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Abstract

Much of the recent methodological literature on statistical disclosure limitation has dealt
with methods for altering the interior of tables, especially in the form of cross-classification of
counts, given certain marginal totals or subtables. These methods are closely related to those
that use the exact distribution of a contingency table under a log-linear model given its sufficient
statistics. Diaconis and Sturmfels have articulated the role of Grobner bases in the calculation
of such distributions. This talk will give an overview of disclosure limitation problems and
methods to address them based on exact distributions and it will also discuss some interesting
features of Grobner bases that arise in these problems.

*Handout to accompany presentation at GROSTAT V, September, 2001.



An Example of Bounds for Table Entries

[These tables are taken from Dobra and Fienberg [16]. We include some additional tables based on
a 10% random sample of the data.]

B no yes
F E D C|A no yes no yes
neg <3 <140 no 4 40 112 67
yes 129 145 12 23
> 140 no 35 12 80 33
yes 109 67 7 9
>3 <140 no 23 32 70 66
yes 50 80 7 13
> 140 no 24 25 73 57
yes 51 63 7 16
pos <3 <140 no 5 7 21 9
yes 9 17 1 4
> 140 no 4 3 11 8
yes 14 17 5 2
>3 <140 no 7 3 14 14
yes 9 16 2 3
> 140 no 4 0 13 11
yes ) 14 4 4

Table 1: Prognostic factors in coronary heart disease. Source: Edwards and Havranek [7].



B no yes
F E D C |A no yes no yes
neg <3 <140 no [0,88] [0,62] [0,224] [0,117]
yes [0,261] [0,246] [0,25]  [0,38]
> 140 no [0,88] [0,62] [0,224] [0,117]
yes [0,261] [0,151] [0,25]  [0,38]
>3 <140 no |, [0,58] [0,60] [0,170] [0,148]
yes [0,115] [0,173] [0,20]  [0,36]
> 140 no [0,58] [0,60] [0,170] [0,148]
yes [0,115] [0,173] [0,20]  [0,36]
pos <3 <140 no [0,88] [0,62] [0,126] [0,117]
yes [0,134] [0,134] {0,25] [0,38]
> 140 no [0,88] [0,62] [0,126] [0,117]
yes [0,134] [0,134] [0,25] [0,38]
>3 <140 no [0,58] [0,60] [0,126] [0,126]
yes [0,115] [0,134] [0,20]  [0,36]
> 140 no [0,58] [0,60] [0,126] [0,126]
yes [0,115] [0,134] [0,20]  [0,36]

Table 2: Bounds for cell counts in the coronary heart disease table given margins corresponding to
[BF][ADE][ABCE]. 2 o R
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F E D C |A no yes no yes
neg <3 <140 no
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Table 3: 10% sample selected from the population with coronary heart disease.



B no yes
F E D ClA no yes no yes
neg <3 <140 no [0,13] [0,10] [0,22] [0,5]
yes [0,16] [4,27] [0,3] [0,4]
> 140 no [0,13] [0,10] [0,22] (0,5
yes [0,16) [0,12] [0,3] [0,4]
>3 <140 no [0,4 [0,8] [0,19] [0,23]
yes [0,9] [0,14] [0,2] [0,5]
> 140 no [0,4] [0,8] [0,15] [0,16]
yes [0,9] [0,14] [0,2] [0,5]
pos <3 <140 no [0,11] [0,10] [0,15] [0,5]
yes [0,11] [0,11] [0,3] [0,4]
> 140 no [0,11] [o0,10] [0,15] [0,5]
yes [0,11] [0,11] [0,3] [0,4]
>3 <140 no [0,4] [0,8] [0,15] [0,15]
yes [0,9] [o11] [0,2] [0,5]
> 140 no [0,4] [0,8] [0,15] [0,15]
yes [0,9] [o,11] [0,2] [0,5]

Table 4: Bounds for cell counts in the 10% sample table given margins corresponding to
[BF][ADE][ABCE].

The Diaconis-Sturmfels Algorithm

[This material is extracted from Fienberg, Makov, Meyer, and Steele [24].]

Let n is the observed table, p is the table of expected values under the model, ¢ is the constraint
vector representing the conditioning involving marginal totals, and S(c) is the set of all nonnegative
tables satisfying the marginal constraints. Let {f1, fa,..., fL} be a generating set for the tables in
S(c).

Lemma: Let o be a positive function on S(c). Generate a Markov chain on S(c) by
choosing I uniformly in {1,2,...,L} and € = 1 with probability 1/2 independently of
I. If the chain is currently at m it moves to m’ = m + ef; (provided that m' € S(c)
with probability min(1, ¢(m’)/a(m)). In all other cases the chain stays at m. Thisisa
connected, reversible Markov chain on S(c) with a stationary distribution proportional
to o(m).

By decoupling the “positive” and “negative” versions of the move to f; for i = 1,2,...,L,
Diaconis and Sturmfels get transition probabilities that can be calculated for any model, even for
nondecomposable loglinear models, as long as the margins we condition on are those that correspond
to the minimal sufficient statistics. The argument is as follows.

From Haberman [11], we know that the underlying hypergeometric distribution for the exact
distribution of the table under a loglinear model given a set of marginal constraints is
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where n is the observed table, 4 is the table of expected values under the model, ¢ is the constraint
vector representing the conditioning involving marginal totals, and S (¢) is the set of all nonnegative
tables satisfying the marginal constraints. When we condition on the margins that correspond to
the minimal sufficient statistics under the model, the probabilities in equation (1) simplify because
all of the exponential components are the same, yielding:

[ier gy

(2)

o(n) =

ZmES’(c) (HiEI H%ZY) .

The denominator in equation (2) is the same for each table with the specified margins and so
the ratio of two such probabilities is only a function of the corresponding numerators.

There is a total of 9 + 6 = 15 possible moves for the 3 x 3 x 2 table, and these can occur with
a change of sign as well. There are 9 basic or simple moves of the form:

11-140 -1 1(0
-1 10 -1/(0
0 0 010

formed by choosing a pair of rows, and a pair of columns in all possible ways. These take the form
of embedding a Darroch-like local move in the corresponding 2 x 2 x 2 subtable and set the other
entries equal to 0. In addition, there are also 3! = 6 possible “compound” moves of the form

1)-1 0 -1 1
1| - -1 1
-1 0 1 1 0] -1

The compound moves can be thought of as combinations of pairs of simple moves of the first type
which allow one to reach extremal tables by first making a move outside the space of positive tables
with fixed margins and then coming back via a second move. For the compound move given above
we have

o(m) ~ (min + 1)(magr + 1)(maz + 1)(mazz + 1)(maz1 +1)(mz12 + 1)

The 15 moves constitute a minimal generating set for the table and they correspond to a
universal Grobner basis. For each move there is a corresponding ratio of probabilities of the form
o(m’)/o(m).

In Table 6 we present the maximum likelihood estimates for the expected counts corresponding
to the entries in Table 5 under the no 2nd-order interaction model with multinomial sampling We
computed these in S-plus. The likelihood ratio chi-squared value for the fit of this model was 2.89
on 4 d.f. This is indicative of a moderately good model fit, although it is actually somewhat difficult
to assess the fit given the sparseness of the row in the first layer which has a total count of 1 in it.

U(m') M1217M2317M311711127M222711332 (3)




Gender = Male
Income Level

Race < $10,000 | > $10000 and < $25000 | > $25000 || Total
White 96 72 161 329
Black 10 7 6 23
Chinese 1 1 2 4

[ Total [ 107 80 169 [ 356 |
Gender = Female
Income Level

Race < $10,000 | > $10000 and < $25000 | > $25000 || Total
White 186 127 51 364
Black 11 7 3 21
Chinese 0 1 0 1

[ Total | 197 135 54 ] 386 |

Table 5: Three-way cross-classification of Gender, Race, and Income for a selected U.S. census

tract. (Source: 1990 Census Public Use Microdata Files)

Gender = Male
Income Level

Race | < $10,000 | > $10000 and < $25000 | > $25000 || Total
White 97.09 72.15 159.76 || 329
Black 9.21 6.41 7.38 23
Chinese 0.70 1.44 1.86 4

[Total [ 107 | 80 [ 169 [ 356 |
Gender = Female
Income Level

Race | < $10,000 | > $10000 and < $25000 | > $25000 || Total
White 184.91 126.85 52.24 364
Black 11.79 7.58 1.62 21
Chinese 0.30 0.56 0.14 1

[Total [ 197 | 135 [ 54 ] 386 |

Table 6: Maximum likelihood estimates for data in Table 5 under the no 2nd-order interaction

model.
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