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1. Introduction

Even in the age of electronic dissemination of statistical data, tables are central
data products of statistical agencies. For prominent examples, see the American
FactFinder (http://factfinder.census.gov/servlet/BasicFactsServlet) from the U.S. Bureau
of Census, the Office of National Statistics (http://www.statistics.gov.uk/) in the UK.,
and Statistics Netherlands (http://www.cbs.nl/en/figures/kevfigures/index.htm). Much
survey and census data is categorical in nature and thus the representation of survey
results in the form of cross-classifications or tables is a natural device for statistical
reporting. But even when they collect measurement data, statistical agencies often
represent the information from them in the form of discretized quantities. As a result,
tables of counts represent a primary unit of reporting and analysis. Sometimes these
tables represent simple cross-classifications of the counts of survey and census elements.
Other times the sample units are weighted according to probabilities of selection and /or
are interpretable as the numbers of people in the population (based on the sample). In
such tables of counts, the occurrence of small values is usually taken to present the
possibility of a disclosure risk, since data for individuals who are unique in the population
may be used in matching against other databases by an intruder or data snooper.

Considerable effort has gone into developing disclosure limitation methods for tabular
data that effectlvely Tower disclosure risk and provide products with hlgh utlhty to,,

. legitimaté data users (Durcan 2001, Duncan, Jabine and de Wolf 1993, Willenborg and
de Waal 1996,2000). These techniques include cell suppression, local suppression,
global recoding, rounding, and various forms of perturbation (Federal Committee 1994).
Under cell suppression, for example, the values of table cells that pose confidentiality
problems are determined and suppressed (as primary suppressions) as well as values of
additional cells that can be inferred from released table margins (as secondary

suppressions) (Cox 1980). Perturbatlon is used through controlled rounding (Cox 1982),




versions of post-randomized response (Gouweleeuw, Kooiman, Willenborg, and de Wolf,
1998), and Markov perturbation approaches have been proposed in various forms by
Duncan and Fienberg (1999), Fienberg, Makov, and Steele (1998), and Fienberg, Makov,
Meyer, and Steele (2000). Many of these methods can be represented in the form of
matrix masks (Duncan and Pearson 1991). The computational problems associated with
these approaches have been widely explored in recent years through such techniques as
(1) network methods by Cox (1995), (2) mathematical programming (IP, LP) and graph
theory as addressed by Fischetti and Salazar (1996, 1998, 1999), Chowdhury, Duncan,
Krishnan and Roehrig (1999), and Duncan, Krishnan, Padman, Reuther, and Roehrig
(2001), and (3) branch and bound methods by Fienberg (1998), Dobra (2001), and Dobra
and Fienberg (2001).

In Section 2 of this chapter, we describe a framework for simultaneously
examining the impact of disclosure limitation techniques on the two attributes of
confidentiality protection and information loss. The first attribute is characterized as
inverse to disclosure risk, and measures the extent to which confidentiality is protected
from the attacks of a data snooper. The second attribute is characterized as data utility,
and measures the extent to which data users will still find the tabular data product useful
even though there may be some information loss. In Section 3, we describe a variety of
techniques, some quite new and under development, for limiting disclosure for tabular
data. In Section 4, we consider the topic of disclosure auditing for tabular data.
Disclosure auditing involves procedures for examining a proposed data product and
assessing its vulnerability to attack by an intruder or data snooper. In Section 5, we show
how the framework in Section 2 can provide what we call an R-U confidentiality map for
evaluating and analyzing disclosure risk and data utility of tabular data. We devote our
attention to tables of counts, and look both at two-way and multi-way tables. Most of the
methods we describe, however, are applicable in related form to weighted tables of
various kinds.

The methods surveyed in this chapter comprise a substantial part of the working
arsenal of disclosure limitation practitioners at statistical agencies. Many of the
references given at the end of the chapter point to seminal works in the field, and thus
will be useful to both practitioners and researchers. The newer techniques described here
are indicative of directions currently being pursued, and so will be of interest to
researchers wishing to extend the state of the art.

To lend concreteness to our exposition throughout the chapter, we make use of the
three-dimensional table presented in Table 1. It will illustrate the various issues and
disclosure limiting methods. Rows are indexed by i = 1,2,3, 4, columns by j = 1,2,3,4 and
levels by k = 1,2,3. We refer to the three two-way marginal totals derivable from this
table by summing over variables as IJ+ (for the row by column totals), I+K (for the row
by layer totals), and +JK (for the column by layer totals). Similarly, /++, +J+, and ++K
represent the corresponding one-way marginal totals. The tables above the horizontal line
are the three (i, j) levels, while the table below it is the I/+ marginal.



If we consider this example a three-way population table, then the six cells with
entries of ““1” represent individuals who are unique in the population and thus pose a
confidentiality problem. The six cells with entries of “2” would also be considered by
most to pose serious disclosure risk, since one individual recorded in such a cell sees the
other as unique. There are no such entries, however, in any of the two-way marginals,
and this fact may, as we show below, generate a false sense of security on the part of a
data administrator if the marginals alone were published.

k=1 k=2 k=3

1 4 66 3 74 2 3 2 6§ 75 o 80 o 1 8l
1 2 00 3 0 4 78 3 85 4 2 2 1 9
0 4 31 8 0 0 0 61 61 3 0 4 45 52
3 0 0 3 # 0 3 1 0o 4 61 3 55 4 123
51 10 69 7 91 2l 10 81 132 225 68 85 61 51 265

3 871 68 72 230
5 8 80 4 97
3 4 71 107 121

64 6 56 7] 133
75 105 211 190 581

Table 1. Our Illustration.

2. A Framework for Disclosure Risk and Information Loss

Some argue that the legitimate objects of inquiry for statistical research are
inferences drawn from aggregates over individual records; for example, the proportion of
pilots for commercial airlines in the United States who have an alcohol abuse problem,
perhaps given a set of additional demographic and occupational characteristics. The
statistical agency often seeks to provide users with data that will allow accurate
inferences about such population characteristics. Unfortunately, the additional
characteristics of interest may well make the resulting cross-classification quite sparse,
possibly replete with entries of “1” and “2.” Because of confidentiality promises—
whether explicit or implicit—the statistical agency seeks to thwart the data snooper who
might seek to use the disseminated data to draw accurate inferences about, say, the
alcohol abuse status of a particular pilot for American Airlines. This capability by a data
snooper represents a statistical disclosure, but that level of statistical detail may still be of
legitimate statistical interest on the part of a careful analyst, who has no interest in



utilizing the information about this particular pilot beyond the context of this statistical
analysis.

There are two major types of disclosures—identity disclosure and attribute
disclosure. Identity disclosure occurs with the association of a respondent's identity with a
disseminated data record (Spruill 1983, Paass 1988, Strudler et al. 1986). Attribute
disclosure occurs when the respondent can be associated with either an attribute value in
the disseminated data or an estimated attribute value based on the disseminated (Duncan
and Lambert 1989, Lambert 1993). In the case of identity disclosure, the association is
assumed exact. In the case of attribute disclosure, the association can be approximate.
Most statistical agencies place emphasis on limiting the risk of identity disclosure,
perhaps because of its substantial equivalence to the inadvertent release of an identified
record, a clear administrative slipup. On the other hand, an attribute disclosure, even
though it invades the privacy of a respondent, may not be so easily traceable to actions of
the agency.

We introduce a conceptual framework to provide context to our discussion of
disclosure limitation methods. We take the data user to be primarily interested in the
estimation of a conditional or a joint probability or population proportion based on the
tabular data. We assume that an intruder or data snooper has access to external
information that will make it likely that the snooper can compromise confidentiality when
a cell count is small. Qur framework establishes quantitative measures for two basic
attributes:

1. Disclosure Risk—the measure of risk to confidentiality that the data trustee, such
as a statistical agency, would experience by a data release.

2. Data Utility—a measure of the value of information to a legitimate data user.

Generally, the application of a disclosure limitation method would have the desirable
effect of lowering disclosure risk while, concomitantly, have the undesirable effect of
lowering data utility.

Disclosure risk is determined, most generally, based on how the agency envisions
the data snooper making a disclosure. More simply it may be based on some measure of
the percent of the population that could be easily compromised due to the uniqueness of
their attribute values. Duncan and Lambert (1986, 1989), Chen and Keller-McNulty
(1998), and Fienberg and Makov (1998), among others, develop specific disclosure risk
models. Finally, the released data will have more or less utility for the user depending on
the degree of perturbation from the original data and the intended use of the data. The
statistical disclosure limitation problem is to choose a methodology for data release so
that disclosure risk is adequately low while statistical information (data utility) in the
disseminated data are as high as possible (Duncan and Fienberg 1999). This
characterization of the problem is displayed in Figure 1. Data utility is the value of the
statistical information that the agency provides to a legitimate user.
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Figure 1: The Statistical Disclosure Limitation Problem

In addressing the statistical disclosure limitation problem, the agency is shoring the two
pillars of its foundation: satisfying the data users who depend on its products and
reassuring the respondents who provide it with data. Data snoopers pose a threat to the
agency's ability to deliver on its promise of confidentiality to respondents. Thus, Figure 1
is a graphical assessment of how an agency provides data utility to users and lowers
disclosure risk in the face of attack by data snoopers. Domingo-Ferrer (1999) terms a data
product of high data utility to be both analytically valid (key statistical characteristics,
like means and covariances preserved) and analytically interesting (several variables on
important subdomains provided) and notes that it involves low information loss; he terms
data products with low disclosure risk to be safe. Zaslavsky and Horton (1998) use a
decision-theoretic approach based on the structure of Figure 1 to derive an optimal
disclosure limitation scheme for minimum cell size in tabular data.

Generally, a data snooper has a priori knowledge about a target (Duncan and
Lambert, 1986). Typically, this knowledge would take the form of a database with
identified records (Adam and Wortmann, 1989). Certain variables may be in common
with the subject database. These variables are called key or identifying (de Waal and
Willenborg, 1996, 1998). When a single record matches on the key variables, the data
snooper has a candidate record for identification. This candidacy is promoted to an actual
identification if the data snooper is convinced that the individual is in the target database.
This would be the case either if the data snooper has auxiliary information to that effect
or if the data snooper is convinced that the individual is unique in the population. The
data snooper may find that according to certain key variables, a sample record is unique.
The question then arises as to whether the individual is also unique on these key variables
in the population. Bethlehem, Keller and Pannekoek (1990) have examined detection of
records agreeing on simple combinations of keys based on discrete variables in the files.



Record linkage methodologies have been examined by Fuller (1993) and extensively by
Winkler (1998), who uses a version of the matching algorithm originally proposed by
Fellegi and Suntner (1969). Trottini (2001) presents an even more comprehensive
framework for the decision-theoretic trade-offs between the perspectives of the agency
and the perspectives of users, in light of the extent to which an intruder is able to infer
target values from a released dataset.

Elliot and Dale (1999) and Paass (1988) explore the psyche and motivations of the
data snooper. The snooper may or may not be someone with limited access to the data
and may or may not be motivated for malicious reasons. Prudently, however, the database
administrator must assume a worst-case scenario, i.e., that the data snooper has access to
sophisticated analytical tools; is knowledgeable about the data and has ready access to
relevant external data sources; and has the necessary computational power to attempt an
attack on the data.

Data utility is a positive expression of information loss. A variety of measures of
data utility have been proposed. For example, Ozsoyoglu and Chung (1986) suggested a
measure for tabular data under disclosure limitation through cell suppression as simply
the percentage of suppressed cells. This particular measure is crude at best. Similarly, de
Waal and Willenborg (1998) consider a variety of options for choosing local suppressions
(i.e., values for specific variables in specific records) by focussing on the total number of
such suppressions, or the number of categories affected by the local suppressions.

More generally, we presume that once the database administrators are able to hold
disclosure risk to an adequately low level, they should then seek to maximize data utility.
This follows from the perspective that all disclosure limitation methods are attempting to
maximize data utility for a given user task subject to a constraint on disclosure risk. We
examine the fundamental tradeoff between data utility and disclosure risk. As information
loss increases because of disclosure limitation, an estimate of a conditional probability
becomes less precise, and data utility consequently goes down. Simultaneously,
disclosure risk also decreases. This conceptual framework can be used to compare
alternative disclosure limitation methods. Typically one can control the use of any
particular disclosure limitation method by choosing certain parameter values. For
example, with noise addition the parameter is the variance, say ’!:2, of the added noise. As
7° is changed, the disclosure risk R and the data utility U change. These changes can be
presented graphically in what is called an R-U confidentiality map (Duncan and Keller-
McNulty 2001, also Section 5 below).

Here we model disclosure risk for any individual table cell as the sum
D, rk)pk),
k
where r(k) is the risk associated with the data snooper obtaining knowledge that a cell
entry has true value &, and p(k) is the probability that the cell value is &, given the table
and knowledge held by the data snooper about the disclosure-limiting method employed.



Thus the sum ranges over the possible true values a cell could have, given the published
value.

To illustrate how this model could be applied, consider a table protected by
rounding to base 3. For example, if from Table 1 the I/+ marginal table (the 4x4 table
below the horizontal line) is rounded to base three, Table 2 results. (We discuss table
rounding in more detail in Section 3.) A cell with a published value 3 could have true
value 1, 2, 3, 4, or 5. The data disseminator would assign r(k), k € {1, 2, 3,4, 5}
according to the perceived risk associated with an intruder determining that k was the true

value. Generally, r(k) would be a decreasing function of , since the disclosure risk would
be higher with smaller cell counts.

3 87 69 72 231
6 9 81 3 99
3 3 6 108 120
63 6 57 6 132
75 105 213 189 582

Table 2. A Table Rounded to Base Three

In determining p(k) for each k, the data disseminator would attempt to assess the
probability distribution that the data snooper would use. There are several possible
approaches to this. A conservative approach is to act as though the data snooper places
high probability on the lower possible values of k. Another approach is to base
assessments of p(k) on the actual frequency distribution of cell counts in some reference
population. Then the data disseminator can model information loss (the complement of
data utility) as, for example, the mean square error in estimating conditional probabilities.

As we noted above, this framework allows us, in principle, to examine the various
disclosure limitation schemes with regard to both data utility and disclosure risk. In the
following sections, we illustrate this framework with a numerical example—an example
that we will use in the evaluation and analysis section to compare some of the disclosure
limitation methods, and show how it can quantify the utility/risk tradeoff.

3. Disclosure Limitation

In this section, we discuss a number of protection schemes that have been
proposed for tables of counts. All of the methods discussed have appeared in the
statistical literature with applications to two-dimensional tables. We will discuss the
applicability of all of them to three- and higher-dimensional tables, since many desirable
properties of statistical disclosure limitation techniques for two-dimensional tables are
absent from the corresponding techniques for tables of higher dimension (Cox 1999).

Sampling



One of the surest ways to limit disclosure is to release only part of the data. Thus
releasing a table whose counts are based on a sample of the units in the original table is a
way to provide a serious measure of protection for the original reporting units. The
statistical agency practice of releasing microdata samples is essentially based on this
approach. The virtue of sampling in this context is that if the details of the sampling
procedure are available, a user can make valid inferences about the population underlying
the sample table, albeit with less precision than would have been possible with the
original table.

Cell Suppression

Cell suppression has been used for many years by a large number of statistical
agencies (Cox 1980, de Carvalho, Dellaert and Osério 1994, Cox 1985, Kelly, Golden
and Assad 1992, Fischetti and Salazar Gonzalez 2000, Cox 2001, Giessing 2001). On the
face of it, the idea is simplicity itself. If a table contains an entry that is deemed sensitive,
the disseminator simply does not provide a value for it. This has no effect at all on other
table entries, so it effectively localizes the distortion of the data to individual cells. A
suppressed cell, in isolation, would appear to be able to take on any value whatsoever
(and so provide complete protection), but in the context of the table as a whole, there are
evident constraints that arise from marginal values and algebraic relationships between
cell entries. Furthermore, data disseminators sometimes publish the rules used to
determine suppressions, thus providing further clues to their likely values.

Under cell suppression, each sensitive cell in the table is suppressed; these are
called primary suppressions. If marginal totals or other linked tables are also to be
published, it may be necessary to remove additional cell values (secondary or
complementary suppressions) that would allow an intruder to use algebraic or other
means to identify the sensitive cell values. In terms of our R-U framework, the goal of
cell suppression is to find secondary suppressions that maximize the utility of the
resultant table while affording sufficient protection. Often the total number of suppressed

cells is taken as the measure of utility, but other measures (e.g., entropy) have been used
as well.

Except in special circumstances, the secondary cell suppression problem (CSP) is
computationally NP-hard (Kelly, et al., 1992), suggesting that any solution procedure will
grow exponentially in complexity with increasing problem size. Recent work by Fischetti
and Salazar Gonzalez (2000) has increased considerably the size of tables that can be
protected optimally by suppression, but it is still quite common for heuristics to be used
instead of procedures that are provably optimal. In addition, many of the heuristics in
current use do not guarantee a specific level of protection. For such heuristics, one of the
disclosure auditing techniques described in Section 4 should always be applied before a
table is made public.

Many of the published heuristic methods for cell suppression (Cox, 1980, 1995,
Kelly, et al., 1992) rely on the simple structure of two-dimensional tables. Algebraic



relationships between cells in two-dimensional tables are effectively captured in network
flow models, which typically have fast solution routines. Unfortunately, once the
transition is made to three- and higher-dimensional tables, the network representation
breaks down, voiding many useful theoretical results and algorithms. The exact methods
of Fischetti and Salazar Gonzdlez, (2000), however, do not depend on network structure,
and so can find optimal suppression patterns for arbitrary n-dimensional tables, at least
those of moderate size. When the size of the tables is such that optimal suppressions
cannot be computed, meta-heuristic approaches such as tabu search (Glover and Laguna,
1997) provide a way of looking for "good" solutions within a reasonable time.
Essentially, tabu search is a neighborhood search method with a built-in mechanism to
prevent the algorithm from becoming stuck at local optima. Duncan et al. (2001) apply
the tabu search approach in conjunction with the fast disclosure auditing approach of
Chowdhury, et al. (1999) to solve cell suppression problems in three-dimensional tables.
The quality of the tabu search solutions was comparable to the quality of the IP solutions.

Unfortunately, there is only a limited set of circumstances where the special
structure of the tables to be protected permits an efficient solution algorithm. For
example, see Duncan, et al. (2001), and the decomposition and reducibility results of
Dobra and Fienberg (2000a), which characterize an important class of linked tables that
give rise to these simplifications. In the absence of these special structures, however,
large cell suppression problems (especially ones involving large tables and substantial
numbers of primary suppressions) are computationally difficult.

Duncan and Fienberg (1999) and Fienberg (1997, 2000) have criticized cell
suppression because it causes unnecessary loss of statistical information. In particular,
they note that complementary suppressions destroy data that are not themselves sensitive,
and the resulting tables greatly reduce the ability of the user to make correct inferences
about relationships in the original unsuppressed table. Thus cell suppression achieves
disclosure limitation at the expense of elimination of some data.

Rounding

Rather than simply suppress a sensitive cell, one might disguise its true value by
modifying it in a principled way. One way to do this is to choose a positive integer b and
round table entries to an integer multiple of it. This is usually done for all cells in the
table. Rounding has the general advantage of providing at least a roughly correct value for
every cell (assuming b is small), and thereby helps the data user to avoid badly incorrect
inferences about cell values. Cell suppression, on the other hand, does open the
possibility that the user may draw false inferences about the suppressed cell values
(Duncan and Fienberg 1999). Less positively, with all cell values rounded, many more
would typically be changed from their true values than would be the case with cell
suppression. Also, when multiple, overlapping tables are rounded individually, a
common cell may end up being rounded to two different values. ‘



Rounding can be done with more or less sophistication. Fellegi (1972, 1975)
introduced the notion of controlled rounding which insists that the rounded table is
additive, meaning that rows, columns, etc. sum to the their respective (rounded)
marginals (see also Cox and Ernst 1982). Zero-restricted controlled rounding (Kelly,
Golden and Assad 1990) further requires that cell values in the unmodified table that are
already multiples of b (in particular, zeros) remain so. Finally, unbiased controlled
rounding (Causey, Cox and Ernst 1985, Cox 1987) specifies that the expected value of a
rounded cell value equals its unrounded value. The requirements imposed by these
different rounding methods are all related to attempts to improve the data utility for users
while still minimizing disclosure risk in some formal sense.

Simple and efficient polynomial-time algorithms have been devised for all of
these flavors of rounding, at least for two-dimensional tables. Polynomial-time
algorithms have the property that the worst-case solutions time grows only as a
polynomial function of the size of the problem (here, the number of cells to be rounded).
More difficult computational problems are classified as NP-hard, and for such problems
solution times may increase exponentially with size. The controlled rounding problem for
three dimensions has been shown to be NP-hard (Kelly, Assad and Golden, 1990), though
the heuristic given in Kelly, Golden and Assad (1990) has proven to be effective when
unbiased solutions are not required. Fischetti and Salazar-Gonzalez (1998) provide
advice for implementing controlled rounding approaches empirically in three and more
dimensions. The method of Dobra (2001) for bounding cell values implicitly or explicitly
generates feasible tables and thus has the potential of identifying controlled rounding
solutions or near solutions in higher dimensions.

If natural assumptions are made about the distribution of cell values in a table
(i.e., that it is nearly uniform across local intervals of length b), it is often easy to specify
probabilities for each possible cell value in a rounded table. In many cases, even if the
value of the rounding base b is not explicitly announced, it can be easily deduced from
the published table itself. '

Data Swapping, Confidentiality Edit, and Simulated Tables

Dalenius and Reiss (1978) first proposed a method for swapping observations “at
random” while preserving marginal totals. In Dalenius and Reiss (1982) they illustrate the
implementation of a kth-order swap in which all k-dimensional margins of a p-
dimensional table are preserved. This is similar to the notion of randomly selecting a
replacement table among a restricted set of alternative tables with the same k-dimensional
marginal totals. An obvious issue is how to choose k. Dalenius and Reiss illustrate their
proposal with k=2. There is also the issue about what fraction of records to swap. Without
going into details, Dalenius and Reiss were unable to come up with a general method for
accomplishing data swapping. Nor were they able to assess the increase in variability
associated with the added randomness.

10



The U.S. Census Bureau used a variant of data swapping in the context of the
Confidentiality Edit as part of the 1990 decennial census. They wanted to interchange a
subset of households in different census blocks who shared a number of characteristics,
say k, in common. This has the result of holding the corresponding k-dimensional totals
for those blocks fixed, as well as the (p-k)-dimensional margin adding across blocks and
across the variables held constant under swapping. The primary method they focused on
matched records on k=6 variables. For further details, see Navarro et al (1988), Griffin ez
al (1989), and Fienberg, Steele, and Makov (1996). Again we have a statistical issue
about the choice of k, as well as the issue about the fraction of records to be swapped.

To illustrate this alternative notion of data swapping pictorially, we consider a 3x2x2
contingency table with entries {n;} as follows

N N2 M. N2 N2, i)
N2y 221 741 212 I555) 2.2
N3 32 34 1312 1322 N342
(411 M7 N, M2 .22 N2

We want to track what happens when we swap the values for a randomly selected pair of
individuals, one in layer 1 and the other in layer 2. Suppose that the individual selected
from layer 1 is in the (1,2,1) cell and that we are swapping his/her characteristics with a
randomly selected individual in the (3,1,2) cell. The result is as follows:

0 -1 n,-1 n12 N2 +1 Ny +1
1) N22) 241 212 222 242
35+ 1 3 N, +1 n315-1 N329 N34-1
n,+1 N3-1 Myt n,io-1 N0+ 1 Y

Note that the two-dimensional total for the first two variables (adding over layers) is
unchanged, as is the one-dimensional total for the third variable. This process is now
repeated for pairs of randomly selected units in the two layers, thus producing a
confidentiality edit that continues to preserve the same marginal totals. One variant of
this, used by the Census Bureau for the 2000 census, is to select swapping “partners” by
targeting certain unique records. Moore (1996) describes additional applications of
variants on data swapping and contrasts them with the simple matrix masking technique
of adding noise.

We note that data swapping is, like cell suppression, a method for altering cell counts in a
multi-dimensional cross-classification while maintaining fixed marginal totals. This
observation led Fienberg, Makov, and Steele (1996, 1998) to propose a more elaborate
version of repeated data swapping which in essence allows for a series of moves from one
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table to another subject to marginal constraints. Their method utilizes the tool of Grobner
bases described in Section 4 below, and in essence replaces the original table by a random
draw from the exact distribution under the log-linear model whose minimal sufficient
statistics correspond to the released marginals, subject to those marginals being fixed.
Thus probabilistic simulation yields a replacement table with the same marginal totals as
the original table. Actually, Fienberg, Makov, and Steele (1998) go further in proposing
the retention of the simulated table only if it is consistent with some more complex log-
linear model.

The data-swap transformation described above represents one of a subclass of
possible “moves” in a Markov chain algorithm proposed by Diaconis and Sturmfels
(1998). Such moves alone, however, do not always suffice to generate the exact
distribution. Even in the cases where they do suffice, however, one needs to run the
Markov chain a very long time in order to simulate the exact distribution as explored by
Fienberg, Makov, and Steele (1998). Making a small proportion of swaps, as is done in
practice, is not sufficient to rest the methodology on a firm statistical foundation that a
user can invoke in order to assess the added uncertainty that results from the alteration of
the data.

An extremely important feature of this simulation methodology is that information on
the variability which it introduces into the data is directly accessible to the user, since
anyone can begin with the reported table and information about the margins that are held
fixed, and then run the Diaconis-Sturmfels Markov chain algorithm to regenerate the full
distribution of all possible tables with those margins. This then allows the user to make
inference about the added variability in a formal modeling context in a form that is
similar to the approach to inference in Gouweleeuw, et al. (1998). As a consequence,
simulation and perturbation methods represent a major improvement from the perspective
of access to data over cell suppression and data swapping.

This approach offers the prospect of simultaneously smoothing the original counts
and providing disclosure limitation protection. But there remain many practical issues
regarding the use and efficacy of such methods for generating disclosure-limited public-
use samples. For example,

¢ How effective are such devices for limiting disclosure, i.e., protecting against

attack by a data snooper?

* What is the data utility (correspondingly, information loss) when we compare

actual data with those released?

* How can they be used when the full cross-classification of interest is very sparse,

consisting largely of Os and 1s?

+ How can we use models to generate the simulated data when the users have a

multiplicity of models and even classes of models that they would like to apply to the

released data?

» What if arelease involves thousands of tables with overlapping cells?

12



We discuss some of the implications of using Markov perturbations in more detail
below.

Markov Perturbation

The method of simulating from the exact distribution of a table given a set of
marginals is intimately related to the notion of Markov perturbation described by Duncan
and Fienberg (1999). Thinking of cell values as counts of entities classified in a
particular category, Markov perturbation deliberately misclassifies by selectively moving
entities from one classification to another. This is done in such a way that marginal totals
are preserved, and the expected values of all cells are unchanged. In employing Markov
perturbation, the statistical agency (1) lowers disclosure risk by increasing the uncertainty
of a data snooper about the true cell value, and (2) gives the legitimate data user a value
for analysis, albeit one that is subject to misclassification error—an error process that any
good data analyst of categorical data must contend with anyway.

The procedure of Markov perturbation works as follows, described for a two-
dimensional table. An elementary data square is chosen as a 2x2 submatrix of the table.
Then each entity (i.e., each individual contributor to the counts in the four cells in the
submatrix) moves to an adjacent cell (up or down, left or right) according to a Markov
transition matrix chosen to be stationary. The transition matrix is chosen so that row
sums and column sums are unchanged. To protect the entire table, the process is repeated
with a random sequence of the possible elementary data squares.

In this section we have surveyed the principle techniques used for disclosure
limitation. Since some of these techniques may in practice rely on heuristic algorithms to
provide the desired level of protection, the next section complements this one by
discussing methods that test whether this protection has been realized.

4. Disclosure Auditing

Disclosure auditing is a process of examining a proposed data product to assess its
vulnerability to attack by a data snooper. As part of a sensible procedure for evaluating
security implementations, protectors should play the role of those who might attempt to
compromise the security. They should search for weak points. Prudently, they should
assume that the attacker has adequate resources to similarly identify and exploit such
weak points. In this section we present methods for disclosure audit that have been
available for some time, as well as new methods. Special attention is given to higher-
dimensional tables.

A data disseminator might wish to publish an entire, original, table. This table
may well have cells, that we call sensitive cells, which are deemed to pose unacceptable
disclosure risks. It is common to declare a cell in a population table whose value is small,
say 1 or 2, as posing an unacceptable disclosure risk and hence sensitive. In that case, the
table should not be disseminated in its original form. Instead, it should first be
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transformed through some disclosure limitation procedure, such as one of the techniques
described in Section 3. If the technique used cannot inherently guarantee the requisite
level of protection, it is necessary to audit the proposed release, that is, apply a procedure
to test the level of protection actually afforded. For example, cell suppression patterns are
often determined through heuristic methods that don’t provide such guarantees.

Alternatively, for reasons of brevity or protection, the disseminator might wish to
publish tables—say one or more of the two-dimensional marginal tables IJ+, I+K or +JK
in our running example—that are derived from the original higher-dimensional table. If
the goal is to protect values in the original table, or values in an unpublished margin,
auditing is again necessary to ensure confidentiality protection.

Before an audit can proceed, it is necessary for the disseminator to decide what
constitutes a sensitive cell. Sufficient protection exists for a sensitive cell provided that in
the released data product the true value of this cell entry is sufficiently ambiguous to a
data snooper. A common and useful scheme is to define a protection range and demand
that protection be such that any value in the range is potentially the correct cell value.

If such a protection range is given for a cell, then an audit verifies that there
indeed exist realizations of the table that agree with the published data but have the
sensitive cell with a value anywhere in the protection range. For example, Table 1 might
be protected by suppressing all cells with values 1 or 2, (and also additional cells if

necessary—see Section 4) so that for each sensitive cell, any value in the range [0, 4] is
feasible.

Linear and Integer Programming

To verify a protection range for a sensitive cell of a table with published marginal
totals, the obvious technique is linear programming (LP) or integer linear programming
(IP) (Zayatz 1993). The published cells are used to form linear constraints on the possible
values of the cell. Then the sensitive cell value is both minimized, to obtain the lower
bound on the cell value, and maximized, to obtain the upper bound on the cell value. The
lower and upper bounds then provide the protection range for that cell. In the case of
multiple sensitive cells, the procedure is repeated for each. Since the constraints implied
by the published cell values apply to every sensitive cell, the max/min pair for one cell
can be calculated independently of that for any other cell.

Several difficulties arise in the use of standard linear programming (LP), and
consequently there is considerable interest in finding alternative techniques. This is
especially true for implementing procedures on large tables, which can require
considerable computational effort, depending on the number of sensitive cells needing
protection. For the example given above, 11 cells are sensitive, so an equal number of
maxima and minima must be calculated, and this is computationally feasible. For much
larger tables, and many more suppressions, the task can become daunting. As an
example, the Bureau of Labor Statistics ES-202 Employment and Wages quarterly
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publication has, for some county/state aggregations, nearly 40,000 cells, more than half of
them suppressed. A “brute force” LP approach makes little sense in such a case.

Fortunately, it is often possible to decompose the overall audit problem into
smaller pieces. For example, large tables often have one or more attributes arranged
hierarchically (e.g., counties within a state, or 4-digit SIC codes “rolling up” to 3-digit
codes). In such cases, auditing can be done at each level separately—if due care is given
to the fact that margins at one level correspond to internal table entries at the next higher
level. With such a decomposition, the number of LP problems to be solved increases, but
the size of each problem (as measured by the number of variables plus constraints)
decreases. Because the average time requirements of most linear programming
algorithms increase roughly as the cube of the problem size, a large net savings in total
computation can accrue. As an illustration, a two-level hierarchical table with a total of 8
rows and 8 columns contains 64 internal cells and 16 marginal constraints. If this table
can be decomposed hierarchically into four 4x4 tables, then each of the four has 16
internal entries and 8 marginal constraints. Auditing the original table would consume
computing resources proportional to (64 + 16)°, while the four smaller ones would need
resources proportional to 4x(16 + 8)*, about a 90 percent savings.

Another way in which LP-based auditing procedures can be improved takes
advantage of the linked structure of the table. In the process of maximizing, say, one cell
value, a simplex-based LP algorithm will incrementally increase the current value for that
cell, subject to the imposed constraints. At each step, the value of every other cell is
recorded in a data structure (the “simplex tableau”) that can be easily examined to see if
any cell (other than the one that is currently being maximized) is at its guaranteed
maximum or minimum. Detecting these occurrences is a simple matter, and it obviates
the need to perform a separate optimization on that cell. Empirically, this can speed up
the auditing process considerably.

A second potential difficulty with linear programming lies in the nature of some
auditing problems. For tables of dimension greater than two, there is no general
guarantee that the optima produced by linear programming will be integers. Two-
dimensional tables can be represented as a network, with rows and columns as nodes, and
internal cells as arcs. Because of a special property of networks, optimal solutions to
max/min problems are integer, provided the known values (unsuppressed cells, row and
column sums) are integer. Unfortunately, three- and higher-dimensional tables can no
longer be represented as a network, so the integrality property of optima is lost (Roehrig
1999). For example, using Table 1 as the base table, suppose that we wish to publish the
three two-dimensional margins IJ+, I+K, and +JK. If cells in the underlying three-
dimensional table are considered sensitive, the LP approach to finding inferable bounds
will result in an upper bound of 13.5 for cell (1, 3, 3). This is clearly unobtainable in any
table of counts, so it cannot be right. Thus auditing techniques that give sharp integer
bounds are needed. Integer programming (IP) is the obvious solution, but in general this
is extraordinarily more difficult computationally than LP, which permits continuous
solutions. In many circumstances, LPs giving non-integer optima can be augmented with
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additional, legitimate constraints that force integrality (“Gomory cuts,” for example
(Schrijver 1986)). A general theory has yet to be developed, but Roehrig (2001b) has
obtained results for special cases. Alternative approaches such as meta-heuristic search
(e.g., Tabu Search described by Glover and Laguna, 1997) that have performed well on
difficult combinatorial optimization problems can also be applied to these difficult
auditing problems. Duncan, et al. (2001) report on the application of Tabu search to a
related disclosure limitation problem.

Alternative Approaches

Because of the difficulties outlined above, other approaches to auditing disclosure
in tables of counts have been pursued. We describe three of them here, but this is an
active area of research, so the list is growing. The first alternative derives from
generalizations of the well known Fréchet and Bonferroni bounds on joint probability
distributions given lower-dimensional marginal distributions. It applies to certain
situations in which lower-dimensional marginal totals (themselves tables) are to be
published, and bounds are needed on entries in the original higher-dimensional table.
Dobra and Fienberg (2000) show that when the released marginals form a decomposable
graph, one can combine information from the subgraphs to realize sharp bounds for
entries in the original table. Further, the same structure can be used to break the problem
of computing bounds for a large table into sets of much smaller ones corresponding to
irreducible components.

In our three-dimensional example, suppose that the margins IJ+ and +JK are published,
but we wish to protect the underlying table IJK. The published marginals directly
associate [ and J, and J and K, but the interaction between the dimensions I and K are
indirect. This can be visualized by drawing a graph with nodes representing the
dimensions and arcs that indicate which nodes are joined by the published marginal
tables. In this example, the graph is especially simple and is shown in Figure 2.

O—0O—0O

Figure 2. Graph Representing Released Marginal Tables.

Node J is a “separator” of nodes / and K. Dobra and Fienberg show that if a
separator (which may be larger than a single node, depending on the released margins) is
a clique, then a variant of the normal Fréchet bounds can be used to calculate bounds for
entries in the base table (IJK in this case). These results are powerful because the bounds
can essentially be “read off” from the published tables. Dobra and Fienberg give closed-
form expressions for these bounds, so that no iterative mechanism is required.

Chowdhury, et al. (1999) developed an equivalent network-based bounding scheme for
another three-dimensional case. Suppose once again that the marginals IJ+ and +JK from
Table 1 are to be released, but now the third two-dimensional marginal I+K is considered
sensitive. Here are the three two-dimensional marginal tables:
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[J+ +JK I+K

3 87 68 72 5 2 68 74 75 81
5 8 80 4 10 10 85 3 85 9
3 4 7 107 69 81 61 8 61 52
64 6 56 7] 7 132 51 6 4 123

Bounds on /+K can be quickly determined by either the Dobra and Fienberg or
Chowdhury et al. procedures, and compared with the desired bounds from the
confidentiality intervals for each sensitive cell. For the marginal table I+K, we show
below upper bounds of the desired protection range determined as the actual cell value
plus 20 percent and the upper bounds of the computed protection range. Note that
disclosures occur when the computed upper bound is below the desired upper bound;
there are three disclosures—at cells (1,1), (2,2) and (3,3).

Desired Upper Bounds Computed Upper Bounds
89 90 98 88 152 200
4 102 11 86 94 78
10 74 63 21 120 65
8 5 148 74 71 133

The Dobra-Fienberg approach for the decomposable case has some natural
extensions to tables that correspond to reducible graphs and this class of extensions can
reduce substantially the computational demands of the calculation of bounds in large
numbers of dimensions, e.g., see Dobra and Fienberg (2001). A third and closely related
bounding technique, suggested in Fienberg (1999), elaborated upon by Dobra (2001), and
illustrated in Dobra and Fienberg (2001), can also be thought of as a generalization of
Buzzigoli and Giusti's (1999) “shuttle” algorithm. In its basic form, the Dobra procedure
starts with loose upper and lower bounds for each cell, then iteratively narrows the
bounds by taking advantage of cell relationships inherent in the tabular structure. The
resulting bounds are sharp for a well-characterized group of problems, but for the general
case the procedure uses a variant of the integer programming technique of implicit
enumeration to find a table realization that provably achieves the sharpest bounds. The
procedure’s especially attractive feature is that it is relatively efficient in computing sharp
bounds for the special cases such as when the marginals can be used to describe a
decomposable graph, or when the corresponding graph has a reducible structure. The
general method also works in the presence of “structural zeros” and so may be of use in
connection with other disclosure limitation approaches such as identifying secondary
Suppressions.

Using either LP or the methods described above to find bounds on cell entries
specifies extremal values; the process in and of itself does not give the likelihood for any
individual value in the range. To fit into our disclosure risk framework, we need a way to
specify or estimate the probability associated with each feasible value. This is possible, at
least in principle. Diaconis and Sturmfels (1998) show how one can systematically
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sample from the set of all tables that agree with the published marginal values. They
provide a list of "moves”—changes to the internal cell entries—that leave the published
marginal values unchanged. Such moves (often called “Grobner basis” moves because of
the method used to generate them) can be described as a set of cell increments and
decrements; one example for a 3x3x3 table is the following.

0 0 0 + 0 - - 0 +
0 - + - + 0 + 0 -
0 + 0 + 0 0 0

Applying a move from this list to a feasible table (that is, one that agrees with the
published values) results in a new feasible table. The list is generated in such a way that
the set of all feasible tables can be traversed uniformly if one chooses moves randomly
with equal probability from the list. Thus an estimate of the probability of a particular cell
value can be obtained by moving randomly through the set of feasible tables and tallying
the proportion of time that one lands on a table having that cell value. Fienberg, Makov,
and Steele (1998) apply this work in the context of disclosure limitation problems and
link it to Markov perturbations. Fienberg, Makov, Meyer, and Steele (2000) present an
expository treatment of the theory in the context of contingency tables, making explicit
links to the theory of log-linear models and they provide heuristic descriptions of the role
of Grébner bases (the moves described above) when the MCMC procedure approaches
the extremal values.

Diaconis and Sturmfels applied this idea to sampling from the space of k-way
tables when all (k-1)-way margins are known, and Fienberg, Makov, Meyer, and Steele
(2000) make clear how it generalizes to complete k-way tables with any set of marginals
fixed, but the idea easily generalizes to other situations, in particular to cell suppression.
Cell suppression merely adds some constraints and removes some possible moves, so the
basic plan of constructing the Grobner basis to find legitimate moves still applies.

While elegant in principle, the Grobner basis idea is limited in practice at present.
The difficulty is computational. Currently, the best general-purpose computer programs
take many hours to find the Grébner basis moves for a 3x3x3 table when the three 2-way
margins are given. Specialized programs can solve the same problem in a fraction of a
second, but still take months to solve the analogous 5x4x3 problem (Roehrig 2001a).
Larger problems are, at least in general, simply out of the question. Recent work (Dobra,
2000), however, shows how to calculate a basis quickly for the class of auditing problems
whose released marginals form a decomposable graph. His construction extends to
related problems and allows for the combination of Grobner bases for component
subtables in regular graphs.

To apply our framework for disclosure risk, the statistical agency might assume

that the data snooper holds a particular probability distribution for the values within the
protection range. A reasonable procedure might be to assume a unimodal distribution
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spanning the interval, with its peak at the center and tails of decreasing probability
extending to the endpoints. This is reasonable because although it is possible to have
multiple feasible tables achieving the interval endpoint values, interior values allow more
freedom for other cells to change, increasing the number of feasible tables possible. Thus
one would not expect a distribution uniform over the protection range.

Other Disclosure Limitation Methods

Thus far we have discussed auditing tables that have either not been modified, or
have been modified using cell suppression. In both cases, the published cells (i.e., the
unsuppressed cells) imply constraints that serve to bound the sensitive cells. Some other
forms of disclosure limitation may also be audited using LPs. The various forms of
rounding (Section 3) all result in cells whose true values are unknown (thus affording
protection), yet are known to lie in a well-defined interval. Thus, each published cell
value gives rise to a pair of inequality constraints. Just as before, LP can find extreme
values for a cell. Of course, the agency only needs to invoke LP to find bounds on
quantities not in the rounded table; each rounded cell has obvious bounds. Nonetheless, a
data disseminator may still want to know how bounds on sensitive cells in other, linked
tables are influenced by the release of the rounded tables. In our example, the tables IJ+
and +J/K may be released in rounded form, but the disseminator might wish to know the
resulting bounds for the table /+K.

Tables that have been protected by perturbation, either by the addition of random
noise, data swapping, or Markov perturbation, rely on the theoretical properties of the
method. As an example of this we now give an analysis of the protection provided by
Markov perturbation.

To use the disclosure risk formula given in Section 2, we need a technique for
determining the probabilities associated with possible cell values. We begin that process
here, by showing the steps necessary to model a data snooper and incorporate that model
into the analysis. A procedure along the same lines can be used to find a snooper’s beliefs
under other disclosure limitation schemes like cell suppression and rounding.

Consider the following elementary data square, taken as part of a larger two-
dimensional table.

1 14 15
17 83 100
18 97 115

This square is altered using Markov perturbation, and the resulting (published)
square is the snooper's starting point. (The full Markov perturbation process will, as
described above, alter cells within this square as other, Intersecting, squares are perturbed.
We treat the simple single-square case here, and defer the full analysis for later research.)
The top-left cell has the true value w=1. Modifications to the square that leave the

19



margins fixed and the internal entries non-negative are restricted; the masked value M for
the top-left cell can be no larger than 15 and no smaller than 0. We can think of this
square as being composed of a number of entities (0) that must remain there because of
the marginal and non-negativity restrictions, and entities currently classified there but free
to move out (1). Similarly, the lower-left cell can be thought of as consisting of
unmoving entities (3) and movable ones (14). During the perturbation, some proportion
of the top-left cell's movable entities move out, and some of the lower-left cell's movable
entities move in. Under moves that are independent and identically distributed for a
particular cell, the resulting number entities in the top-left cell is a random variable that
can be expressed as a constant plus the sum of two independent binomial random
variables. It has the form:

M =c+ Binom(1,1-0) + Binom(14,:-0)

where r = 1/18 and is included to preserve stationarity (see Duncan and Fienberg, 1999,
for the details). The parameter 8 € [0, min((1-r)/r, 1)] determines the extent of disclosure
limitation: it controls the probability of movement by the entities. If 6 s zero, the table
remains unchanged, while larger values provide increasing protection.

Suppose that after perturbation, the published data square is the following:

3 12 15
15 85 100
18 97 115

A data snooper’s view of the protected top-left cell is the following:

I can think of the published cell value M as what I've "observed", and the
true “state of nature” m as being the unperturbed value. I want to construct
the probabilities of the various true states of nature, given the evidence
provided me by the published table. I know enough to construct
probabilities for the observed value given the various possible true states
of nature. But this is the wrong way around. Yet, with my prior
distribution on the possible cell values, I can use Bayes' theorem to
"invert" the conditional probabilities.

Let's see how this can be done.

Because the Markov perturbation process leaves margins fixed, it is easy to
determine the range of possible true values o for the top-left cell (the possible states of
nature). For each of these, we first construct P(Observed | State of Nature). For example,
one possible state of nature is the value o=1 (which happens to be the true state, although
unknown to the snooper). There are a number of ways to move from O (the count of
unmovable entities) to 3 (the published value), each a sum adding to 3 of the two kinds of
movement described above. Not all pairs are permissible, however, because the (1,1) cell
can “give up” only one entity. So the feasible set of “stayer-mover” pairs is A = {(0,3),
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(1,2)}. We write 3 =X + Y, where X ~ Binom(1, 1 - ) and Y ~ Binom(14, r/(1-r)6). Then

the likelihood function value at w=1 is given by
P(Observed M = 3| State of Nature ® =1) = ZP(X =x)P(Y = y)
A

1 (14 Y ro N
— - 1_ X 1—,\. - — .
3o (S o) 50

The general form of the likelihood function is given by
L(w)=P(Observed M | State of Nature @)=

w | 13— r Y r 13-0-y
e W = =

whereA:{(x,y):x+y:M;OSxSa);OSySlS—w} and r=£.

To calculate this likelihood value the data snooper must know, or assume, the value of 6.

This would be the case if the agency publicly released the value of this disclosure
limitation parameter. If the agency chose not to release the value of 0, then the data
snooper would be uncertain about the appropriate likelihood value. The effect of this
would be to raise the data snooper’s perceived chances of error and hence lower the

disclosure risk. Hence, calculations based on assuming the data snooper knows the value

of O can be taken to provide upper bounds on the actual disclosure risk. Similarly, without

knowing for sure the value of  the data user also has increased uncertainty. Based on the

value of 0, the value of r can be computed by

the snooper because of the conditioning assumption that the state of nature has value
w, so r=/18. Calculating these conditional probabilities for the possible states of

nature w and based on an observed value of M=3, we get Table 3. These entries can be

interpreted as the likelihood values for each of the given 0 values.

0 o 0]1 2 3 4 5 6 7 8 9 |10 [11]12]13]14]15
0.05 0[.0007 (0683 |7746 |[1482 10178 [0017 |.001 |.0000(0 |O 0 (0 [0 ]0]0
0.1 0 [0026 | 1151 |[6193 [2235 |515 .0096 0016 [.0002 10 |0 00 (0 |0]0
0.2 010088 | 1655 4382 |2708 |1121 |380 .0114 10032 |008.002|0 |0 |0 |00

Table 3. Likelihood Values

In keeping with our overall plan, we now need to specify the data snooper's prior

beliefs for the various states of nature.
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In the simplest case, we might assume that the data snooper holds a uniform
distribution over . The posterior probabilities P(State of Nature = | Observed M = 3)
are just those in Table 3; the prior distribution is uninformative. Suppose, instead, that
the data snooper's prior distribution on o were the following, anticipating a true state of
nature close to 1 (note that the data snooper has prior probability 0 that o = 0, because
true zeroes would be unperturbed).

0 |1 2 3 4 5 6 |7 8 9 10 |11 |12 |13 (14 |15
O 13 |3 |15 |1 |05 |04 [03 [02 [01 [0 [0 P o b b

Table 4. Data Snooper’s Prior Distribution on the State of Nature o

Then the posterior probabilities for w are as in Table 5.

0 0 |1 [2 |3 [4 5 6 7 18 |9 |10 |11 |12 |13 |14 |15
0.05 10 1001].146/.751.096 [006 |0 0 |10 [0 |O 0 10 {0 [0]0
0.1 [0 1005259579139 [016 [002 {0 |0 [0 |O 0 J10 [0 (0]0
0.2 |0 1015403381157 |.032 009 [002|0 |0 [0 0O [0 (0 |0 |0

Table 5. Posterior Probabilities for Prior Distribution Given in Table 4.

A tractable family of distributions for basing the data snooper’s prior distribution
for o is the beta-binomial family, conditioned on the known upper and lower bounds for
n. A special case of the beta-binomial distribution is the discrete uniform distribution
discussed above.

The general picture is this. Different choices of the disclosure limitation parameter
6 produce differing amounts of “blurring” of the probabilities of the true state of nature,
and so provide varying degrees of disclosure risk. At the same time, these different
values of 6 cause different amounts of data distortion, and consequently affect data
utility. In Section 5 we will illustrate some of these tradeoffs.

5. Evaluation and Analysis

We are now in a position to show how two disclosure limitation methods can be
compared using the R-U confidentiality map described initially in Section 2. For ease of
exposition, we consider the simple 2x2 table with marginal totals of Section 3, and
compare cell suppression with Markov perturbation. The technique is extensible to larger
tables and different limitation methods.

Since our 2x2 table contains a 1 in cell (1,1), we assume that this cell is a primary
suppression. This decision necessitates complementary suppressions, which for this
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simple case must obviously include the remaining three interior cell entries. Thus under
cell suppression, all that can be published are the marginal totals. For Markov
perturbation, we assume that the published table is the one discussed in Section 4 above.

To trade off disclosure risk and data utility, we require specific measures. To
assess disclosure risk, for this illustration we use the reciprocal of entropy. Specifically,
we take R =1/ (-Z(p, log p,,)), where p,, is the snooper’s probability that the (1,1) cell
value is w. This measure assumes that disclosure risk is reduced as the snooper’s
probability function over the possible true cell values m spreads out. To measure data
utility, we use mean squared precision, specifically the reciprocal of the mean squared
error based on the probability distribution of @ available to the data user and the fact that
the true value of wis 1.

In the case of Markov perturbation, we assume both the data user and the snooper
are aware of the form of disclosure limitation that has been applied to the table, and for
convenience we assume that both parties have the same prior distributions on the
disguised value @ in cell (1,1). For cell suppression, we measure both disclosure risk and
data utility according to the bounds that can be computed for the missing (1,1) cell. As
noted in the previous section, the value o is easily seen to be in the range [0, 15]. For
simplicity of illustration, let us suppose that both the data snooper and the data user are
interested in the value of w. In further developments we will take the data snooper to be
primarily interested in whether ® can be taken to be 1, and the data user to be interested
in inference about the probability of falling in the (1, 1)-cell according to a probability
model.

With these measures, we find the following data utilities and disclosure risks, also
depicted in Figure 3.

Data Disclosure
Utility | Risk
Markov Perturbation
0 =0.05 240 1.263
0=0.1 232 0.969
0=0.2 216 0.713
Cell suppression 0.159 0.255
Rounding 0.346 0.919
Original Data oo 2

Included in the table and graph are the results of an identical risk/utility analysis of our
simple 2x2 table after rounding to base three. If we assume that the “No Data” case (as
shown in Figure 1) amounts to publishing just the marginal totals, the risk and utility
values coincide with those for cell suppression. On the other hand, if “No Data” means
that not even the margins are published, risk and utility are both zero. The relative
performance of the various disclosure limitation methods examined in this simple
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example should not be taken as suggesting that one method is universally superior to
another. These and other methods need to be examined in the context of their actual use,
with actual data products.

R-U Confidentiality Map

1.4 : : -
12 | iy omee0Es
‘ ‘ ~ Rounding

mo= 0.1
0.8 -

0.6

0.4 1 ’
0.2 B Suppression

mo-

Disclosure Risk

0 0.1 0.2 0.3 0.4
Data Utility

Figure 3. R-U Confidentiality Map for Suppression and Markov Perturbation

With each data product there is a disclosure threshold, above which the disclosure
risk 1s too great. As Figure 2 illustrates, for different risk thresholds, different disclosure
limitation methods, or their parameters, may be preferred. In this example, by varying the
Markov exchange parameter 0 it is possible to move from no protection (6 = 0) to
protection essentially equivalent to that provided by cell suppression, yet with higher data
utility. This example is extreme, as it only analyzes an elementary 2x2 table.
Nonetheless, it is clear that under reasonable assumptions, very different forms of
disclosure limitation can be successfully compared.

There are several ways the R-U confidentiality map might be used within an
organization. First, it may be the case that the organization is unclear on the actual level
of disclosure risk that has been borne in the past, and therefore unsure how to proceed in
the future. Generating R-U maps for previous data releases would enable it to quantify
the risks taken in the past, and compare such risks among different data products. Such a
program could enable the organization to develop a coherent strategy of dissemination,
one in which comparable (or perhaps justifiably different) risks exist over the various
releases. Knowledge of risk in past releases could be further used as a benchmark for the

risk associated with a new release, especially one using a new disclosure limitation
technique.

Along this same line, a comparison of two competing limitation techniques might
result in an R-U confidentiality map like the one in Figure 4. In this figure, the choice of
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disclosure limitation method depends crucially on the disclosure threshold. As the
threshold is raised above the point of intersection of the two curves, method 1 provides
considerably more utility for a given threshold increase, suggesting new possibilities for
the risk-utility tradeoff. Our central theme, that the R-U confidentiality map allows much
more informed decision making, is especially apparent in this example.

Disclosure Method 2
Risk

Disclosure

M Threshold

Data Utility

Figure 4: A Hypothetical R-U Confidentiality Map

6. Conclusions

Here we summarize our results, provide some perspectives, and indicate areas
where additional research might provide improved disclosure limiting techniques.

Statistical agencies have a variety of disclosure limitation methods available for
use in their efforts to protect the confidentiality of tabular data. A systematic way of
comparing the merits or these methods is through the R-U confidentiality map. An
important further consideration is the computational burden of the procedure.

Perturbation methods are attractive because they have the prospect of providing
users with more data and in a form that allows for proper statistical inferences. We
discussed several related versions in this chapter.

Recent advances in computational algorithms and the new statistical perspectives
that have been brought to bear on disclosure limitation problems suggest that we may
soon be in a position to do a much more thorough job of examining tabular data for
possible disclosures and then applying disclosure limitation methods in such a form as to
give users greater access to data for analysis.

Towards this end, we see the need for further research to identify procedures that
have increased data utility while maintaining low disclosure risk, and more attention to
the development of efficient computational algorithms that scale to the high-dimensional
tabular problems typical of much statistical agency data.
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URLSs Referred to in the Paper

American FactFinder: http://factfinder.census.gov/servlet/BasicFactsServlet

Office of National Statistics (the UK Government Site): http://www .statistics.gov.uk/

Statistics Netherlands: http://www.cbs.nl/en/figures/kevfigures/index.htm

References

Adam, N.R. and Wortmann, J.C. (1989). Security-control methods for statistical
databases: A comparative study. ACM Computing Surveys 21 515-556.

Bethlehem, J.G., Keller, W.J., and Pannekoek, J. (1990) Disclosure control of microdata.
Journal of the American Statistical Association 85 38-45.

Buzzigoli, L. and Giusti, A. (1999) An algorithm to calculate the lower and upper bounds
of the elements of an array given it marginals. In Statistical Data Protection (SDP'98)
Proceedings, Eurostat, Luxembourg, 131-147.

Carvalho, F. de, Dellaert, N. and Osorio, M. de Sanches (1994) Statistical disclosure in

two-dimensional tables: General tables. Journal of the American Statistical Association
89 1547-1557.

Causey, B., Cox, L. and Ernst, L. (1985) Applications of transportation theory to
statistical problems. Journal of the American Statistical Association 80 903-909.

Chen, G. and Keller-McNulty, S. (1998) Estimation of identification disclosure risk in
microdata. Journal of Official Statistics 14 79-95.

Chowdhury, S. D., Duncan, G. T., Krishnan, R., Roehrig, S. F., and Mukherjee, S. (1999)
Disclosure detection in multivariate categorical databases: Auditing confidentiality

protection through two new matrix operators. Management Science 45 1710-1723.

Cox, L. H. (1980) Suppression methodology and statistical disclosure control. Journal of
the American Statistical Association 75 377-385.

Cox, L. H. (1981) Linear sensitivity measures and statistical disclosure control. Journal
of Statistical Planning and Inference 5 153-164.

Cox, L. H. (1987) A constructive procedure for unbiased controlled rounding. Journal of
the American Statistical Association 82 38-45.

26



Cox, L. H. (1995) Network models for complementary cell suppression. Journal of the
American Statistical Association 90 1453-1462.

Cox, L.H. (1999) On properties of multi-dimensional statistical tables. Unpublished
manuscript.

Cox, L.H. (2002) Disclosure Risk for Tabular Economic Data. Chapter 3.3 of this

volume.

Dalenius, T. and Reiss, S.P. (1978). Data-swapping: A technique for disclosure control
(extended abstract). Proceedings of the Section on Survey Research Methods. American
Statistical Association, 191-194.

Dalenius, T. and Reiss, S.P. (1982). Data-swapping: A technique for disclosure control.
Journal of Statistical Planning and Inference 6 73-85.

De Vries, R. E. (1993) Disclosure control of tabular data using subtables. Report.
Statistics Netherlands, Voorburg.

De Waal, A. G. and Pieters, A. J. (1995) ARGUS User's Guide Report, Department of
Statistical Methods, Statistics Netherlands, Voorburg.

De Waal, A. G. and Willenborg, L. C. R. J. (1994) Minimizing the number of local
suppressions in a microdata set. Report. Statistics Netherlands, Voorburg.

De Waal, A.G. and Willenborg, L.C.R.J. (1996). A View on Statistical Disclosure for
Microdata. Survey Methodology 22 95-103.

De Waal, A.G. and Willenborg, L.C.R.J. (1998). Optimal local suppression in
microdata. Journal of Official Statistics 14 421-435.

Diaconis, P. and Sturmfels, B. (1998) Algebraic algorithms for sampling from
conditional distributions. Annals of Statistics 26 1 pp. 363-97.

Dobra, A. (2000). Measuring the disclosure risk for multi-way tables with fixed marginals
corresponding to decomposable log-linear models. Technical Report, Department of
Statistics, Carnegie Mellon University.

Dobra, A. (2001). Computing sharp integer bounds for entries in contingency tables given
a set of fixed marginals. Technical Report, Department of Statistics, Carnegie Mellon
University.

Dobra, A. and Fienberg, S. E. (2000). Bounds for cell entries in contingency tables given

marginal totals and decomposable graphs. Proceedings of the National Academy of
Sciences 97, 11185-11192.

27



Dobra, A. and Fienberg, S. E. (2001). Bounds for cell entries in contingency tables
induced by fixed marginal totals. Paper prepared for 2nd Joint ECE/Eurostat Work
Session on Statistical Data Confidentiality 14 - 16 March 2001, Skopje, Macedonia.

Domingo-Ferrer, Josep (1999) Microdata masking methods. Workshop on Confidentiality
Research. May 3-4. U.S. Census Bureau. Alexandria, VA.

Duarte de Carvalho, F., Dellaert, N. P., de Sanches Osério, M. (1994) Statistical
disclosure in two-dimensional tables: General tables. Journal of the American Statistical
Association 89 1547-1557.

Duncan, G. T. (2001) Confidentiality and statistical disclosure limitation. International
Encyclopedia of the Social and Behavioral Sciences. To appear.

Duncan, G. T. and Fienberg, S. E. (1999) Obtaining information while preserving
privacy: a Markov perturbation method for tabular data. In Statistical Data Protection
(SDP'98) Proceedings, Eurostat, Luxembourg, 351-362.

Duncan, G. T., Jabine, T. B., and de Wolf, V. A. (1993) Private Lives and Public
Policies: Confidentiality and Accessibility of Government Statistics Panel on
Confidentiality and Data Access, Committee on National Statistics, National Academy
Press, Washington, DC.

Duncan, G. T. and Keller-McNulty, S. (2001) Disclosure risk vs. data utility: The R-U
confidentiality map. Technical Report. Statistical Sciences Group. Los Alamos National
Laboratory. Los Alamos, New Mexico.

Duncan, G. T., Krishnan, R., Padman, R., Reuther, P., Roehrig, S. (2001), Exact and
heuristics methods for cell suppression in multi-dimensional linked tables, Operations
Research, Forthcoming.

Duncan, G. T. and Lambert, D. (1986) Disclosure-limited data dissemination (with
discussion) Journal of the American Statistical Association. 81 10-28.

Duncan, G. T. and Lambert, D. (1989) The risk of disclosure of microdata. Journal of
Business and Economic Statistics 7 207-217.

Duncan, G. T. and Pearson, R. (1991) Enhancing access to microdata while protecting
confidentiality: Prospects for the future (with discussion). Statistical Science 6 219-239.

Elliot, M. and Dale, A. (1999) Scenarios of attack, the data intruders' perspective on
statistical disclosure risk. Netherlands Official Statistics 14 6-10.

28



Ernst, L. R. (1989) Further applications of linear programming to sampling problems.
Technical Report Census/SRD/RR-89-05. Statistical Research Division, U.S. Census
Bureau, Washington, D.C.

Federal Committee on Statistical Methodology (1994) Statistical Policy Working Paper
22: Report on Statistical Disclosure Limitation Methodology. Washington, DC: U.S.
Office of Management and Budget.

Fellegi, 1. P. (1972) On the question of statistical confidentiality. Journal of the American
Statistical Association 67 7-18.

Fellegi, L. P. (1975) Controlled random rounding. Survey Methodology 1 123-133.

Fellegi, I.P., and Suntner, A.B. (1969). A theory for record linkage. Journal of the
American Statistical Association 64 1183-1210.

Fienberg, S. E. (1994) Conflicts between the needs for access to statistical information
and demands for confidentiality. Journal of Official Statistics 10 115-132.

Fienberg, S.E., Steele, R.J., and Makov, U.E. (1996) Statistical notions of data disclosure
avoidance and their relationship to traditional statistical methodology: data swapping and
log-linear models. Proceedings of Bureau of the Census 1996 Annual Research
Conference. US Bureau of the Census, Washington, DC, 87-105.

Fienberg, S. E. (1997) Confidentiality and disclosure limitation methodology: challenges
for national statistics and statistical research. Paper commissioned by the Committee on
National Statistics for presentation at its 25™ anniversary meeting.

Fienberg, S. E. (1999) Fréchet and Bonferroni bounds for multi-way tables of counts with
applications to disclosure limitation. In Statistical Data Protection (SDP'98)
Proceedings, Eurostat, Luxembourg, 115?7129.

Fienberg, S. E. (2001) Statistical perspectives on confidentiality and data access in public
health. Sratistics in Medicine 20 (in press).

Fienberg, S.E. and Makov, E.U. (1998) Confidentiality, uniqueness, and disclosure
limitation for categorical data. Journal of Official Statistics 14 385-398.

Fienberg, S. E., Makov, E. U., Meyer, M. M., and Steele, R. J. (2001) Computing exact
distribution for a multi-way contingency table conditional on its marginal totals. In Data

Analysis from Statistical Foundations: Papers in Honor of D.A.S. Fraser, ed. A, Saleh.
Nova Science Publishing.

29



Fienberg, S. E., Makov, U. E. and Steele, R. J. (1998) Disclosure limitation using
perturbation and related methods for categorical data (with discussion). Journal of
Official Statistics 14 485-512.

Fischetti, M. and Salazar-Gonzélez, J. J. (1996) Models and algorithms for the cell
suppression problem. Proceedings of the Third International Seminar on Statistical
Confidentiality. EUROSTAT, Luxembourg, 114-122.

Fischetti, M. and Salazar-Gonzalez, J. J. (1998) Experiments with controlled rounding for
statistical disclosure control in tabular data with linear constraints. Journal of Official
Statistics 14 553-566.

Fischetti, M. and Salazar-Gonzélez, J. J. (1999) Models and solving the cell suppression
problem for linearly constrained tabular data. In Statistical Data Protection (SDP'98)
Proceedings, Eurostat, Luxembourg, 401-409.

Fischetti, M. and Salazar-Gonzélez, J.J (2000), Models and algorithms for optimizing cell
Suppression in tabular data with linear constraints. Journal of the American Statistical
Association 95, 916-928.

Fuller, W. (1993) Masking procedures for microdata disclosure limitation. Journal of
Official Statistics 9 383-406.

Giessing, S. (2002) A practitioner’s guide to non-perturbative disclosure control methods
for tabular data. Chapter 3.1 of this volume.

Glover, F. and Laguna, M. (1997), Tabu Search, Kluwer Academic Publishers, Boston,
MA.

Gouweleeuw, J.M., Kooiman, P., Willenborg, L.C.R.J. and de Wolf , P.-P. (1998) Post
randomisation for statistical disclosure control: Theory and implementation (with
discussion). Journal of Official Statistics 14 463-484.

Griffin, R., Navarro, A., and Flores-Baez, L. (1989) Disclosure avoidance for the 1990

census. Proceedings of the Section on Survey Research, American Statistical Association,
516-521.

Kelly, J.P., Assad, A.A. and Golden, B.L. (1990) The Controlled Rounding Problem:
Relaxations and Complexity Issues. OR Spektrum 12 pp. 129-38.

Kelly, J., Golden, B., and Assad, A. (1990) Controlled rounding of tabular data.
Operations Research 38 760-772.

30



Kelly, J., Golden, B., and Assad, A. (1992) Cell suppression: disclosure protection for
sensitive tabular data. NETWORKS 22 397-417.

Lambert, D. (1993) Measures of disclosure risk and harm. Journal of Official Statistics 9
313-331.

Moore, R.A. (1996). Controlled data swapping techniques for masking public use
microdata sets. RR 96-05. U.S. Bureau of the Census, Washington, DC.

Nargundkar, M. S. and Saveland, W. (1972) Random rounding to prevent statistical

disclosure. Proceedings of the American Statistical Association, Social Statistics Section
382-385.

Navarro, A., Flores-Baez, L., and Thompson, J. (1988) Results of Data Switching
Simulation. Presented at the Spring meeting of the American Statistical Association and
Population Statistics Census Advisory Committees.

Ozsoyoglu and Chung (1986) Information loss in the lattice model of summary tables due
to cell suppression. Proceedings of IEEE Symposium on Security and Privacy, 160-173.

Paass, G. (1988) Disclosure risk and disclosure avoidance for microdata. Journal of
Business and Economic Statistics 6 487-500.

Roehrig, S.F. (1999) Auditing disclosure in multiway tables with cell suppression:
simplex and shuttle solutions. Paper presented at the American Statistical Association
Joint Statistical Meetings, Baltimore, MD, August 8.

Roehrig, S.F. (2001a) Computing Grobner bases for statistical disclosure limitation. To
be presented at Grostat 2001, New Orleans, September 2001.

Roehrig, S.F. (2001b) Finding integer solutions to disclosure limitation problems using
strong inequalities, Working Paper, The Heinz School of Public Policy and Management,
Carnegie Mellon University.

Schrijver, A. (1986) Theory of Linear and Integer Programming. Wiley, New York.
Spruill, N. L. (1983) The confidentiality and analytic usefulness of masked business
microdata. Proceedings of the Section on Survey Research Methods,

American Statistical Association 602-607.

Strudler, M., Oh, H. L., and Scheuren, F. (1986) Protection of taxpayer confidentiality

with respect to the tax model. Proceedings of the Section on Survey Research Methods,
American Statistical Association, 375-381.

31



Trottini, M. (2001) A decision-theoretic approach to data disclosure problems. Paper
prepared for 2nd Joint ECE/Eurostat Work Session on Statistical Data Confidentiality 14-
16 March 2001, Skopje, Macedonia.

Willenborg, L. and de Waal, T. (1996) Statistical Disclosure Control in Practice. Lecture
Notes in Statistics 111 Springer, New York.

Willenborg, L. and de Waal, T. (2000). Elements of Statistical Disclosure Control.
Lecture Notes in Statistics 155 Springer-Verlag, New York.

Winkler, W. E. (1998) Re-identification methods for evaluating the confidentiality of
analytically valid microdata. Research in Official Statistics 1 87-104.

Zaslavsky, A.M. and Horton, N.J. (1998) Balancing disclosure risk against the loss of
nonpublication. Journal of Official Statistics, 14, 411-419.

Zayatz, L. (1993) Using linear programming methodology for disclosure avoidance
purposes. Proceedings of the International Seminar on Statistical Confidentiality.
EUROSTAT, Luxembourg, 341-351.

Zayatz. L. V. and Rowland, S. (1999) Disclosure limitation for American FactFinder.
Paper presented at the American Statistical Association Joint Statistical Meetings,
Baltimore, MD, August 8.

32



