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Abstract

The underlying connection between disclosure avoidance techniques for categorical data and
sampling from the exact conditional distribution of a table of counts given a set of fixed marginals is
the Markov basis that links all the contingency tables having that set of marginals. In this paper we
show that primitive data swaps or moves are the only moves that have to be included in a Markov
basis that preserve a set of fixed marginals, when these marginals are the minimal sufficient statistics
of a decomposable log-linear model.
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1 Introduction

Statistical agencies collect information from survey respondents in the form of microdata. Every variable
recorded in the database is assumed to be categorical, i.e. it can take a relatively small number of values or
categories. By aggregating the records associated with the same combination of categories, one obtains a
Jrequency count table. A cell entry in a frequency count table is a positive integer representing the number
of units or individuals sharing the same attributes. To fully exploit the information they collected, the
agencies are often forced to make available parts of these cross-classifications (e.g., lower dimensional
marginals) to various users. A marginal is obtained from the original cross-classification by aggregating
over one or more variables.
Any frequency count table x = {x(4) };cz with a fixed set of marginal totals np,, np,, ..., np,, is

a lattice point in the convex polytope defined by the linear system of equations:

{xp, =np,; :j=12,...,7}n{z() € {0,1,2,...} : i € T}. ¢))

We denote by T(™ = T(®)(Dy, ..., D,) the set of admissible solutions of Eq. 1. Thus T{™ is the set
of all integer tables having the same margins as the observed data and this set is the support of the exact
conditional distribution P(x|x € T{™) of a table of counts x with a fixed set of marginals induced by
the index sets Dy, Do, ..., D,. Since the reference set T{" is finite and has at least one element, namely
the original table n, the conditional probabilities will be meaningful.



Exact conditional distributions play an important role in the disclosure limitation context (Fienberg
et al., 1998; Fienberg et al., 2001) and, in particular, in developing perturbation methods for categorical
data (Cox, 1999; Duncan and Fienberg, 1999). One also wants to sample from the exact distribution
for other purposes, such as the calibration of test statistics. Standard asymptotic results tell us how to
approximate the value of Pearson’s chi-squared statistic with a chi-squared distribution with the appro-
priate number of degrees of freedom. Nevertheless, the asymptotic approximation might not work well
due to several reasons relating to the sample size and to the sparseness of the table. In some situations,
calculating the correct number of degrees of freedom is itself a very difficult task (Haslett, 1990; Stirling,
1986; Mukerjee, 1987; Baker et al., 1985). An alternate approach to the asymptotic approximation was
suggested, among others, by Diaconis and Efron (1985). They argue that calibration problem could be
solved by sampling from the exact distribution on the space of all possible tables with fixed marginals
and calculating the test statistic for the tables in the sample.

By considering conditional sampling schemes for cross-classifications of arbitrary dimension, Haber-
man (1974) proves that, in general, the exact conditional distribution cannot be expressed in a tractable
form. If the marginals being fixed are the minimal sufficient statistics of a decomposable log-linear model
A, the exact conditional distribution reduces to the generalized hypergeometric distribution correspond-
ing to A (Lauritzen, 1996; Fienberg et al., 2001). Many papers deal with the problem of generating
from the exact conditional distribution of a two-way table given its row and column totals. However,
the existent algorithms for sampling from the hypergeometric distribution associated with the model of
unconditionally independence of two categorical variables do not readily generalize to more compli-
cated decomposable log-linear models. Even for three-way tables, there do not exist standard sampling
procedures that are guaranteed to be correct.

Diaconis and Sturmfels (1998) present a very general procedure for generating draws from the condi-
tional distribution P(x|x € T(™). Their approach relies on the existence of a Markov basis, a collection
of moves or data swaps that link all the tables in T("). Swapping data inside a table of counts involves
moving individuals/units from one cell to another (Dalenius and Reiss, 1982). If exactly two individuals
have been moved, the corresponding data swap is called primitive. The table o created by repeatedly
applying data swaps to the original table n has to be consistent with the set of released marginals, i.e.,
the data swaps should preserve np,, np,, ..., np,. Unfortunately, the sampling algorithm proposed by
Diaconis and Sturmfels (1998) has not been largely used because a Markov basis could very difficult to
generate even for problems of modest size.

Log-linear models are the most usual way of representing and studying contingency tables with fixed
marginals, and Fienberg et al. (1998) and Fienberg (1999) have demonstrated the clear links between log-
linear models and disclosure limitation techniques. Qur attention, however, will be focused on graphical
log-linear models. A graphical model is a statistical model corresponding to a number of simultaneous
conditional independence relationships which can be summarized by means of an independence graph -
see, for example Madigan and York (1995), Whittaker (1990) and Lauritzen (1996). When all the random
variables embedded in the graphical model M are discrete and the independence graph G associated with
M is undirected, M is said to be a graphical log-linear model. If G is decomposable (Lauritzen, 1996),
then M is said to be decomposable. The class of decomposable log-linear models have closed form
structure and special properties that will be exploited throughout this paper.

Our aim is to show how graphical models could help us identify special settings in which we could
develop efficient techniques for considerably reducing and possibly eliminating the amount of compu-
tations needed to identify a Markov basis. After presenting some notation and definitions in Section 2,
in Section 3 we formally introduce decomposable graphical models as well as results that characterize



decomposable graphs. Section 4 proves a result postulated by Fienberg (1999) which says that primitive
data swaps or moves are the only moves that have to be included in a Markov basis when the index
sets defining the marginals that have to remain unchanged are the minimal sufficient statistics of a de-
composable log-linear model. In Section 5 we give an example of using Markov bases to generate a
“replacement” for a table having a set of fixed marginals. In the last section we make some concluding
remarks.

2 Data Swapping and Markov Bases

Let X = (X, Xy,...,X}) be a vector of discrete random variables. Denote K = {1,2,...,k} the
index set associated with X;, Xs,..., Xj. The random variable X; can take the values z; € Z; :=
{1,2,...,I;}, for j = 1,2,...,k. Let Z = Iy x Iy X ... x I}, and consider the k-way contingency
table n := {n(i)};cz. By assigning to every ¢ = (41,42, ...,1) € Z an index (see Knuth (1973))

k k
IND(i,ig, ..., ig) = ) { 11 IS} (-1 +1€{1,2,....I I -...- Ik},

=1 Ls=l+1

we could arrange the cells in the contingency table n in a linear list of objects, in which case we will
write T instead of n. We let D = {4),12,...,¢;} denote an arbitrary subset of K, and we define Xp as
the ordered tuple Xp = (X;;4 € D). The D-marginal np of n is the contingency table with marginal
cellsip € Ip :=1;, xI;, x ... xZ; and entries given by

np(ip) = Y n(ip,jx\p)-
Jrk\D€IK\D

Two k-way tables my = {ni(4)};cr and ny = {na(é)};.7 are equal if ny (i) = ny(¢) for all ¢ € Z, and
in this case we write n; = ny. If all the counts in table n; are zero, i.e. n1(i) = 0, Vi € I, we write
n; = 0. We define the notion of swapping entries in a table while preserving a given set of marginal
totals.

Definition 1. A move or data swap that does not modify the set of marginal tables np,, np,, ..., np, is
a cross-classification £ = { f (i) }iez with the following two properties:

L f@)e{...,-2,-1,0,1,2,...}, foralli € I.
2. (x£f)p, =xp,, forall j =1,2,...,r andx € T™)(Dy, Dy,..., Dy).

Definition 1 says that f is a move for TX™(Dy, ... ,Dy) if and only if f is an integer solution for the
linear system of equations:
{fp, =0:5=1,2,...,7}. )
T
We observe that the above system has Iy := ) [] I; equations,and Ly := I - I, - ... Iy unknowns.
s=1j€D,

If f = {f(i)}icz is a move, then so is —f := {—f(i)}iez. A move f is primitive if there exist four
indices 7, 29, 23, 24 in Z such that

F(@1) = f(i3) =1 = —f(i2) = — f(ia), 3)



and f(i) = 0,if i € T\ {i1,%2,%3,54}.

Let F = {f1,f5,...,fL} be a set of moves. We define a graph denoted T as follows. The nodes in
this graph are the elements in T(®)(Dy, D,, ..., D,), and two nodes x and X are connected by an edge
ifx—x' € Forx'—x € F.If F is chosen to be large enough, the graph T will be connected, in which
case F forms a Markov basis (Diaconis and Sturmfels, 1998) for the tables in T (Dy, Dy, ..., D,).
For simplicity, we will assume that, in any Markov basis of moves F, f € F implies —f € F. For any
two tables x, x’ in T(") there exists a sequence of moves f1 f2 ... f% such that

3
X,—XZZfJ,
i=1

and

’

8
x—l—ijGT(n)(DI)D27"'7DT), “
j=1

for 1 < s’ < s. Determining a set of data swaps needed to connect the initial table n to any other k-way
table having marginals np,,np,,...,np, is equivalent to determining a Markov basis F for the class
of tables T(™(Dy,..., D;). If x = {x(i)}icz is an arbitrary k-way cross-classification, F is also a
Markov basis for the class of tables

T(x)(Dl:DQa-'- y Dr) i={y :y(1) 2 0,Vi € I’YDJ' = xDj)j =1,2,... ,T‘},

(c.f., Diaconis and Sturmfels (1998); Conti and Traverso (1991)). Therefore a Markov basis of moves
is determined only by the set of marginal constraints, not by the actual table we started with. Conse-
quently, we will write T(Dy, ..., D,) instead of T(® (D, ..., D,) when the original table for which
the marginals were calculated is not necessarily relevant.

Computational algebra offers excellent tools for characterizing the possible solutions of Eq. 2. Diaco-
nis and Sturmfels (1998) and Dinwoodie (1998) show that computing a Markov basis for T(1}, . .., D)
is equivalent to finding a Grobner basis of a special polynomial ideal. One can construct a Grobner basis
of a polynomial ideal by employing the Buchberger algorithm (Cox et al., 1992) or one of its more com-
putationally efficient variants. Computer algebra systems such as MACAULAY, MAPLE, COCOA and
MATHEMATICA implement this algorithm, hence the task of the users interested in finding a Markov
basis for T(™(Dy, Do, ..., D,) is reduced to specifying the polynomial ideal associated with Eq. 2.
Conti and Traverso (1991) showed how to find such a polynomial ideal by introducing a variable for each
linear equation in Eq. 2, say oy,02,...,0,, and a variable for each unknown ?j, say 61,602,...,0L,.
The desired polynomial ideal is

(Hj—gj Zj‘—=1,2,...,L2>,

where g; is a monomial in o1, 03, ..., 0r,. Although simple and attractive, the algebraic approach is not
feasible for finding Markov bases for contingency tables with more than three dimensions because of the
huge amount of computing time it requires. The computational complexity of the Buchberger algorithm
increases double exponentially with the number of variables as well as with the number of categories per
variable.

It turns out, however, that it is straightforward to describe a Markov basis for a two-way table with
fixed one-way marginals (Diaconis and Gangolli, 1995; Diaconis and Sturmfels, 1998).
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Proposition 1. Consider a two-way contingency table n = {n(i,7) : (i,j) € B x To} with fixed row
sums ny = {n;y : 4 € I1} and column sums ny := {ny; : j € Iz}. For some indices i, ia, j1, jo
chosen suchthat 1 < iy <1y < Iy and 1 < j1 < jp < Iy, we define a table 112172 = { firizifijz (5 4)
(i,4) € Ty x Tp} by

Lo if(5,5) € {(i1,51), (42, 42) },

fi1i2;j1j2 (37]) = -1, lf(’L,]) S {(7:1,].2), (iQ,jl)}7 (5)
0, otherwise .
Then
{202 01 <4y < iy <T1,1 <y < ga < I} ©)

is a Markov basis for the class of tables with fixed row sums ™y and column sums na.

Proof. The one-way marginals of £1237172 are zero, hence £*1%2:7192 will leave unchanged n; and ny. By
making use of computational algebra techniques, Sturmfels (1995) gives a complete proof of the fact that
the set of moves described in Eq. 6 is indeed a Markov basis. For further reference, the number of moves

in this Markov basis is
I I
2- . .

The set of primitive moves we described above allows one to transform a given two-way table in any other
two-way table with the same row and column totals. Proposition 1 is the starting point for developing
Markov bases for an arbitrary decomposable graphical structure.

3 Decomposable Graphical Models

Let X3, Xo, ..., Xi be the discrete random variables cross-classified in a k-way table n = {n(z)}z,EI
We visualize the dependency patterns induced by the released marginals by constructing an independence
graph G for the variables in the underlying cross-classification. The vertex set of G defined by the fixed
T
marginals np,, np,,...,np, is |J D; = K = {1,2,...,k}, while its edge set is
j=1

E = {(u,v) : {u,v} C D;, forsome j € {1,...,7}}.

Each variable X; cross-classified in the table is associated with a vertex j € K. The conditional indepen-
dence relationships induced among X;, X», ..., Xi by the fixed set of marginal totals are embedded in
the graph G in the following way: if two variables are not connected, they are conditionally independent
given the remainder. Lauritzen (1996) shows that this property is equivalent to:

If S is a separator for Ay and Ay, then X 5, and X 4, are conditionally independent given Xg.



A log-linear model with minimal sufficient statistics Dy, Do, ..., D, is graphical if Dy, Do, ..., D, are
the set of cliques of the independence graph G, otherwise the log-linear model is not graphical. Moreover,
a graphical log-linear model is decomposable if the independence graph induced by its minimal sufficient
statistics is decomposable.

Assume that G is decomposable and let C(G) := {Dy, Ds,. .., D,} be the set of cliques of G. Since
G is decomposable, it is possible to order the vertex sets in C(G) in a perfect sequence (Blair and Barry,
1993). If we denote H; := D\UD,U...UD;jand S; := H;_1ND;, itfollows that, forevery j = 2,...,r,
(Hj—1\ S;,8;,D;\ S;) is a decomposition of G(H;) (Lauritzen, 1996). We let S(G) := {5,,..., S}
be the set of separators of the graph G associated with C(G).

By employing an expanded version of the maximum cardinality search algorithm (Blair and Barry,
1993), one can order the set C(G) of cliques so that they form a perfect sequence by constructing a tree
T = (C(G),E7). The edges in & are oriented, namely, (D,D’) € &y implies (D', D) ¢ &r. If
(D, D') € &, we will say that D' is the parent of D and D is the child of D'. A clique D is terminal in
T if D is not the parent of any other clique. Moreover, D is the root of the tree T if D is not the child
of any other clique. The tree 7 has the property that S C V' is a minimal separator of G if and only if
S = D; N D; for some edge (D;, D;) € Er. The set of separators S(G) associated with C(G) will be
given by S(G) = {D; N D; : (D4, D;) € &7}

Definition 2 (The Star Property). Take D; € C(G) and let S = D; N D; for some (Dj, D;) € E1. Let
T = (K;,&;) and T; = (Ks,&;) be the two subtrees obtained by removing the edge (Dj, D;) from T,
with D; € K;j and D; € K;. Consider the vertex sets

Vi=|J) D and Vi:= |J D. (7
DeK; DeK;

The tree T is said to have the Star Property for G if, for every edge (D;, D;) € &1, (V;\S, S, Vi\S)
is a decomposition of G.

Blair and Barry (1993) prove that any tree 7 generated by the MCS algorithm has the Star Property.
By removing a terminal clique from such a tree, the Star Property is preserved.

Lemma 1. Let T = (C(G),E7) be a tree defined on the set of cliques of a decomposable graph G.
Assume that T has the Star Property for G. Let D be a terminal clique in T and let D be the the unique
clique in C(G) such that (D, D') € Ey. We consider T' = (C(G) \ {D}, &1 \ {(D, D')}) to be the tree
obtained by removing D from T. Then T’ is a tree with the Star Property for the decomposable graph
G' defined by the set of cliques C(G) \ {D}.

Proof. Consider an arbitrary edge (D;, D;) € &7 \ {(D,D’)}. As before, we let 7; = (K;, ;) and
T; = (K, &;) be the two subtrees obtained by removing the edge (Dj, D;) from 7, with D; € T and
D; € T;. Let V; and V; the vertex sets defined in Equation 7.

We can assume that D € K;. If we were to remove the edge (D;, D;) from 7', we would obtain the
subtrees 7] = (K; \ {D},&; \ {(D, D')}) and T; = (K, &;). The vertex set associated with T is

vi= | D (8)

D"eK;\{D}
Since D is terminal in &7, we have D; # D, hence V; # 0. The vertex set § := D; N D; which is a
separator for G, is also a separator for . Moreover, (V; \ S, S,V; \ S) is a decomposition of G. From
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Vj C Vj, it follows that (V] \ S, S, V; \ S) will be a decomposition of §'. Therefore the tree 7" has the
Star Property for G'. [ |

The maximum cardinality search algorithm (Blair and Barry, 1993), can be employed only if the
decomposable graph G is connected. Assume G is disconnected and let G, Go, . .., Gz, be its connected
components. We apply the MCS algorithm for every connected component and obtain the collection of
trees 7, = (C(G1), &), for I = 1,2, ..., L. The set of cliques of G is the union of the sets of cliques
associated with the connected components G, Go, ..., Gr, i.e.,

C(G) =C(G1) UC(G2) U...UC(GL).
We define the tree T = (C(G), €) by

5::£1u...u5Lu{(D§‘1,D§):1:2,...,L}, ©)

where Dll_1 is a root of 7;_; and D’2 is terminal in 7;. The tree generated on the set of cliques of a
connected decomposable graph by the MCS algorithm will always have the Star Property. In addition, it
is not hard to see that the tree 7 specified by Eq. 9 will have the Star Property on the set of cliques of an
arbitrary decomposable graph G.

3.1 Markov Bases for Decomposable Graphical Models

The theory on log-linear models for cross-classified counts could provide a real insight into the struc-
ture of the constraints induced by fixing a set of marginal totals of a k-dimensional contingency table
n. Assume the margins np,, np,, ..., np, being fixed are the minimal sufficient of statistics of a de-
composable log-linear model. In this situation, the estimated expected values for the table entries can be
written in closed form as a function of the marginal totals. Moreover, Dobra and Fienberg (2000) derived
explicit formulas for the tightest upper and lower bounds for the cell counts in the table n given that
np,, 0p,, ..., np, are known. The special structural properties of decomposable graphs can be further
exploited to derive a Markov basis of primitive moves for the class of tables T (D1y...,Dy).

We start with the simplest case, r = 2, and show that the Markov basis for T(™) (D1, D3) is the union
of the Markov bases of one or more two-way tables with fixed one-way marginals.

Proposition 2. Primitive moves are the only moves we have to include in the Markov basis of T(D, D,).

Proof. The independence graph G = (K, F) associated with marginals np, and np, of n has vertex set
K = Dy U Dy and edge set

E:={(",5%) : {4", 5%} C D1 or {1,52} C Do} (10)

Without restricting the generality, we can assume that Dy = {1,...,{} and Dy = {q,...,k}. We
distinguish two cases:

() If I < q, Xp, and Xp, are unconditionally independent. Introduce two new compound variables
Y) and Y, with level sets Ip, := Xgep, Zs and Ip, = Xgs¢ D, Ls, respectively. Take the two-way
table n' corresponding to ¥;, Y5 with known row sums fip, = {np, (i Dl)}iD1 €Ip, and column sums
np, = {np, (z’Dz)}iDZGIDZ. The basis F (D1, D) for the original table n will be given by the Markov
basis of moves for the two-way table n' as described in Proposition 1.



(ii) Suppose | > ¢. The variables indexed {1,...,¢ — 1} and {! + 1,...,k} are conditionally
independent given the variables indexed {g, ...,!}. Denote

J = Xse(1,...q=1,1+1,..k} Ls-

Take the set of contingency tables

;0 -0 ;0 ;0
nlartl — {nzq,...,zl i } . ,1;0 el ... ,':0 c 7
{ ( ) ieq 9 q> IR 1 (>

where
0 420, '0,._'7‘0 . . . . _ . . .0 .0 - .
n'e ot (4) = ntero (G, L A1, ity -y 0k) = N8 ey g1y 0gs - B BILy - - 5 BK)-
For a given vector of indices (9, ...,4) € Iy x...x T, the variables indexed {1,...,q — 1} and
{l +1,...,k} are independent, hence we can pursue a line of reasoning analogous to (i). First we intro-

;0 ;0 ;0 ;0
duce two compound variables qu""’z’ and Y;“’""l‘ with level sets 7y x ... X Zy_j and Ty X ... x I,
. . 400 0 0. . .
respectively. The Markov basis Flar-i for the table nd is equivalent to the Markov basis for the

L9

.0 -0 -0 0 N1
. goeesd Tgyeesl . Ty ye-
two-way table corresponding to ¥, """ and Y, 9" with known row sums 1i,>" " , and column sums
1 2 1,0.,g—1
Q -0
SN )
=gl

n,%, . Then a Markov basis of moves for the table n that preserves the marginals np, and np, is
given by

f(Dl,DQ):U{}'ig""’i? 10 € Tyyen i) ezl}. 1)

3

Figure 1: A decomposable graph with two cliques.

Example 1. Consider a four-way table n with fixed three-way marginals x := ng; 3 33 and y 1= nyy 3 4}.

The corresponding independence graph G is represented in Fig. 1. The edge {2, 3} is a separator for
{1,2,3} and {2, 3,4}. In addition, {1,2,3} and {2, 3,4} are complete in G, hence G is a decomposable
graph with two cliques. Since X is conditionally independent of Xy given (X2, X3), we consider the

set of contingency tables

0 ;0 0,0, . . L ) .
{n’2”3 = {n’2”3(11,z4) 1 (4,14) €T, XI4} :zg € Ig,zg € 1'3},
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3040/, . . .0 0 40 40 zg,zg . .0 0
where n'2%2 (41, 44) = n(iy, 143,13, 14). For every table n'2*s, we know the row sums n;***? := {z(iy,13,43) :
;0 ;0
iy € I} as well as the column sums ny"*3 := {y(49,43,44) : iq € Z4}. The Markov basis of moves
F33 that will leave unchanged the one-way marginals of the table #%%% can be obtained as in Propo-
sition 1. Proposition 2 tells us that the Markov basis of primitive moves F({1,2,3},{2,3,4}) that

preserves the marginals x and y is just the union {.7-' 313 (43,33) € Tp x Ig}. n
We introduce the set of primitive moves associated with an arbitrary decomposable graph G.

Definition 3. Let C(G) = {D1,Ds,...,D,} the set of cliques of a decomposable graph G. We let
T = (C(G),E7) be a tree having the Star Property on the set of cliques of G. For every edge (D;, D;) €
&, we consider the vertex sets V; and V; as in Eq. 7. The set of primitive moves associated with the
decomposable graph G is given by:

F(G) = F(D1,Dy,...,Dn) = |} F(V;,V), (12)
(D;,D;)eér

where F(V;,V;) was defined in Eq. 11.

By removing an edge (Dj, D;) from T, we create two connected components 7 (V;) and T (V;). We
think about V; and V; as being the cliques of some graph G with vertices V; UV; = K and edges

E;j = {(u,v) : {u,v} C Vjor {u,v} C V;}.

The tree 7 has the Star Property, hence S;; := D;ND; separates V;\Sij from V;\ S;; in GY. As aresult,

G is the independence graph of a decomposable graphical model with two cliques and, from Proposition
2, we know that the set of primitive moves corresponding to G¢7 is F (V;, Vi). Eq. 12 essentially says

that the set of primitive moves for a decomposable graphical model with independence graph G is just
the union of the sets of primitive moves associated with the two-clique models induced by each minimal
vertex separator of G. We have to show that Definition 3 is correct.

Proposition 3. The set of primitive moves defined in Eq. 12 is indeed a set of moves for the class of
tables T(Dy, Dy, ..., D,).

Proof. Letf € F(Dy,Ds,...,D;). Then f € F(V;,V;) for some (D;, D;) € E7. For any arbitrary
clique D € C(G), we have either D C V; or D C V. Since fvj = 0 and fy;, = 0, it follows that we also
have fp = 0. |

Next we will state and prove a series of results that will help us prove the main theorem of the paper.
Most of these propositions should be self-explanatory. However, it is worth mentioning the intuition that
triggered them: if we delete a vertex that belongs to exactly one clique from a decomposable graph, along
with the edges incident to it, we obtain a graph that is still decomposable (Blair and Barry, 1993). Con-
sequently, by collapsing across a variable associated with such a vertex, all the conditional dependencies
existent among the remaining variables are preserved.

The set of primitive moves associated with a two-clique model induces a set of primitive moves for a
two-clique model embedded in it. Collapsing across some of the variables not contained in both cliques
preserves the structure of the moves in Eq. 12.



Proposition 4. Let n be a table with two fixed marginals np, and np,. The corresponding independence
graph G is decomposable and has two cliques Dy, Ds. The separator of G is S := Dy N Ds. Consider
a vertex set D such that S C D C Dy. Define a map ¢ which assigns to every f € F(Dy, D) its
(D U Dq)-marginal, i.e.

¢(f) = fDUDz'

Then the following are true:
(a) for any £ € F(Dy, Dq), ¢(f) € F(D, D3) or ¢(f) =
(b) the map ¢ : F(D1, Dy) — F(D, D3) is surjective.
(c) for every table x € T™ (D1, Dy) and every move g € F(D, D3) such that

XpuD, + g € T(n) (Da D2)7 (13)
there exists £ € F(Dy, D7) with ¢(f) = g and

x +f € T™(Dy, Dy). (14)

Proof. To simplify the notation, assume that S = §. We consider the marginals np,, np, and np, along
with their associated vectors Tip,, ip, and Tip. The table np can be obtained from np, by collapsing
across the variables in D; \ D.

(a) In Proposition 1, we constructed F (Dy, D,) by considering the two-way table with row marginal

np, and column marginal fip,. A primitive move f € F(D;, D) was obtained by choosing two “row”
indices i, and 4%, , and two “column” indices i},, and %, . Then the table f is given by:

*1, if (ip,,ip,) € {(le,zD2 le,zD2 },
f(iDUZ.Dz) = :Fla if (2D1?2D2 € { Dl’zDz 7’D1’1'D2 }’ (15)
0, otherwise.

Let f; = ¢(f). We have:
filipup,) = filipsin,) = > f(ip,\D+iD,iD,)-
ip)\p€Ip;\D
We distinguish two cases.
() ip = i%. Since i}, # i%, , we need to have ibl\D #+ i%)l\D' It follows that
A(ib,ib,) = flib,,iD,) + f(ih,,ih,) =0, forr =1,2.

Clearly, fi(ip,ip,) = 0 if ip, ¢ {i},,i%,}. Moreover, for ip # i}, fi(ip,ip,) = 0. Hence
¢(f) =f; = 0.
(i) ilD # z'2D. In this case it is not hard to see that

. . ( B aZD )a f(ZD,ZD:)) - (zD’zD )’ where m,T2 € {1,2}’
fl(ZD72D2) :{ r 2 i
0, otherwise.

Thus ¢(f) = £} € F(D, D).
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(b) In order to prove that ¢ is surjective, we pick an arbitrary move g € F(D, D;). We choose an

index 47, \ ;, € Ip,\p and define the move f = {f()}iezp,up, bY

N ey . . g(iDUDz)’ if iDl\D = 7;(l))l\D’
0= S pvioup,) = { 107 o

It is easy to see that f € F(Dy, D5) and ¢(f) = g.
(c) The move g € F(D, Dy) is given by

1, if (iDﬂ:Dz) € {(ilD’ing)v(iQD’iQDg)}?
g(zD,ZDz) = -1, if (ZDaiDz) € {(z})aZ:ZDz)a (ZZD,Z})z)}?
0, otherwise,

(16)

where i},,1% € Ip and i&,_,i2,_ € Ip,. A move f € F(Dy, D3) such that fpup, = g is obtained by
D»*D D3> Dy 2 2

. L . . 1 2 .
choosing two indices DD and ip\p 1N Zp,\p- Then

. . .1 .1 .1 .2 .2 .2
1, 1fz€{(le\D,zD,zDZ),(le\D,zD,zD2)},

. . .1 .1 .2 -2 .2 .1
-1, ifz¢€ {(ZDI\D7ZD72D2)v (le\D7,"D’ZD2) ’
0, otherwise.

f(@) = flip,,ip,) =

For any i})l\ D iQDI\ p InZp\ p, the corresponding move f defined in Eq. 17 is such that

(X + f)Dl = Xp, =1n0p,,

(x+ f)Dz = Xp; =Dy,

and

(z+f)@ =0,

amn

(18)

19)

. - .1 .1 .2 .2 .2 .1 .1 .2
forevery i € T\ {(le\D,zD,zD2), (le\D,zD,zD2)}. Therefore we have to choose ip\D* “Dy\D such

that
(z+ N)pp\p+ipsiD,) = z(ip\psipsip,) —1>0, and
(J) + f)(iQDl\D,iQD?ibg) = $(i%1\D:i%>ibz) -1 2 0.

In this case, Eq. 14 holds. From Eq. 13, we obtain that

0, and
0.

(zpup, + 9)(iDs iH,)
(xDUDz + g) (7'2D, ZlDz)

But

(wDUDz + g)(le722D2) = ZIDUD, ('L})""2D2) -1,
= Z x(le\DvilDai2D2) -1

Jp)\D€ID\D

11

(20)

21

(22)



Eq. 21 and Eq. 22 imply that

> wlipnpyibiid,) > 1, (23)
Io\p€Ip\D

hence there has to exist an index zD \p € Ip,\p with :c(zD \D,zD,zD ) > 1. Similarly, there has to
exist another index zD \p € Ip,\p with m(zD \D> zD, zD2) > 1. With this choice, Eq. 20 holds. n

Proposition 5 extends Proposition 4 to an arbitrary decomposable model.

Proposition 5. Let n be a table with fixed marginals np,, ..., np_ such that C(G) ={D,...,D,} the
set of cliques of a decomposable graph G. Consider a tree T = ( (G), &r) having the Star Property for

G. Assume that the clique D, is terminal in T and let A = U D;. Define a map ¢ which assigns to
=1
every f € F(Dy, Do, ..., D,) its A-marginal, i.e.

Then the following are true:
(a) forany £ € F(Dy,Ds,...,D,), ¢(f) € F(D1,...,D,_1) or ¢(f) = 0.
(b) the map ¢ is surjective on F(Dy,. .., Dy_1).
(c) for every table x € T™(Dy, Ds, ..., D,) and every move g € F(D,...,D,_) such that

x4 +g € T®(Dy, Dy, ..., D,_y), 24
there exists £ € F(Dy, Dy, ..., D,) with §(f) = g and

x+f € T®(Dy, Ds,...,D,). (25)

Proof. (a) Since the clique D, is terminal in T, there exists a unique clique in C(G), say D, such that
(Dr,D') € Er. The set of primitive moves correspondmg to the edge (D, D') is F(A, D,), and take
f € 7(A, D;). By definition, f4 = 0, hence ¢(f) =

The subgraph ¢’ = G(Dy U ... U D,_1) is decomposable and C(G') = {D1,...,Dr_1}. Let T" the
subtree obtained by removing D, from T, ie. 7' = (C(G'),Er \ {(Dr,D’)}). Consider an arbitrary
edge (Dj, D;) € Er \ {(Dr, D)}. Let T; = (K;,&;) and T; = (K, &;) be the two subtrees obtained by
removing the edge (D;, D;) from 7, with D; € K; and D; € K;. Without restricting the generality, we
assume that we always have D, € ;.

By removing the same edge from the tree 77, we obtain the subtrees 7] = (K; \ {D,},&; \
{(Dy, D')}) and 7;. We define the vertex sets V;, V! and V; by
VAR |
Up vi= U b, V= U p. (26)
DEeK; Dek;\{Dr} Dek;

With this notation, according to Lemma 1, the tree 77 will have the Star Property for the graph ¢, and
consequently the set of primitive primitive associated with G is

F(G") = F(Dy,...,Dp_y) = U F(V}, V). 27)
(D;,Di)e€r\{(D>,D")}

12



Consider an arbitrary move f € F(Dy, Ds,..., D, ) such that f ¢ F(A, D,). From Eq. 12, we see that
there must exist some edge (Dj, D;) € £7 \ {(D;, D')} such that f € F(V},V;). We have D; # D,
and D; C Vj, thus V/ # 0. In addition, we have V] C V; and A = V] U V;. By employing Proposition
4. we obtain that ¢(f) € F(V},V;) C F(Dy,...,Dr_1) or $(f) = 0.

(b) In order to prove that ¢ is surjective on F(Dy,...,D,_1), we pick an arbitrary move g in
F(Dr,...,Dr_y). From Eq. 27, we see that there is an edge (D;, D;) € Er \ {(Dy, D)} such that
g € F(V],V;). Since V] C Vj, Proposition 4 tells us that there must exist some f € F(V;,V;) C
F(Dy,...,D,) such that ¢(f) = g.

(c) Again, Eq. 27 tells us that we can find an edge (D;, D;) € &7 \ {(Dr,D’)} such that g €
]—'(V{, Vi). This means that

x4 +g € TO(V], V). (28)
We have Vj’ C V; and Vj’ N V; = V; N V;. From Proposition 4, we learn that there exists a move
fe F(V;,Vi) c F(Dy,Day,...,D,), (29)
such that
x+f € TV}, Vi). (30)
But we also have
T (V;, Vi) € T™(Dy, Do, ..., D;) = T®(Dy, Dy, ..., D), 31)
hence Eq. 25 is true. n

We are now ready to present and prove the main theorem of the paper.

Theorem 1. Let G be a decomposable graph with cliques C(G) = {Dy, D2, ...,D,}. Then the set of
primitive moves F(G) = F(D1, Do, ..., D,) defined in Eq. 12 is a Markov basis for the class of tables
T(Dy, D, ..., D,).

Proof. By induction. If G decomposes in r = 2 cliques, then we know from Proposition 1 that (I}, D5)
is a Markov basis for T(®) (D1, D5). Suppose the theorem holds for any decomposable graph with r — 1
cliques. We want to prove that the theorem is true for a decomposable graph with r cliques.

The original table n is in the set TX™ = T®)(Dy, Dy, ..., D,). Take an arbitrary table x € T(®™,
We have to show that there exist f1,... ff F(Dy,Daq,...,D;) such that

1
XxX—n = Zfi, and
=1
U .
n-}—Zf’ € T(n)(DhD%--'aDT), (32)
=1

for1 <! <l.LetT = (C(G), &) atree having the Star Property for G and assume that the clique D, is
~1
terminal in 7. Denote A := T’U1 D;. Consider the map ¢ which assigns toevery £ € F(Dy, Do, ..., D,)
]:

its A-marginal, i.e.

¢(f) = fa.

13



The marginals n4 and x4 lie in the set T(“)(Dl, ..., Dr_1). From the induction hypothesis we know
that F(Dy, ..., Dy_1) is a Markov basis for T™)(Dy, ..., D,_;), so there exists a sequence of moves
gl,....g" € F(D,,...,D,) such that

X4 —Iy, = zgi, and
i=1

h
na+y g € T®(Dy,D,,...,D), (33)
=1
for 1 < I} < l. Proposition 5 tells us that the sequence of moves g, ..., gh translates into another

sequence of moves f', ..., f! in F(Dj, Dy, ..., D,) such that, for every 1 < I} <1y, we have

fi;l = glll,and
l
n+y ' € TM(Dy,Dy,...,D,). (34)
i=1

We obtain a table x¥' € T(™(Dy, Dy, ..., D,), given by

I
X —n=>Y f, (35)
i=1
such that the marginals x’ 4 and x 4 are the same. Moreover, since we employed moves in F(Dy, ..., D),
the marginals X', and np, are also equal, and hence X € T(*)(A, D,). This implies that we can find
a series of moves f1+1 ... f!in F(A, D,) which transform the table ¥’ in x i.e.
l .
x-x = Z f*, and
1=l1+1
v
X+ Y £ e T®U4,D,)c T™(Dy,Ds,...,D,), (36)
i=l1+1
for 1 <I' <. From Eq. 34, Eq. 35 and Eq. 36 we obtain Eq. 32, which completes the proof. |

Example 2. The graph G in Fig. 2 has 11 vertices and 28 edges. This is a decomposable graph with
the set of cliques C(G) = {D1, D9, D3, D4}, where Dy = {1,3,4,11}, Dy := {3,4,7,8,9,11},
D3 := {2,3,9,10} and D4 := {4,5,6,7}. The MCS algorithm constructs a tree 7 on C(G), where the
edge set of T is & = {(Da, D1), (D3, D2), (D4, D2)}.

Therefore the separators of G are S, := Dy N Dy = {3,4,11}, S3 := D3 N Dy = {3,9}, and
S4 := D4y N D3 = {4, 7}. The set of primitive moves associated with G is

f(g) = f(Dl,DQ U Dj UD4) Uf(Dg,Dl UDs UD4) U.'F(D4,D1 U D, UD3).

Assume we are given an eleven-way table n with fixed marginals np,, np,, np, and np,. The inde-
pendence graph associated with n is G. Theorem 1 tells us that 7 (G) is a Markov basis for the class of
tables T(™) (Dy, Dy, D3, D,). A

14



Corollary 1 follows immediately from Theorem 1. If the marginals we are given are non-overlapping,
then Corollary 1 provides us with the set of moves that will leave these marginals unchanged. Since two
vertex sets included in two different connected components are separated by the empty set, the set of
variables corresponding to each marginal will be unconditionally independent of the rest of the variables.
Thus the order in which we consider the non-overlapping marginals does not make a difference.

Corollary 1. Let G be an arbitrary graph having connected components G(I}), ..., G(Dys). Then the
set of primitive moves

s

Uj:(DlU...UDj_l,DjU...UDs) 37
J=2

is a Markov basis for the class of tables T™ (D1, Dy, ..., Dy).

11

10 9“%7 6

8

Figure 2: A decomposable graph with four cliques.

We can conclude that a Markov basis for a decomposable model with r cliques can be expressed as
a union of the Markov bases of (r — 1) two-clique models. Because the Markov basis of a two-clique
model is the set of primitive moves corresponding to one or more two-way tables, we deduce that the
decomposable case essentially reduces to the two-way case.

The family of Markov bases we identified is extremely appealing to the potential user since one
doesn’t even need to actually produce the set of moves F(Dy, Dy, ..., D,). This Markov basis could
grow extremely large due to the size of the original table n, hence handling it might become quite
problematic. The procedure we outline below gets around this obstacle by dynamically generating moves
in F(Dy, Do, ..., D,). The first step consists of computing the number of moves associated with every
edge of the tree 7. We uniformly generate a primitive move in (D, Do, ..., D,) by choosing an edge
in & with probability proportional to the number of primitive moves associated with it, then uniformly
selecting a move from the set of primitive moves corresponding to the edge we picked.

Algorithm 1. Let T = (C(G), E7) be the tree generated by the maximum cardinality search algorithm.
The set of separators S(G) = {Sa,...,Sy} associated with C(G) = {D,...,D.} will be given by
S(G) = {D;j N Dj: (Dj, Dy) € ET}.

o for every S; € S(G) do
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— There exists (D;, D;) € E7 with Sy = D; N D;. Consider the subtrees T; and T; obtained
by removing the edge (Dj, D;) from T, and let V; and V; be the vertex sets associated with
these subtrees, as defined in Eq. 7.

— Calculate the weight w; representing the number of primitive moves corresponding to the
edge (D;, D;):

II5L
wy 4 {2 H (12“) . H (I;) e
vEV;\S, veEV;\S)
end for
o Normalize the weights wa, ..., wy:
wy —————L,forl=2,...,r.

W+ ...+ w,

To uniformly select a move in F(G), follow the steps below:
1. Randomly select an edge (D;, D;) € Er with probability P(S;) = w;, where S; = D; N D;.

2. Uniformly pick a move in F (V;,V;), where V; and V; were defined in Eq. 7. The set of primitive
moves F(V;, V;) associated the decomposable model with two cliques V; and V; was described in
Proposition 2. B

4 Example

In this section we present a straightforward technique for creating a replacement for a table having a
fixed set of marginals. We refer to the data in Table 1 that comes from a prospective epidemiological
study of 1841 workers in a Czechoslovakian car factory, as part of an investigation of potential risk
factors for coronary thrombosis (see Edwards and Havranek (1985)). In the left-hand panel of Table 1, A
indicates whether or not the worker “smokes”, B corresponds to “strenuous mental work”, C corresponds
to “strenuous physical work”, D corresponds to “systolic blood pressure”, E corresponds to “ratio of 8
and « lipoproteins” and F represents “family anamnesis of coronary heart disease”.

Assume an agency has released three marginals, namely ngr, n spcg and n4pg, and now considers
releasing the entire dataset n. In Table 1, there are three entries containing “small” counts of “1” or “2”.
For various reasons, the agency believes that the identity of the individuals corresponding to these entries
is not adequately protected and, consequently, the agency needs to find a replacement i for n such that
the cell counts in these three cells are modified. The replacement table has to be consistent with the
marginals that were already made public, so that a possible intruder will not realize that the “real” table
n was substituted with n'.

The marginals ngr, napcg and n4pg define a decomposable independence graph G, therefore we
know a Markov basis

F9) = F({F}{A,B,C,D,E})UF({A,B,C,E,F},{A, E,D}), (38)

for the class of tables
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B no yes B no yes
F E D CJ]A no yes no yes|A no yes no yes
neg <3 <140 no 44 40 112 67 [0,88] [0,62] [0,224] [0,117]
yes 129 145 12 23 [0,261] [0,246] [0,25] [0,38]
> 140 no 35 12 80 33 [0,88] {0,62] [0,224] [0,117]
yes 109 67 7 9 [0,261] [0,151] [0,25] [0,38]
>3 <140 no 23 32 70 66 [0,58] [0,60] [0,170] [0,148]
yes 50 80 7 13 {0,115] [0,173] [0,20] 1[0,36]
> 140 no 24 25 713 57 [0,58] [0,60] [0,170] [0,148]
yes 51 63 7 16 [0,115] [0,173] [0,20] {0,36]
pos <3 <140 no 5 7 21 9 [0,88] [0,62] [0,126] [0,117]
yes 9 17 4 [0,134] [0,134] [0,25] 10,38]
> 140 no 4 3 11 8 (0,88] [0,62] [0,126] [0,117]
yes 14 17 5 [0,134] [0,134] [0,25] [0,38]

14 14

>3 <140 no 7 3 [0,58] [0,60] [0,126] [0,126]
yes|] 9 16 3 [0,115] [0,134] [0,20] [0,36]

> 140 no 4 0 13 11 [0,58] [0,60] [0,126] [0,126]
ves| 5 14 4 4 [0,115] [0,134] [0,20] [0,36]

Table 1: Autoworkers data (left-hand panel) and bounds for Autoworkers data (right-hand panel) given
the marginals associated with the index sets { B, F'}, {4, B,C, F}, and {A, D, E}.

T := T ({B, F},{4, B,C, E}, {4, D, E}). (39)

In this context, it is possible to construct a Markov chain on the space T by employing the methods of
Diaconis and Sturmfels (1998). We assume that all the tables in T are equally probable. If the chain
is currently in x € T, we uniformly select a move f in F(G). If x + f does not have a negative entry,
the chain moves to x + f, otherwise it stays in x. Since the moves in F(G) connect all the tables in T,
we will eventually find a table that satisfies our requirements provided that such a table exists in T. It
1s important to notice that no burn-in period is needed. In our case, we started with Table 1 and, after
making 52 primitive moves, we found Table 2. This table has the same marginals ngr, napcg, NADE

as Table 1, but the three “small” counts of “1” and “2” are replaced by two counts of “0” and one count
of “3”.

S Conclusions

The results described in this paper are relevant not only in the disclosure limitation context, but also in
the general framework of log-linear models theory. Several fixed marginals induce a set of tables W.
When the index sets defining these fixed marginals are the cliques of a decomposable graph, we were
able to fully characterize the set W: we gave formulas for dynamically generating a Markov basis that
allows one to reach any table in W starting from any other feasible table.

Techniques that worked well for low-dimensional examples are almost impossible to use for high-
dimensional problems that arise in practice due to the huge computational effort they usually require.
This paper demonstrates that graphical modeling is a very powerful tool for effectively overcoming the
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B no yes
F E D C|A no yes no yes
neg <3 <140 no 44 41 112 64
yes 126 149 14 23
> 140 no 34 11 82 35
yes 111 65 4 9
>3 <140 no 24 32 70 68
yes 50 78 5 14
> 140 no 23 24 73 57
yes 51 66 7 15
pos <3 <140 no 7 7 20 10

yes| 10 15 [0] 3
>140 no| 3 3 10 8

yes 14 17 7

>3 <140 no 9 2 16 12

yes 8 17 @ 4
> 140 no 2 2 11 11
yes 6 12 8 3

Table 2: Table obtained from Autoworkers data by preserving the marginals ngr, ngpcr and ngpg.

curse of dimensionality. We were able to model the dependency patterns induced by a number of fixed

marginals by means of graphs and, by doing so, we identified Markov bases for an entire family of sets
of tables.
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