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During the last decade a new area of research has developed relating two sub-
Jects which until now had very little in common: convexity and algebraic geometry.
An initial success was Stanley’s solution of the so-called upper bound conjecture for
combinatorial spheres ([16]; for polytopes solved by McMullen, published in [14]):
Among all combinatorial spheres with v vertices (faces are convex polytopes), the
convex hulls of v points on a moment curve {3 ..., e R} (called cyclic
polytopes) possess maximal numbers of faces in all dimensions. This result
has been pursued further by Kind and Kleinschmidt [10]. Another result is the
solution of McMullen’s conjecture about characterizing those vectors f(P) = (f,(P),
ooy fy—1(P)) for which S{P) is the number of j-faces of a polytope P. The necessity of
McMullen’s condition has been shown by Stanley [17] and the sufficiency by Billera
and Lee [2].

A foundation for Stanley’s, Billera’s, and Lee’s work was laid by Hochster [8].
This paper by Hochster was also one of the starting points for a development which
is to be outlined in what follows. We emphasize two main achievements: First, a
characterization of Milnor’s number of critical points of complex algebraic functions
by numbers assigned to convex polytopes (Kouchnirenko [1 11); second, character-
izations of mixed volumes of convex bodies as the intersection index of certain
varieties, and an alternative proof of the Alexandrov-Fenchel inequality (Bernstein
[1], Burago and Zalgaller (4], Teissier [19]). In order to make the exposition
comprehensible to nonspecialists, we restrict the discussion to clementary explana-
tions.

We first recall some basic facts from the theory of convex bodies (see [3,6,7, 12,
14]). A compact convex subset K of R" will be called a convex hody. If
K = conv (M) is the convex hull of a finite set of points M (or equivalently, provid-
ed it is bounded, the intersection of finitely many closed half spaces) it is called a
convex polytope. The faces of a convex polytope are again convex polytopes; they
form a cell complex of dimension n — 1. The cells of dimension 0 are called vertices
of K. If, in addition, all vertices are lattice points, K is said to be a lattice polytope.

Every convex body K is the limit, with respect to the Hausdorfl metric, of a
sequence { P;} of convex polytopes P;. The surface measure (area) and volume of the
P; then lead to the surface measure and volume of K, respectively. Linear com-
binations 4, K, + - - + 1, K, of convex bodies K, ..., K, are defined by

MK+ A K = A, +A.x|x e Ky, ..., x €K}
196
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resulting again in convex bodies. We restrict our attention to nonnegative «,. For
the volume of a linear combination, one shows:

V(LK +--- + 4,K,) =3 Aiysens A VK, .., K,),

where the sum is taken over all nonnegative iy, ..., i,. The coefficient VK, ...,
K;) is called the mixed volume of K, ..., K, . In particular, V(K, ..., K)=V(K)is
the volume of K. The surface measure of K equals nV(K, ..., K, B), where B is a
unit ball in R". Most mixed volumes, however, do not have an obvious geometrical
meaning.

A number of inequalities for mixed volumes are known; for example, the Min-
kowski inequalities

VK, ..., K, K'Y > V(Ky~'v(K)),
VIK,...,K, K 2 VIKWV(K, ..., K, K', K,

which hold for arbitrary convex bodies K, K'. These inequalities play a decisive rolc
in the solution of the isoperimetric problem. A generalization of the second inequal-
ity is the Alexandrov-Fenchel inequality:

Vs oo Koty K 2 V(K oy Kyl Ko VUK, L Ky, K, K,

2

We consider a ring R of functions f:€C"—> C of the form

@ =3 c,z*,
pel

where z:=(z, ..., z,), p:= (P1s ooy pp), 2= 2800 . 2om, ¢, € C. (C can be replaced by
any algebraically closed field.) If I = Z", and if | is finite, R is the ring of poly-
nomials C[z,, ..., z,] in n variables. If [ < Z" and [ is finite, we obtain the ring
Clzy, z7% ..., 2,, 2717 of Laurent polynomials. If only I < Z" is required, R =
Cllz, ..., z,]] is the ring of formal power series. .

The support supp f of f is given by {plc, # 0}. If I is finite, we call the lattice

polytope
N e f)+= conv (supp f)

the Newton polytope of f. One key to understanding what follows is the fact that
many properties of the functions f or varicties defined by them depend only on
A’eo(f) and not on supp f.

Let A be a lattice polytope such that 0 ¢ aff A (affine hull). We consider the cone
a5:={tx|t € R,\{0}, [x € A} and set

Pyi=a, n Z"

Then P, is a semigroup of lattice vectors (FIGURE 1). It represents the subring R, of
Clzy, 27, ..., 2,, 2, '] consisting of all Laurent polynomials whose support lies in
P,. The use of semigroups P, is a second key to understanding what follows:
transformation of algebraic or algebraic-geomctric facts into combinatorial-

geometric ones.
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In a sense, the correspondence R, — P, is a logarithmic transformation. How it
can be applied has been thoroughly studied by Hochster [8], Kempf et al. [9],
Danilov [5], and others. Any time algebraic-geometric properties about singularities
or blowups can be defined in local analytic coordinates by monomials, onc may
have a chance to apply the combinatorial-geometric technique of exponent semi-
groups. In [9], for example, this is done in a proof of a theorem about the existence
of semistable reductions. The nucleus of the proof is a (55 page) proof of variants of
the following combinatorial theorem about lattice points:

Let P be a lattice polytope of dimension n in R". Then there exist ave N and a
subdivision of P into finitely many simplices T;, such that for all j:
(a) Every vertex of T, lies in (1/v)Z".
(b) The volume of T, equals 1/v"n!.

3

Let us discuss in more detail a geometric characterization of Milnor’s number of
an isolated critical point of an algebraic set defined by a polynomial equation
f(z) = 0 (Kouchnirenko [11]). What is Milnor’s number? In order to understand its
geometric meaning let us first look at an example.

flz, 2) =28 4+ 25 =0, b, g € N\{0, 1}, (1

defines in C? or R* an algebraic set V. Both partial derivatives vanish at 0; / has an
isolated critical point there. In order to investigate the critical point further, we
consider the 3-sphere S, about 0 with radius ¢ > 0. The intersection C:= 8, N V is a
knotted curve or a link of several curves. S,\V can be considered a fiber space by
setting

:S\V ~Co o Pla)e= (2)
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A fiber Fgi=¢ '(¢'®) is a surface bomotopically equivalent to a bouquet
S1V---V §' of y(f) circles. We now replace (1) by any polynomial equation

@)= flzg, .. 2)=0, n22 &)

such that 0 is again an isolated critical point of the algebraic set V' defined by (3).
Let S, be a (2n — 1)-sphere about 0 whose radius ¢ > 0 is so small that inside S,
there is no critical point #0 and such that f~'(0) is a transversal to S, for all
0 < ¢ < &. The map (2) provides a fibration of S,\V, the fiber being homotopic to a
bouquet S2"3V .-V 8§22 of u(f) spheres. u(f) is called Milnor’s number of the
isolated critical point 0 of f (see [13]).

It is possible to calculate u( /) directly from f (Palamodov [15]):

d
uif) = dime LTz, .. 211 (2),

where (Jf/0z) denotes the ideal generated by all partial derivatives of f. In example
(1), () = (p — g — 1) is easily obtained.

Following the work of Kouchnirenko [11], let us look at the Newton polytope
N el f) of f. We call f permissible if A co([f) touches all coordinate axes. The union
of all faces A of Newl(f) which are “visible” from 0, that is, for which
N el f) n conv ({0} U A)= A, 0 not in the affine hull of A, is called Newton’s
boundary T(f) of f (FIGURE 2). f is called nondegenerate on I'(f) if (z,(0f10z,), - ..,
2,(3f)0z,)) restricted to T'(f)is #0 in (C\{0})".

We set T_(f):={J conv ({0} u A)for all A = I'(f). Let ¥, be the n-dimensional
volume of I _(f), and let

Vo= 3 vol, (T_(f) n UY,

FIGURE 2
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where the sum is taken over all k-dimensional coordinate subspaces U*, k < n. We
define

Wf)=nlV,— (= DWW,y £+ (= D)"Y, 4 (=)

to be Newton's number.

THEOREM 1 (Kouchnirenko [11]). Let f be a permissible polynomial, and let (3)
have 0 as an isolated critical point. Then

(a) u(f) = v(f)
(b) () = v([f)iffis nondegenerate on T'(f).

It should be noted that (a) and (b) depend only on A «(f), not on supp f.
A related result is obtained as follows. Let j(f) denote the sum of all Milnor
numbers of f. Then
o

A(f) = dimc Clz,, ..., z,] [{ —
z

We set I'_(f):=conv ({0} U A (/) and denote by T°(f) the union of all faces of
Wuqv m:: do not contain 0. If, in the definition of v(f), we replace I'_(f), I'(f) by
I'_(f), T'(f), respectively, we obtain a number ¥(f).

THeorEM 2 (Kouchnirenko [11]). Under the assumptions of THEOREM | we hare
(a) B(f) < ¥(f), ~
(b) @(f) = Vf) if fis nondegenerate on I'(f).

In the above example (1), the Newton polytope A () is the line segment
joining (p,0) and (0,9. We find V,=4pq, V,=p+4q; hence, v(f)=
pg—p—q+1=(p—1}g—1). Since f is nondegenerate on I'(f)=TI(f) we
obtain u(f) = (p — 1)(q — 1) = (/). (f only has 0 as a critical point.)

Kouchnirenko has extended THEOREM 2 to Laurent polynomials. The proof of all
three theorems makes use of the theory of graded rings, the Cohen—-Macaulayness of
the rings R, (proved by Hochster [8]), and work with Koszul complexes.

4

We consider a system of Laurent polynomial equations in n variables

filz)=0
: (4)
Llz) =0.
By the number of typical solutions ((f,, ..., f,) we mean the total number of solu-

tions for almost all systems (4) in the following sense. Let n be the total number of
lattice points that occur in at least one f;. We consider solutions that occur in an
open, cverywhere dense set of the coelficient space C"; hereby .4 w(f)), ..., .V el f)
is the same set of polytopes. Furthermore, we choose only solutions in (C\{0})".
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TueorEM 3 (Bernstein [1]). The typical number of solutions of (4) equals n! times
the mixed volume of the Newton polytopes of the f;:

Sy - ) =0V (N e f1), .., A eol ) &)

Again, there is a dependence only on A w(f}), notonsupp f;,j=1,...,n
ExXAMPLE. Let two quadratic equations be given:
filzp z) = a2t + a2z} + a; =0,
o2y, 25) = by23 + byz5 + by =0

all coefficients being # 0. The typical number of solutions is obviously 4 (FIGURE 3).

FIGURE 3

On the other hand, A4 w(f,) = A e(f,) is the triangle with vertices (0, 0), (2, 0),
and (0, 2). We have V(A wl(f)), ¥ ewlfy) = V(N e{f) =2 (area of the triangle).
Hence, 2! V(A el f1), N e f3)) = 4.

Bernstein’s proof of THEOREM 3 makes use of Puiseux serics. Meanwhile, there is
an alternative proof. Burago and Zalgaller mention in their book “Geometric
Incqualities” [4] the possibility of proving (5) by characterizing the functionals on
both sides of (5) uniquely by certain properties. Such properties have been found
independently by W. J. Firey and by P. McMullen (unpublished).

When (5) is established it is possible, by elementary arguments, to prove the
Alexandrov—Fenchel inequality (see Section 2) for lattice polytopes and, by an approx-
imation argument, extend the proof to arbitrary convex bodies.

[Note added in proof: Meanwhile, the elementary proof by Phedotow published in
[4] turned out to be false.]

A further characterization of mixed volumes and a prool of the Alexandrov
Fenchel inequality use Hodge Theory. Both have been achieved by Teissier [ 18, 19].
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. Let K, ..., K, be lattice polytopes in R", n > 2. We consider the support func-
tion H of K:= K, + - -+ + K, (Minkowski sum):

H(u):==max u - x.
xeK

H is piecewise linecar and convex. The same is true for the support functions H, of
K;,i=1,...,r.

Let A be a face of K, and let p be a point in the relative interior of A. We denote
the cone of “outer normals” in p by g, , that is,

ay={u—pllu—pl < |u—qj for all g € K}.

o, o=_.< depends on A, not on p. It is readily seen that {c,}, for A # ¢, being a face
of K, is a decomposition of R” such that no two o, have a relative interior point in
common. We denote the convex dual cone of a, by &,:

Fy:={x e R"u- x>0 for all u € 6,)}.
&4 has dimension n.
Ry=C[5, N Z"]

defines a subalgebra of Laurent polynomials (sce Section 2). We consider the
sub-R,-module L, of C(Z") (FIGURE 4) generated by

Liy:=={x€Z"|u- x> Hu) for all u € g,}.

~
\\vx/\ 7777 P
~N

FIGURE 4

We can a.Omna_um L;, geometrically as follows. An elementary property of convex
polytopes is that each face A of K is the Minkowski sum of faces A, of K;,

A=A+ +A,

We choose a vertex m;, of A;. Then L}, is obtained from &, n Z" by a translation:
Liy = (34 n Z") + m;,. Adding any vector of 6, n Z" to L}, maps L, into itself;
therefore, L;, is a sub-R,-module of C(7"). Furthermore, any vector of L, is rep-
resentable as y = x -+ my,, where v € a4 v 2750 2™ generales Ly .

Using sheaf-theoretic means one can glue up the affine varictics Spee Cla,
Z"] (points, irreducible curves, irreducible surfaces, etc., represented by prime _.Qr,.m__i
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to a compact, normal, integral, and rational algebraic variety X. Hereby one takes
advantage of the complex structure of {,}. Also the L, with any fixed i glue up
together into an invertible sheaf of fractional ideals L;. Let L} denote the v;-fold
tensor product of L;. As is known from sheaf theory, there is a polynomial expres-
sion for the coherent Euler-characteristic of L} ® -+ - ® L;":

XLy ® - ®LY= Y

X1, a
... _Mne_ v’
aeNr Xy- a,:

‘
laj=n

+ polynomial of degree <n — 1.

It is now readily shown that

S,=n V(K ...,Kp oo, K,y oo K.

L ar

This is another characterization of mixed volumes. The Alexandrov-Fenchel
inequality now follows from the Hodge Index Theorem (Teissier [17]), according to
which the (topological) index of a Kahler manifold M coincides with an alternating
sum of complex cohomology group dimensions of M.
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