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2.1 Linear transforms, Gale transforms, and applicati-
ons

We turn now to a method which, in a way, dualizes problems of fans and polytopes.
It is useful in the solution of classification problems and in finding the structure of the
combinatorial Picard group. Two further applications will be presented here.

Let X = (r1,...,2,) be a sequence of (not necessarily different) vectors in an n-dimensional
vector space U, and let zy,...,z, span U. We consider a v-dimensional vector space V and
a basis by, ....b, of V. Then there is a well-defined linear map

L,V --U

for which Ly(b;) = z;,1 = 1,...,v. We introduce a third vector space W and a linear map
L3 such that the sequence

0-wHBvLUro
1s exact. Then the dual sequence
0w EVvEut o

15 also exact.

Let b7.....0% be the basis of V* dual to by, ..., b,.

2.1.1 Definition We set z; := L3(b%),: = 1,,v, and call the finite sequence X :=
(Xy,...,Ty) @ linear transform of X.

By dualizing twice we find:
2.1.2 Lemma If X is a linear transform of X, then X is a linear transform of X.
From the definitions we readily deduce:

2.1.3 Lemma «) If Ly : U — U is a bijective linear map, then X is also a linear
transform of Ly(X)

b) If Ly~ : W* — W* is a bijective linear map, then Ly+(X) 1s a linear transform of X

as well,

2.1.4 Definition We set £(X) := kerL; C V = span{by,...,b,} and call £(X) the space
of linear dependencies of X. It is convenient to write a« € £(X) as a column vector
o = (aj....,a,)" (with respect to the basis b1, ...,b,). « is called an affine dependency (of
X)if ay + ... + ay = 0.



2.1.5 Lemma (a.....,) € L(X) of and only of there emists a vector a € W such that
o; = I;{a) fori=1....v.

Proof Ew 11.4.8.

As a further analysis shows (see. for example. Ew II. sections 4 and 5), linear transformss
may be calculated as follows. If the sequence X = (r1.....1y) is given and spans the vector
space [, find a basis aV ....al"=™) of the space L(X) of linear dependencies of X. Then
the columns of the matrix

JNEY
A= :
atv—n)
provide a linear transform of X
Ezample Let z;. ...,z be the vertices of a prism in real affine 3-space H and consider H

as a hyperplane in R* such that 0 is not in H (Figure 1). Then (-1,1,0,1,-1,0) and
(—~1,0.1,1,,0.—1) are linear dependencies which provide a basis of £(X), and the colums

of
-11 0 1 -1 O _ _
A.—(__l 0 1 1 0 _1>—(I1,...,$6)

are the elements of a linear transform of X (Figure 2).

Xg
Xs X3 _
X4 Xa
Xs
X2
X2
X1
X; Xs
2.1.6 Definition Let X = {z,......0+} be a set of non-zero vectors such that ¢ = posX

is a cone with apex 0. and let X be a linear transform of X. For ¥ C X call C(Y) :=
{0, €Y'} the coface of Y.

2.1.7 Theorem Let o = pos{ry......-x} be a cone with apez 0. and let ¥’ be a subset of
X = {r,.....xx} Then posY is a face of o if and only of
0 € relintconvC(Y).
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Proof Ew 11414

Note that posl) = {0}, so that the theorem is also true for the improper face o (Y = X).

Ezample In the above example, 1, Z2. T4, s span a face, and, in fact. 0 is inside the line
segment [ry,Zy4]. However, z1,15 do not span a face, and 0 is not in the interior of the
¢uadrangle with vertices I2,Z3, T4, Ts.

It is often useful to have an affine version of the linear transform. It is readily obtained by
considering the following fact.

2.1.8 Lemma For a linear transform X of X the following three conditions are equivalent:
(a) The vectors of X represent points in an affine hyperplane H of U for which 0 ¢ H.
(b) &y 4 ..+ Ty =0.

(¢) If X is constructed as above by means of a basis of L(X). the linear dependencies

oV a'® are affine dependencies.

Proof Ew 11.4.15.

2.1.9 Definition If X = (2, ...,7,) is a finite sequence of affine points in an affine space
H considered a hyperplane not containing 0 in a vector space U then we call a linear
transform of X with respect to U also a Gale transform or an affine transform of X with
respect to H.

If the Gale transform is constructed by means of the matrix A we need not speak about U
but proceed as in the case of linear transforms. We consider v —n — 1 affine dependencies
if n is the dimension of H. The above example can then be considered as a Gale transform
without any change.

We use the same definition of "coface” as in 2.1.6. Theorem 2.1.7 then carries over to the
following theorem:

2.1.10 Theorem Let P = conv{zy,...,xx} be a polytope, and let Y be a subset of X =
Jry.....xp} (chosen as vertices of P). Then convY is a face of P if and only if

0 € relintconvC(Y)

We present now an application of Gale transforms to toric divisors. If Xt¢ is an n-
dimensional toric variety given by the fan T in R". we obtain an (n-1)-dimensional toric
subvariety D, by considering the star of a 1-cone p in © and projecting it perpendicularly
onto the hyperplane normal to p. Toric Wedl divisors may then be introduced as formal
linear combinations

D= n,lel + ...+ leDpk
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where 1. ....ng are integers, and py, ..., pr are the 1-cones of ©. (For a general definition
of divisors see section 2.3 below). Let a; be a generator of p;,1 =1, ..., k.D is Cartier if
for every @ € T the generators {z;,. ..., zi, } = Xo can be chosen such that P, := convX,
is a polytope of dimension dimo — 1. A toric Cartier divisor is ample if T is complete. if
ny = ... = ng. and if the P, can be chosen to be the faces of an n-polytope P. A theorem
which Shephard proved in 1971 can be used to characterize ampleness as follows.

2.1.11 Theorem (Shephard’s ampleness criterion) Let Xz be a complete toric variety.
and let py = pos{ay}.....px = pos{ar} be the 1-cones of T. so that for each o € ¥ there
ezists o subset Xo C {ai,....,ax} =: X for which

o = posXy.

A toric Weil divisor D = D,, + ...+ D, is ample if and only if the following condition 13

true.

(1) For a Gale transform X of X we have

ﬂ relintconvC(X,) # 0.

ocEXL

Proof Ew 11.4.8.

A second application of Gale transforms which we discuss now makes use of Shephard’s
criterion. It deals with cell decompositions, in particular triangulations, of lattice polyto-
pes. We characterize a property of such decompositions (”coherent”) which occurs in the
theory of polytopal semigroup rings (see, for example, Bruns [1997]), and that of secondary
polytopes (Gelfand, Kapranov, Zelevinsky [1994], chapter 7).

9.1.12 Definition Let P be an n-dimensional lattice polytope in R". By a polyhedral (o1
cell) decomposition of P we mean a finite collection C = {P;]i € I} of lattice polytopes
such that

ta) P =/ P
by If P, € C and F is a face of P;. then F €C
(¢) If P;.P; € C then P;N P; is a common face of P; and P;.

If all P, are simplices. we call C a triangulation of P. Furthermore. C is called coherent
i there exists a continuous function f : P — R. which is linear on each P;. and which is
concave. that is. satisfles

flax + (1 —a)y) > af(r) + {1 —a)f(y)

for 0 <a<1andur,ye€ P.




2.1.13 Theorem Let C = {P;]i € I} be a polyhedral decomposition of a lattice polytope P
i R™. and let X be a Gale transform of the set X of all lattice points which are a verter
of at least one P;.i € I. C is coherent if and only if the following condition 1s satisfied:

(2) ﬂie['relmtpo.sC(P,*) £ 0.

For triangulations the theorem is proved in Gelfand et al. [1994], p. 225-226. We show
that the general theorem is a consequence of Shephard’s criterion (Theorem 2.1.12).

We extend R™ to R**! in such a way that the graph of a real-valued function f : P —
R consists of points (1.....Tn. f(Z1,....Zn)). where (z;....,7,.0) € P. Up to adding a
constant function we may assume f(z) > 0 for all x € P.

Let a = (0, —1) and let b be a lattice point such that

a € intconv(P U {b}).

Clearly. conv(P N {b}) is a pyramid over P. By a translation, we shift 0 to a and consider
the complete fan ¥ consisting of all posP; for P; € C, all faces pos(F U {b}) of the pyramid
(F a proper face of P). {0}, and pos{b}.

By Shephard’s criterion (Theorem 2,1,11). T can be obtained by projecting the faces of
an (n + 1)-polvtope R if and only if (| relintconvC(Q;) # 0 where Q; runs over all P, eC
and the pyramids conv(F U {b}), F a proper face of P, and, finally,{b}.

Let X be the set consisting of b and all O-cells of C. Since b is the apex of a pyramid, we
have b = 0. If Q; is a P;, then b € X\vertP; so that 0 € C(Q;). If Q; = conv(F U {b}), F
a proper face of P, then Q; is a face of the pyramid conv(P U {b}) and hence, by 2.1.10,
0 € relintconvC(Q;) which is equivalent to 0 € relintposC(Q;). So we obtain that

ﬂ relintconvC(Q;) #

if and only 1if

ﬂ relintconvC(P;) # 0.

Since 0 € C(P;) for each P;, the latter condition is equivalent to

ﬂ relintposC(P;) # 4.
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Suppose a polytope R is given whose faces span U. We extend R"*! to a projective space
and apply a central collineation = which leaves P pointwise fixed and transforms a to the
the point at infinity of the T,4i-axis (r; = ... = zp, = 0). If H, is the hyperplane in
R"*+! which contains a and is parallel to the affine hull of P, we choose the image of the
projective extension of H, under = as new ~hyperplane at infinity”. Then 7(Q) contains
the eraph of a concave function by which C is seen to be coherent. (Figure 2).

If. conversely. C is coherent, we may reverse the arguments and obtain a polytope R as
above. This completes the proof of the theorem.

Standard examples of non-coherent triangulations of 2-polytopes are those presented 1n
Figure 3. They may be sonsidered as special cases of a more general class of non-coherent
cell decompositions:

2.1.14 Definition Let C be a polyhedral decomposition of a lattice polytope P C R".
Suppose the line segments s; := [b;, ait1],0 = 1,...,k; kE+1 =1, are cells of C such that
a,; #ﬁ bi and
(I) bi—H —b; = Od(a,‘_H —(1,‘)7 a; > 0, 1= 1,...,](: -1,
L

furthermore.
(II) alz...Zak_l.

Then we call {sy,.... sk} a whirl (Figure 4).
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(Fegure 5(8)
Figures 3 and 5 contain whirls. It should/be noted that the line segments joining a, and

.4 or b, and by need not be cells of G/ Figure 5(c) shows a whirl in a 3-dimensional C.

The numbers in Figure 5 indicate the «;.
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2.1.15 Theorem If a polyhedral decomposition C of an n-polytope P contains a whirl then
it 18 mon-coherent. .
€

Proof Let X = (a1, @z, ...,ak, b1, .-y bk, ..., ¢) be the sequence of all 0-cells o%here the
0-cells following by are chosen in an arbitrary order. By (I), we obtain affine relations
which obviously are linearly independent, and which can be extended to a basis of £(X)

(rows of the matrix)

(851 —Qq -1 1
oy —aQ2 -1 1 O
i N
Ofp—-1 —Ofk-1 -1 1l
*
e (C_ll. ELQ. C_Lg, C_lk_l. sz. ?)1, i)g, 53 seey l_)k_l, i)k, )

We write the column vectors of R™™"~! (r the number of 0-cells of C) as
[ T o S xr_n_l..‘.)t.

Then C([b;.a;41]) 1s the convex hull of all columpns of A except b; and @;+1. Therefore. all
points of C([b;.a;41}) satisfy z; > 0. i = 1.....k" Since x; > 0 for at least one of the points,
we find «; > 0 for relintpos([b;, a;41]). However, for the points of C([bk.a1]) we find from
(IL:

ry 4+ ...+ Tk < 0.

Therefore. condition (4) of Theorem 2.1.13 is violated. This completes the proof of the

theorei.
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