets larger,
R, and R, drop out of contention since we can always do better with a subset of L.
We say more about this in Section 5, where we also compare L, to L,. The next three
sections present our proof of Theorem 1, and Section 6 concludes the paper with
a briefl discussion.

2. Proof approach

The examples of Theorem | give ¢(2) = 5, g(3) = 7, g(4) = 9, and ¢(5) = 12. We
assume these inequalities henceforth.

Let d(x, v) denote the distance between x, ye R?, and let D = D(S) be the diameter
of finite S = R2, Also let

Sp=|xeS:d(x,y) = D for some yeS}.
We organize our proof for each k around possibilities for S, when S has specified
cardinality. We recall that two length-D segments in S must cross if they do not share

an end point, and that there are at most | S| such segments. Two further facts will be
used extensively.

Lemma 1. Let D be the diameter of an n-point planar set S with n = 3, and let
m=|Spl.s02<m<n Then
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(a) if m = 3, the points in Sy, are the vertices of a convex m-gon;

(b) D can be eliminated as an interpoint distance by removing at most | mj2’| points
from S.

Proof. {a) Suppose m = 3, d(x, y) = D for x, ye S, and x is not a vertex of the convex
hull of Sp. Let [ p, ] be a side of the convex hull such that either xe[ p, ¢] or the
extension of [x, y] in the direction y to x intersects [ p, ¢]. Then either d(p, y) > D or
dlg. vy} > D, a contradiction.

(b) The result is obvious if m < 3. Given m >4, let A and B be sets of [ m/2 ]
consecutive vertices of the m-gon of (a) such that AuB = Sy, If each of A\B and B\ 4
has a length-D segment, we obtain the contradiction that two length-D segments with
diffcrent end points do not cross. [

We will use Lemma 1(a) when m is large relative to a value n proposed for g(k), and
proceed with the convex m-gon. Smaller m use Lemma 1(b) to reduce the number of
interpoint distances from k to at most k — 1 by removals from S. The next lemma is
applied to case (a). Welet R, — rfor O << r < n — 3 denote a set of n — r vertices of R,,.
When = 2, dissimilar versions of R,, r obtain when different combinations of
1 vertices are removed from R,,.

Lemma 2. Suppose S is the vertex set of a convex n-gon, n = 3, that determines exactly
t different distances. Then t =| n/2 |. Moreover:
() ifnisodd and t =(n — 1)/2, Sis R,;;

() ifniseven,t =n/2, and n=28,Sis R, or R, — 1,

(i) if(n,t) = (4,2), Sisone of Ry, Rs — 1, the vertices of two equilateral triangles that
share a side, and a set similar to {1,3,4,5} on Fig. 1;

(iv) if (n,1) = (6,3), Sis one of R, Ry — 1, and a set similar to {1,2,3,4,5,6} on Fig. 1;

) if (n,t) =(7.4).Sis Rg — 1 or an Ry — 2;
(vi) if (n,6) =(9.5), Sis Ry — 1 or an Ry — 2.

Inequality r | n/2 |, conjectured in [3], is proved in [1] along with Lemma 2(i).
Parts (ii)—(v) arc proved in [5], and (vi) is proved in [4].

To illustrate our approach, consider k = 2 with | S| = 5. Let m =|Sp|. f m =5,
Lemmas 1(a) and 2(i) give S = R5. Suppose m < 4. Using Lemma 1(b), eliminate D by
removing two points. This leaves R; by the result for k = 1. Let 1 be its side length.
A point added to R; that restores D > 1 must be on a perpendicular bisector of a side
at distance 1 from the side’s vertices. However, the addition of two such points forces
a third distance > D. Thus m < 4 cannot occur, and Rs is the only 5-set with exactly
two distances. It is impossible to add a point to Rs without creating a third distance,
$0 ¢(2) < 6 and the proof for k = 2 is complete.

We conclude this section with the proof of Theorem 1 for k = 3. Assume k = 3,
|S1 =7 and let m =|Sp|. If m =7, Lemmas 1(a) and 2(i) give S=R+. If m =6,
Lemmas 1(a) and 2(iv) imply that Sp is Rg, R; — 1, or a configuration like
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Fig. 2.
(1.2, ...,6} on Fig. 1. It is easily checked that the only way to add another point to

one of these 6-sets so that the new point creates no new distance and does not have
distance D 10 another point is to add the center to Rq. Thus, if m = 6, S is R; or R{ .

Suppose m < 4. By Lemma 1(b) and Theorem 1 for k = 2, D can be eliminated by
removing two points, leaving Rs. But it is not possible to add two points to R in any
way without forcing at least two new distances. Hence, m < 4 cannot occur when
k=3and|S|="7.

This leaves m = 5. By Lemma 1(b), we remove three points to eliminate D and yield
a 4-set that determines two distances. Fig. 2 shows the possibilities. Its four quadri-
laterals are specified in Lemma 2(iii). The others require a fourth point in an
isosceles triangle and can only be as shown at the bottom of the figure.

The question for Fig. 2 is whether three points can be added to one of its 4-sets so
that the three create only one new distance D with D greater than the other two, and
such that exactly two of the original four points have a D distance to an added point
with m = 5 overall. The answer, obtained by examining potential placements on
perpendicular bisectors of segments of the 4-sets, is no. The only real contenders are
"Ry twice’ and Ry, where we are forced to add three that complete R . But R¢ has
m = 6. not m = 5.

We conclude that S is R, or Ry when k = 3 and | S| = 7. It is impossible to add
a point to R, or Rq without creating a new distance, so g(3) < 8 and the proof for
k =3 is complete.

3. Proof for k = 4

This section identifies all 9-sets that determine 4 distances. It is easily seen that any
other point added to a determined set forces a new distance, so g(4) = 9.
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Assumethatk =4 and |S|=9. Letm = |Sp|. If m =9, Lemmas 1(a) and 2(i) imply
S = Ro. f m =8, Lemmas 1(a) and 2(i1) give Rg or Ry — 1 for Sp. A new point (e.g.
center) added to Ry forces a new distance, and a new point added to R — 1 that
preserves m = 8 forces a new distance. Hence, m = 8 is impossible when k = 4.
Suppose m = 7. Lemmas 1(a) and 2(1) and (v) imply that S;1s R, Rg — 1, oran Ry — 2.
The only point that can be added to R, without producing at least two new distances is
the center. If the center is added to Rg — 1 or Ry — 2, a fifth distance appears, and other
additions that preserve m = 7 force new distances. Hence S =R if m = 7.

Suppose m < 6, so D can be eliminated by removing one, two or three points. The
reniove-one case 1s impossible since ¢(3) < 8. Suppose D is eliminated by removing
two points. Then, by Theorem 1 for k = 3, the remaining 7-set is R, or R; . Only
R¢ needs further consideration. Let R; be the seven inner points in the star of
Conjecture 2. Then the only feasible D-inducing additions are the six outer points. We
can use only two adjacent outer points, else a fifth distance occurs. The resulting 9-set
1s shown on the upper left of Fig. 1.

Finally, suppose three points must be removed to eliminate D, so me{5,6} by
Lemma [(b). This leaves six points that determine three distances. If the six form
a convex hexagon, we have Rq, R, — 1 or a set similar to {1, 2, ... ,6} of Fig. 1: see
Lemma 2(iv). If R obtains, we can make only two additions (see R¢ in the preceding
paragraph) since the center cannot be part of Sp, thus falling one short of the desired

nine points, and neither R, — 1 nor {1,2, ... ,6} allows the desired additions. For
1.2, ...,6} of Fig. 1, every addition on a perpendicular bisector of a segment of
1.2, ...,6} that duplicates old distances and qualifies for a new greater distance

introduces at least two new distances. Hence, no new configurations for g(4) = 9 arise
in the remove-three case when what remains forms a convex hexagon.

Suppose henceforth for the remove-three case that the six remaining points do not
form a convex hexagon. Let T be the set of the six remaining points with diameter
E < D, and let Ty be the subset of T involved with distance E. By Lemma 1(a),
| T| < 5. We consider subcases for elimination of E.

Subcase 1: E can be eliminated by removing one point from T. Then the remaining
five points must be Rs. However, any point added to R on a perpendicular bisector of
a side or chord of R that duplicates the shorter Rs distance while giving a new longest
distance E must in fact yield two new distances.

Subcase 2: E can be eliminated only by removing three of T’s points. By Lemma
1(b), this implies | Tx| = 5. By Lemma 1(a), the points in Ty are the vertices of
a convex pentagon. If Ty determines only two distances, it is R, and T can only be
R5 . But then it is impossible to add three more points to produce only one more
distance D > E for the 9-set. Suppose Ty determines three distances. There are 15
convex pentagons with this property. They are shown in Fig. 2 in [6]. Of these 15,
seven (denoted by Ps, Py, Ps, Pg, P11, P,4, Pys) have all five vertices at ends of E seg-
ments. But none of those seven accommodates an internal point that has only the two
shorter distances to the vertices of the pentagon. Hence, subcase 2 does not yield
a 9-set with four distances.
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Subcase 31 E can be eliminated by removing two vertices but not one vertex from
T. Then the remaining 4-set has two distances, so it is one of the sets in Fig. 2. In each
case. we try (o add two points on perpendicular bisectors of the six line segments of the
4-sct so that the additions determine only the original two distances (d; > d,) and one
new greater distance E > d that arises for each addition independently. We avoid
convex hexagons here since they were considered above. After the two additions for E,
we consider three more additions that determine D > E and no other new distance.
This second step avoids Ry , which was analyzed previously. We consider each 4-set in
turn.

(3.1): R4. Potential additions for E are shown on the top left of Fig. 3. Points 1 and
2 are d, from the nearest corner of the square, and 3 and 4 are d, from the nearest
corncr. Similar potential additions occur to the left of and below the square, but two
additions ofl opposite sides are infeasible since they create a fourth distance. The only
feasible pair of additions is {1.2} because {1,4} and {3,4} force a fourth distance.
Given (1.2} to complete our six-point set with R,, only two more additions are
possible for D, namely the similar points to 1 and 2 to the left of and below the square.
Hence, R, does not produce a 9-set with k = 4 under the present restrictions.

(3.2): Rs — 1. There is no feasible pair for E.

(3.3): R; twice, a part of L,. Potential additions for E are shown on the top right
of Fig. 3. There are two dissimilar pairs of additions for E, {1,2} and {1,6}. Each
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resulting 6-set has further lattice points as potential additions for D. There is only one
3-point addition for D that avoids R . It is pictured as the middle diagram on the top
of Fig. 1.

(3.4): A4. The four potential additions for E are shown on the bottom left of Fig. 3.
They form equilateral triangles with points in 44, and 1, 2, and the bottom left points
in 4, form a square. Up to similarity, {1,2} is the only feasible addition pair for E,
which is the length of the diagonal of the square. Feasible additions for D to A,u{1,2}
arc shown on the bottom right of Fig. 3. Collectively, {a,b,c} adds only one new
distance, which is D = ad = bd = ¢d = ac. The result is shown on the upper right of
Fig. 1.

(3.3): Ri, apart of L,. We obtain the result of (3.3).

(3.6): B,. An upside down version of B, appears in the lower middle of the final
diagram on Fig. 3. There are two feasible pairs for E, {1,d} and {1, b}. The only
feasible additions for D complete the diagram.

This completes our analysis when three points must be removed to eliminate D, so
the proof of Theorem 1 for k = 4 is complete.

4. Proof for k=5

We are to prove that g(5) < 13. Comments on the difficulty of determining all
12-sets that determine five distances appear at the end of the section.

We suppose that some S with | S| = 13 determines only five distances and obtain
a contradiction. Let m =|Sp|. By Lemmas 1(a) and 2, m > 12 is impossible. If
me 19,10, 11} then Lemmas 1(a) and 2(i), (ii) and (vi) imply that S, is Ry with four
distances or one of Ryo,R;0 — 1, Ry;,R;y — 1, and Ry; — 2 with five distances.
Additions that bring the total number of points to 12 or more force a sixth distance, so
a contradiction obtains when m > 9.

Suppose m < 8. By Lemma 1(b), removal of four points eliminates D. The resulting
9-set has four distances, so it is either Rq or one of the sets on the top of Fig. 1. Two or
more additions to R, force at least two more distances. If the 9-set is one of the top
two subsets of L, on Fig. 1, feasible additions for D as the fifth distance lie at adjacent
lattice points. In either case, the only way to add three points and not force a sixth
distance is shown on the bottom of Fig. 1. If another point is added to bring the total
to 13, we contradict k = 5. Finally, every plausible D addition to the 9-set on the upper
right of Fig. 1 forces at least two new distances. Hence, m < 8 also allows no 13-point
realization for k = 5, so g(5) < 13.

The preceding analysis applied to | S| = 12 shows that the 12-set of Fig. 1 is the only
12-set that determines five distances when m = 9 or m < 6. Difficulties arise when
me 17,80 and four points must be removed to eliminate D. Of the (a) and (b)
approaches with Lemma 1, (b) seems more tractable. That route leaves an &-set with
4 distances. The family of all 8-sets that determine four distances includes R, the
convex octagons of Lemma 2(ii), and every 8-point subset of the three 9-sets on Fig. 1.
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But it may include other realizations, so we presently have no guarantee that the
12-set of Fig. 1 is the only realizer of g(5) = 12.

5. Lattices

Fig. 4 shows maximum or near-maximum subsets of L, that determine k distances
for k €{7.8.9,10,11,13}. We omit k = 12 because we have no example that exceeds
the 27 points at k = 11. It might be true that g(12) = g(11). The counts on the figure
and straightforward extensions show that an R, or R, never does as well as a subset of
L. when k =27

Table | compares L, and Lq. We use regular hexagonal arrays of L, with s points
on a side, n = 6(3) + 1 total points, and k <s* — 1 distinct distances. If i, j) rep-
resents the distance obtained from moving i units in one direction followed by j
units in a direction 60° from the first in the direction of travel, then
(7.05 =<5.3,¢9, 1) = <6,5), and so forth. We use square arrays of L with s points
on a side. n = 5%, and k <(s + 2)(s — 1)/2 distinct distances. If [i, j] is the distance

=(7,16) (7,16)
(8,19) 9,21)
(10,25) (11,27)
add *'s for (13,31)

Fig. 4.
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Table 1
Numbers of distinct distances k and points n determined by regular hexagonal subsets of L, with
s points on a side, and by square subsets of L with s points on a side.

L. L,
n k S n k s n k $
7 3 2 4 2 2 361 160 19
19 8 3 9 5 3 400 177 20
37 15 4 16 9 4 441 194 21
6l 23 5 25 13 5 484 212 22
91 34 6 36 19 6 529 228 23
127 46 7 49 25 7 576 248 24
169 59 8 64 32 8 625 268 25
217 74 9 81 40 9 676 288 26
271 90 10 100 49 10 729 309 27
331 109 1 121 58 11 784 331 28
397 129 12 144 69 12 841 352 29
469 150 13 13 900 377 30
547 173 14 196 91 14 961 400 31
631 197 15 225 104 15 1024~ 225 32
721 223 16 256 118 16 1089 451 33
817 250 17 289 130 17 1156 474 34
919 280 18 324 146 18 1225 501 35
07 312 19]
1141 345 20
1261 382 2

obtained from moving i units in one direction followed by j units in the perpendicular
direction, then [5,0] = [4,3], [7,1] = [5,5], and so forth. The k values in the table
account for all such duplications.

We see that L, is substantially better than Lo in the n/k ratios. For approximately
equal n, k for L, is about 26% smaller than k for Ly, and this figure is quite robust
over values of n = 100 in the table. We do not claim that our choices of arrays are
optimal, but it seems unlikely that other near-optimal choices would change matters
by much.

6. Discussion

We have identified subsets of the plane for small k that determine k distances and
have as many points as possible. Our results in conjunction with limited information
about larger k values suggest that the maximum sets that determine k distances for
k = 7 must be similar to subsets of the triangular lattice.

Several local problems in addition to Conjecture 2 have arisen. One is whether
there is a unique 12-set that determines exactly five distances. Another is whether any
subset of L, has more than 27 points and no more than 12 distances.
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The latter problem raises the question of whether g(k) = g(k + 1) for some k. If so, is
gth) = gtk + 1) for an infinite number of k? Let Ag(k) = g(k + 1) — g(k). The average
Ag(k) 1s 2.25 for k < 4 and appears from L, on Table 1 to be about 3.3 for larger k’s
shown there. Couid it be true that Ag(k) — oc?

Forsmall n, f(n + 1) < f(n) + 1. Is this true for all n? Perhaps there is a nice proof.

A refinement of Conjecture 1 asks whether the regular hexagonal subset of L, with
s points on cach side i1s a maximum set for the k distances thus determined and, if so, is
it the only maximum set for that k when s > 3.

Finally. we note that all verified maximum sets for k have the property that some
point has all k distances to the others. Is this generally true? A similar result does not
hold for /" because there 1s an 8-point set for f(8) =4 in which every point has only
three distances to the others.
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